aboutsummaryrefslogtreecommitdiff
path: root/src/crepe/system/CollisionSystem.cpp
blob: 3c6f22ea38108c87a0c7a2bfe5373a243b9d8ca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#include <cmath>
#include <algorithm>
#include <cstddef>
#include <utility>
#include <variant>

#include "CollisionSystem.h"
#include "../api/Event.h"
#include "../api/EventManager.h"

#include "../ComponentManager.h"
#include "../api/BoxCollider.h"
#include "../api/CircleCollider.h"
#include "../api/Vector2.h"
#include "../api/Rigidbody.h"
#include "../api/Transform.h"

#include "Collider.h"
#include "iostream"

using namespace crepe;

CollisionSystem::CollisionSystem() {}

void CollisionSystem::update() {
	ComponentManager & mgr = ComponentManager::get_instance();
	std::vector<std::reference_wrapper<BoxCollider>> boxcolliders	= mgr.get_components_by_type<BoxCollider>();
	std::vector<std::reference_wrapper<CircleCollider>> circlecolliders	= mgr.get_components_by_type<CircleCollider>();
	std::vector<std::pair<CollidedInfoStor,CollidedInfoStor>> collided = check_collisions(boxcolliders,circlecolliders);
	// std::cout << "DEBUG INFO" << std::endl;
	for (auto& collision_pair : collided) {
		call_collision_handler(collision_pair.first,collision_pair.second); // First collider
		call_collision_handler(collision_pair.second,collision_pair.first); // First collider
	}

	if(collided.empty()) {
		std::cout << "No objects collided" << std::endl;
	}
}

void CollisionSystem::call_collision_handler(CollidedInfoStor& data1,CollidedInfoStor& data2){
	const Collider* collider1 = nullptr;
	const Collider* collider2 = nullptr;
	double height1 = 0,width1 = 0;
	double height2 = 0,width2 = 0;
	Vector2 final_position1;
	Vector2 final_position2;
	Vector2 temp;
	// Check collision type and get values for handler
	game_object_id_t first = 0,second = 0;
	if (std::holds_alternative<BoxCollider>(data1.collider)) {
		if (std::holds_alternative<BoxCollider>(data2.collider)) {
			const BoxCollider& box_collider1 = std::get<BoxCollider>(data1.collider);
			const BoxCollider& box_collider2 = std::get<BoxCollider>(data2.collider);
			collider1 = &box_collider1;
			collider2 = &box_collider2;
			first = box_collider1.game_object_id;
			second = box_collider2.game_object_id;
			height1 = box_collider1.height;
			height2 = box_collider2.height;
			width1 = box_collider1.width;
			width2 = box_collider2.width;
			final_position1 = current_position(box_collider1,data1.transform,data1.rigidbody);
			final_position2 = current_position(box_collider2,data2.transform,data2.rigidbody);

			Vector2 delta = final_position2 - final_position1;

			double half_width1 = width1 / 2.0;
			double half_height1 = height1 / 2.0;
			double half_width2 = width2 / 2.0;
			double half_height2 = height2 / 2.0;

			// Compute overlap in X and Y directions
			double overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
			double overlap_y = (half_height1 + half_height2) - std::abs(delta.y);

			// Check if there is actually a collision
			if (overlap_x > 0 && overlap_y > 0) {
					// Resolve in the smallest overlap direction
					if (overlap_x < overlap_y) {
							// Resolve along X-axis
							temp = {delta.x > 0 ? -overlap_x : overlap_x, 0};
					} else {
							// Resolve along Y-axis
							temp = {0, delta.y > 0 ? -overlap_y : overlap_y};
					}
			}



		}
		else {
			const BoxCollider& box_collider = std::get<BoxCollider>(data1.collider);
			const CircleCollider& circle_collider = std::get<CircleCollider>(data2.collider);
			collider1 = &box_collider;
			collider2 = &circle_collider;
			first = box_collider.game_object_id;
			second = circle_collider.game_object_id;
			height1 = box_collider.height;
			height2 = circle_collider.radius + circle_collider.radius;
			width1 = box_collider.width;
			width2 = circle_collider.radius + circle_collider.radius;
		}
	}
	else {
		if (std::holds_alternative<CircleCollider>(data2.collider)) {
			const CircleCollider& circle_collider1 = std::get<CircleCollider>(data1.collider);
			const CircleCollider& circle_collider2 = std::get<CircleCollider>(data2.collider);
			collider1 = &circle_collider1;
			collider2 = &circle_collider2;
			first = circle_collider1.game_object_id;
			second = circle_collider2.game_object_id;
			height1 = circle_collider1.radius + circle_collider1.radius;
			height2 = circle_collider2.radius + circle_collider2.radius;
			width1 = circle_collider1.radius + circle_collider1.radius;
			width2 = circle_collider2.radius + circle_collider2.radius;
		}
		else {
			const CircleCollider& circle_collider = std::get<CircleCollider>(data1.collider);
			const BoxCollider& box_collider = std::get<BoxCollider>(data2.collider);
			collider1 = &circle_collider;
			collider2 = &box_collider;
			first = circle_collider.game_object_id;
			second = box_collider.game_object_id;
			height1 = circle_collider.radius + circle_collider.radius;
			height2 = box_collider.height;
			width1 = circle_collider.radius + circle_collider.radius;
			width2 = box_collider.width;
		}
	}
	crepe::CollisionSystem::CollisionInfo collision_info{
            .first={ *collider1, data1.transform, data1.rigidbody },
            .second={ *collider2, data2.transform, data2.rigidbody },
						.move_back_value = temp,
        };

	// check rigidbody type
	if(data1.rigidbody.data.body_type != Rigidbody::BodyType::STATIC)
	{
		// If second body is static move back
		if(data2.rigidbody.data.body_type == Rigidbody::BodyType::STATIC){
			//call static handler (is bounce true?)
			static_collision_handler(collision_info);
		}; 
		
		
		CollisionEvent data(collision_info);
		EventManager::get_instance().trigger_event<CollisionEvent>(data, first);
	}		
}

void CollisionSystem::static_collision_handler(CollisionInfo& info){
	std::cout << "INFO: x:" << info.first.transform.position.x << "y:" << info.first.transform.position.y << std::endl;
	info.first.transform.position += info.move_back_value;
	if(info.first.rigidbody.data.bounce) {
		if(info.move_back_value.x != 0) {
			info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.bouncie_factor;
		}
		if(info.move_back_value.y != 0) {
			info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.bouncie_factor;
		}
	}
	else {
		info.first.rigidbody.data.linear_velocity = {0,0};
	}
	
}

std::vector<std::pair<CollisionSystem::CollidedInfoStor,CollisionSystem::CollidedInfoStor>> CollisionSystem::check_collisions(const std::vector<std::reference_wrapper<BoxCollider>>& boxcolliders, const std::vector<std::reference_wrapper<CircleCollider>>& circlecolliders) {
	ComponentManager & mgr = ComponentManager::get_instance();
	std::vector<std::pair<CollidedInfoStor,CollidedInfoStor>> collisions_ret;
	//if no colliders skip
	//check if colliders has rigibocdy if not skip

	//if amount is higer than lets say 16 for now use quadtree otwerwise skip
	//quadtree code
	//quadtree is placed over the input vector

	// Check collisions
	for (size_t i = 0; i < boxcolliders.size(); ++i) {
		// Fetch components for the first box collider
		if(!boxcolliders[i].get().active) continue;
		int game_object_id_1 = boxcolliders[i].get().game_object_id;
		Transform& transform1 = mgr.get_components_by_id<Transform>(game_object_id_1).front().get();
		if(!transform1.active) continue;
		Rigidbody& rigidbody1 = mgr.get_components_by_id<Rigidbody>(game_object_id_1).front().get();
		if(!rigidbody1.active) continue;
		
		// Check CircleCollider vs CircleCollider
		for (size_t j = i + 1; j < boxcolliders.size(); ++j) {
			if(!boxcolliders[j].get().active) continue;
			// Skip self collision
			int game_object_id_2 = boxcolliders[j].get().game_object_id;
			if (game_object_id_1 == game_object_id_2) continue;

			// Fetch components for the second box collider
			Transform & transform2 = mgr.get_components_by_id<Transform>(boxcolliders[j].get().game_object_id).front().get();
			if(!transform2.active) continue;
			Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(boxcolliders[j].get().game_object_id).front().get();
			if(!rigidbody2.active) continue;
			// Check collision
			if (check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
				collisions_ret.emplace_back(std::make_pair(
				CollidedInfoStor{boxcolliders[i], transform1, rigidbody1}, 
				CollidedInfoStor{boxcolliders[j], transform2, rigidbody2}
				));
			}
		}

		// Check BoxCollider vs CircleCollider
		for (size_t j = 0; j < circlecolliders.size(); ++j) {
			if(!circlecolliders[j].get().active) continue;
			// Skip self collision
			int game_object_id_2 = circlecolliders[j].get().game_object_id;
			if (game_object_id_1 == game_object_id_2) continue;

			// Fetch components for the second collider (circle)
			Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
			if(!transform2.active) continue;
			Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
			if(!rigidbody2.active) continue;

			// Check collision
			if (check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
				
				collisions_ret.emplace_back(std::make_pair(
				CollidedInfoStor{boxcolliders[i], transform1, rigidbody1}, 
				CollidedInfoStor{circlecolliders[j], transform2, rigidbody2}
				));
			}
		}
	}
	// Check CircleCollider vs CircleCollider
	for (size_t i = 0; i < circlecolliders.size(); ++i) {
		if(!circlecolliders[i].get().active) continue;
		// Fetch components for the first circle collider
		int game_object_id_1 = circlecolliders[i].get().game_object_id;
		Transform & transform1 = mgr.get_components_by_id<Transform>(circlecolliders[i].get().game_object_id).front().get();
		if(!transform1.active) continue;
		Rigidbody & rigidbody1 = mgr.get_components_by_id<Rigidbody>(circlecolliders[i].get().game_object_id).front().get();
		if(!rigidbody1.active) continue;

		for (size_t j = i + 1; j < circlecolliders.size(); ++j) {
			if(!circlecolliders[j].get().active) continue;
			// Skip self collision
			int game_object_id_2 = circlecolliders[j].get().game_object_id;
			if (game_object_id_1 == game_object_id_2) continue;

			// Fetch components for the second circle collider
			Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
			if(!transform2.active) continue;
			Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
			if(!rigidbody2.active) continue;

			// Check collision
			if (check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
				collisions_ret.emplace_back(std::make_pair(
				CollidedInfoStor{circlecolliders[i], transform1, rigidbody1}, 
				CollidedInfoStor{circlecolliders[j], transform2, rigidbody2}
				));
			}
		}
	}
	return collisions_ret;
}

bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2)
{
	// Get current positions of colliders
	Vector2 final_position1 = current_position(box1,transform1,rigidbody1);
	Vector2 final_position2 = current_position(box2,transform2,rigidbody2);

	 // Log final positions for debugging purposes
	std::cout << "Final Position of Box 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl;
	std::cout << "Final Position of Box 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl;

	// Log rotation values for debugging
	std::cout << "Rotation of Box 1: " << transform1.rotation << " degrees" << std::endl;
	std::cout << "Rotation of Box 2: " << transform2.rotation << " degrees" << std::endl;


	// Calculate half-extents (half width and half height)
	double half_width1 = box1.width / 2.0;
	double half_height1 = box1.height / 2.0;
	double half_width2 = box2.width / 2.0;
	double half_height2 = box2.height / 2.0;

	std::cout << "half_width of Box 1: " << half_width1 << std::endl;
	std::cout << "half_height of Box 2: " << half_height1 << std::endl;
	std::cout << "half_width of Box 1: " << half_width2 << std::endl;
	std::cout << "half_height of Box 2: " << half_height2 << std::endl;


	std::cout << "final_position1.x + half_width1 < final_position2.x - half_width2 " << (final_position1.x + half_width1 < final_position2.x - half_width2) << std::endl;
	std::cout << "final_position1.x - half_width1 > final_position2.x + half_width2 " << (final_position1.x - half_width1 > final_position2.x + half_width2) << std::endl;
	std::cout << "final_position1.y + half_height1 < final_position2.y - half_height2 " << (final_position1.y + half_height1 < final_position2.y - half_height2) << std::endl;
	std::cout << "final_position1.y - half_height1 > final_position2.y + half_height2 " << (final_position1.y - half_height1 > final_position2.y + half_height2) << std::endl;

	// Check if the boxes overlap along the X and Y axes
	return !(final_position1.x + half_width1 <= final_position2.x - half_width2 ||  // box1 is left of box2
						final_position1.x - half_width1 >= final_position2.x + half_width2 ||  // box1 is right of box2
						final_position1.y + half_height1 <= final_position2.y - half_height2 || // box1 is above box2
						final_position1.y - half_height1 >= final_position2.y + half_height2);  // box1 is below box2
}

bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
	// Get current positions of colliders
	Vector2 final_position1 = current_position(box1, transform1, rigidbody1);
	Vector2 final_position2 = current_position(circle2, transform2, rigidbody2);

	// Log final positions for debugging purposes
	// std::cout << "Final Position of Box: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl;
	// std::cout << "Final Position of Circle: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl;

	// Calculate box half-extents
	double half_width = box1.width / 2.0;
	double half_height = box1.height / 2.0;

	// Find the closest point on the box to the circle's center
	double closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width));
	double closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height));


	// Calculate the distance squared between the circle's center and the closest point on the box
	double distance_x = final_position2.x - closest_x;
	double distance_y = final_position2.y - closest_y;
	double distance_squared = distance_x * distance_x + distance_y * distance_y;

	// Compare distance squared with the square of the circle's radius
	return distance_squared <= circle2.radius * circle2.radius;
}

bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
	// Get current positions of colliders
	Vector2 final_position1 = current_position(circle1,transform1,rigidbody1);
	Vector2 final_position2 = current_position(circle2,transform2,rigidbody2);

	// Log final positions for debugging purposes
	// std::cout << "Final Position of Circle 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl;
	// std::cout << "Final Position of Circle 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl;

	// Log rotation values for debugging (circles do not rotate, so this might not be needed for circles)
	// std::cout << "Rotation of Circle 1: " << transform1.rotation << " degrees" << std::endl;
	// std::cout << "Rotation of Circle 2: " << transform2.rotation << " degrees" << std::endl;

	double distance_x = final_position1.x - final_position2.x;
	double distance_y = final_position1.y - final_position2.y;
	double distance_squared = distance_x * distance_x + distance_y * distance_y;

	// Calculate the sum of the radii
	double radius_sum = circle1.radius + circle2.radius;

	// Check if the distance between the centers is less than or equal to the sum of the radii
	return distance_squared <= radius_sum * radius_sum;
}

Vector2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) {
	// Function to convert degrees to radians
	auto degrees_to_radians = [](double degrees) {
			return degrees * (M_PI / 180.0);
	};

	// Get the rotation in radians
	double radians1 = degrees_to_radians(transform.rotation);

	// Calculate total offset with scale
	Vector2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale;

	// Rotate
	double rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
	double rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1);

	// Final positions considering scaling and rotation
	return(transform.position + Vector2(rotated_total_offset_x1, rotated_total_offset_y1));

}