aboutsummaryrefslogtreecommitdiff
path: root/src/crepe/system/CollisionSystem.cpp
blob: f0f1fa864d2a6d8e86a70743aa58b35666c3b852 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <emmintrin.h>
#include <functional>
#include <optional>
#include <utility>
#include <variant>

#include "../manager/ComponentManager.h"
#include "../manager/EventManager.h"
#include "api/BoxCollider.h"
#include "api/CircleCollider.h"
#include "api/Event.h"
#include "api/Metadata.h"
#include "api/Rigidbody.h"
#include "api/Transform.h"
#include "api/Vector2.h"
#include "util/AbsolutePosition.h"
#include "util/OptionalRef.h"

#include "CollisionSystem.h"
#include "types.h"

using namespace crepe;
using enum Rigidbody::BodyType;

CollisionSystem::CollisionInfo CollisionSystem::CollisionInfo::operator-() const {
	return {
		.self = this->other,
		.other = this->self,
		.resolution = -this->resolution,
		.resolution_direction = this->resolution_direction,
	};
}

void CollisionSystem::update() {
	std::vector<CollisionInternal> all_colliders;
	game_object_id_t id = 0;
	ComponentManager & mgr = this->mediator.component_manager;
	RefVector<Rigidbody> rigidbodies = mgr.get_components_by_type<Rigidbody>();
	// Collisions can only happen on object with a rigidbody
	for (Rigidbody & rigidbody : rigidbodies) {
		if (!rigidbody.active) continue;
		id = rigidbody.game_object_id;
		Transform & transform = mgr.get_components_by_id<Transform>(id).front().get();
		Metadata & metadata = mgr.get_components_by_id<Metadata>(id).front().get();
		// Check if the boxcollider is active and has the same id as the rigidbody.
		RefVector<BoxCollider> boxcolliders = mgr.get_components_by_type<BoxCollider>();
		for (BoxCollider & boxcollider : boxcolliders) {
			if (boxcollider.game_object_id != id) continue;
			if (!boxcollider.active) continue;
			all_colliders.push_back({.id = id,
									 .collider = collider_variant{boxcollider},
									 .info = {transform, rigidbody, metadata}});
		}
		// Check if the circlecollider is active and has the same id as the rigidbody.
		RefVector<CircleCollider> circlecolliders
			= mgr.get_components_by_type<CircleCollider>();
		for (CircleCollider & circlecollider : circlecolliders) {
			if (circlecollider.game_object_id != id) continue;
			if (!circlecollider.active) continue;
			all_colliders.push_back({.id = id,
									 .collider = collider_variant{circlecollider},
									 .info = {transform, rigidbody, metadata}});
		}
	}

	// Check between all colliders if there is a collision (collision handling)
	std::vector<std::pair<CollisionInternal, CollisionInternal>> collided
		= this->gather_collisions(all_colliders);

	// For the object convert the info and call the collision handler if needed
	for (auto & collision_pair : collided) {
		// Convert internal struct to external struct
		CollisionInfo info
			= this->get_collision_info(collision_pair.first, collision_pair.second);
		// Determine if and/or what collison handler is needed.
		this->determine_collision_handler(info);
	}
}

// Below is for collision detection
std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>>
CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) {

	// TODO:
	// If no colliders skip
	// Check if colliders has rigidbody if not skip

	// TODO:
	// If amount is higer than lets say 16 for now use quadtree otwerwise skip
	// Quadtree code
	// Quadtree is placed over the input vector

	// Return data of collided colliders which are variants
	std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret;
	//using visit to visit the variant to access the active and id.
	for (size_t i = 0; i < colliders.size(); ++i) {
		for (size_t j = i + 1; j < colliders.size(); ++j) {
			if (colliders[i].id == colliders[j].id) continue;
			if (!should_collide(colliders[i], colliders[j])) continue;
			CollisionInternalType type
				= get_collider_type(colliders[i].collider, colliders[j].collider);
			if (!detect_collision(colliders[i], colliders[j], type)) continue;
			//fet
			collisions_ret.emplace_back(colliders[i], colliders[j]);
		}
	}
	return collisions_ret;
}

bool CollisionSystem::should_collide(const CollisionInternal & self,
									 const CollisionInternal & other) const {

	const Rigidbody::Data & self_rigidbody = self.info.rigidbody.data;
	const Rigidbody::Data & other_rigidbody = other.info.rigidbody.data;
	const Metadata & self_metadata = self.info.metadata;
	const Metadata & other_metadata = other.info.metadata;

	// Check collision layers
	if (self_rigidbody.collision_layers.contains(other_rigidbody.collision_layer)) return true;
	if (other_rigidbody.collision_layers.contains(self_rigidbody.collision_layer)) return true;

	// Check names
	if (self_rigidbody.collision_names.contains(other_metadata.name)) return true;
	if (other_rigidbody.collision_names.contains(self_metadata.name)) return true;

	// Check tags
	if (self_rigidbody.collision_tags.contains(other_metadata.tag)) return true;
	if (other_rigidbody.collision_tags.contains(self_metadata.tag)) return true;

	return false;
}

CollisionSystem::CollisionInternalType
CollisionSystem::get_collider_type(const collider_variant & collider1,
								   const collider_variant & collider2) const {
	if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) {
		if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
			return CollisionInternalType::CIRCLE_CIRCLE;
		} else {
			return CollisionInternalType::CIRCLE_BOX;
		}
	} else {
		if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
			return CollisionInternalType::BOX_CIRCLE;
		} else {
			return CollisionInternalType::BOX_BOX;
		}
	}
}

bool CollisionSystem::detect_collision(CollisionInternal & self, CollisionInternal & other,
									   const CollisionInternalType & type) {
	vec2 resolution;
	switch (type) {
		case CollisionInternalType::BOX_BOX: {
			// Box-Box collision detection
			const BoxColliderInternal BOX1
				= {.collider = std::get<std::reference_wrapper<BoxCollider>>(self.collider),
				   .transform = self.info.transform,
				   .rigidbody = self.info.rigidbody};
			const BoxColliderInternal BOX2
				= {.collider = std::get<std::reference_wrapper<BoxCollider>>(other.collider),
				   .transform = other.info.transform,
				   .rigidbody = other.info.rigidbody};
			// Get resolution vector from box-box collision detection
			resolution = this->get_box_box_detection(BOX1, BOX2);
			// If no collision (NaN values), return false
			if (std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
			break;
		}
		case CollisionInternalType::BOX_CIRCLE: {
			// Box-Circle collision detection
			const BoxColliderInternal BOX1
				= {.collider = std::get<std::reference_wrapper<BoxCollider>>(self.collider),
				   .transform = self.info.transform,
				   .rigidbody = self.info.rigidbody};
			const CircleColliderInternal CIRCLE2 = {
				.collider = std::get<std::reference_wrapper<CircleCollider>>(other.collider),
				.transform = other.info.transform,
				.rigidbody = other.info.rigidbody};
			// Get resolution vector from box-circle collision detection
			resolution = this->get_box_circle_detection(BOX1, CIRCLE2);
			// If no collision (NaN values), return false
			if (std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
			// Invert the resolution vector for proper collision response
			resolution = -resolution;
			break;
		}
		case CollisionInternalType::CIRCLE_CIRCLE: {
			// Circle-Circle collision detection
			const CircleColliderInternal CIRCLE1
				= {.collider = std::get<std::reference_wrapper<CircleCollider>>(self.collider),
				   .transform = self.info.transform,
				   .rigidbody = self.info.rigidbody};
			const CircleColliderInternal CIRCLE2 = {
				.collider = std::get<std::reference_wrapper<CircleCollider>>(other.collider),
				.transform = other.info.transform,
				.rigidbody = other.info.rigidbody};
			// Get resolution vector from circle-circle collision detection
			resolution = this->get_circle_circle_detection(CIRCLE1, CIRCLE2);
			// If no collision (NaN values), return false
			if (std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
			break;
		}
		case CollisionInternalType::CIRCLE_BOX: {
			// Circle-Box collision detection
			const CircleColliderInternal CIRCLE1
				= {.collider = std::get<std::reference_wrapper<CircleCollider>>(self.collider),
				   .transform = self.info.transform,
				   .rigidbody = self.info.rigidbody};
			const BoxColliderInternal BOX2
				= {.collider = std::get<std::reference_wrapper<BoxCollider>>(other.collider),
				   .transform = other.info.transform,
				   .rigidbody = other.info.rigidbody};
			// Get resolution vector from box-circle collision detection (order swapped)
			resolution = this->get_box_circle_detection(BOX2, CIRCLE1);
			// If no collision (NaN values), return false
			if (std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
			break;
		}
		case CollisionInternalType::NONE:
			// No collision detection needed if the type is NONE
			return false;
			break;
	}
	// Store the calculated resolution vector for the 'self' collider
	self.resolution = resolution;
	// Calculate the resolution direction based on the rigidbody data
	self.resolution_direction
		= this->resolution_correction(self.resolution, self.info.rigidbody.data);
	// For the 'other' collider, the resolution is the opposite direction of 'self'
	other.resolution = -self.resolution;
	other.resolution_direction = self.resolution_direction;

	// Return true if a collision was detected and resolution was calculated
	return true;
}

vec2 CollisionSystem::get_box_box_detection(const BoxColliderInternal & box1,
											const BoxColliderInternal & box2) const {
	vec2 resolution{std::nanf(""), std::nanf("")};
	// Get current positions of colliders
	vec2 pos1 = AbsolutePosition::get_position(box1.transform, box1.collider.offset);
	vec2 pos2 = AbsolutePosition::get_position(box2.transform, box2.collider.offset);

	// Scale dimensions
	vec2 scaled_box1 = box1.collider.dimensions * box1.transform.scale;
	vec2 scaled_box2 = box2.collider.dimensions * box2.transform.scale;
	vec2 delta = pos2 - pos1;

	// Calculate half-extents (half width and half height)
	float half_width1 = scaled_box1.x / 2.0;
	float half_height1 = scaled_box1.y / 2.0;
	float half_width2 = scaled_box2.x / 2.0;
	float half_height2 = scaled_box2.y / 2.0;

	if (pos1.x + half_width1 > pos2.x - half_width2
		&& pos1.x - half_width1 < pos2.x + half_width2
		&& pos1.y + half_height1 > pos2.y - half_height2
		&& pos1.y - half_height1 < pos2.y + half_height2) {
		resolution = {0, 0};
		float overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
		float overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
		if (overlap_x > 0 && overlap_y > 0) {
			// Determine the direction of resolution
			if (overlap_x < overlap_y) {
				// Resolve along the X-axis (smallest overlap)
				resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
			} else if (overlap_y < overlap_x) {
				// Resolve along the Y-axis (smallest overlap)
				resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
			} else {
				// Equal overlap, resolve both directions with preference
				resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
				resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
			}
		}
	}
	return resolution;
}

vec2 CollisionSystem::get_box_circle_detection(const BoxColliderInternal & box,
											   const CircleColliderInternal & circle) const {
	/// Get current positions of colliders
	vec2 box_pos = AbsolutePosition::get_position(box.transform, box.collider.offset);
	vec2 circle_pos = AbsolutePosition::get_position(circle.transform, circle.collider.offset);

	// Scale dimensions
	vec2 scaled_box = box.collider.dimensions * box.transform.scale;
	float scaled_circle_radius = circle.collider.radius * circle.transform.scale;

	// Calculate box half-extents
	float half_width = scaled_box.x / 2.0f;
	float half_height = scaled_box.y / 2.0f;

	// Find the closest point on the box to the circle's center
	float closest_x
		= std::max(box_pos.x - half_width, std::min(circle_pos.x, box_pos.x + half_width));
	float closest_y
		= std::max(box_pos.y - half_height, std::min(circle_pos.y, box_pos.y + half_height));

	float distance_x = circle_pos.x - closest_x;
	float distance_y = circle_pos.y - closest_y;
	float distance_squared = distance_x * distance_x + distance_y * distance_y;
	if (distance_squared < scaled_circle_radius * scaled_circle_radius) {
		vec2 delta = circle_pos - box_pos;

		// Clamp circle center to the nearest point on the box
		vec2 closest_point;
		closest_point.x = std::clamp(delta.x, -half_width, half_width);
		closest_point.y = std::clamp(delta.y, -half_height, half_height);

		// Find the vector from the circle center to the closest point
		vec2 closest_delta = delta - closest_point;

		float distance
			= std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y);
		vec2 collision_normal = closest_delta / distance;

		// Compute penetration depth
		float penetration_depth = scaled_circle_radius - distance;

		// Compute the resolution vector
		return vec2{collision_normal * penetration_depth};
	}
	// No collision
	return vec2{std::nanf(""), std::nanf("")};
}

vec2 CollisionSystem::get_circle_circle_detection(
	const CircleColliderInternal & circle1, const CircleColliderInternal & circle2) const {
	// Get current positions of colliders
	vec2 final_position1
		= AbsolutePosition::get_position(circle1.transform, circle1.collider.offset);
	vec2 final_position2
		= AbsolutePosition::get_position(circle2.transform, circle2.collider.offset);

	// Scale dimensions
	float scaled_circle1 = circle1.collider.radius * circle1.transform.scale;
	float scaled_circle2 = circle2.collider.radius * circle2.transform.scale;

	float distance_x = final_position1.x - final_position2.x;
	float distance_y = final_position1.y - final_position2.y;
	float distance_squared = distance_x * distance_x + distance_y * distance_y;

	// Calculate the sum of the radii
	float radius_sum = scaled_circle1 + scaled_circle2;

	// Check for collision (distance squared must be less than the square of the radius sum)
	if (distance_squared < radius_sum * radius_sum) {
		vec2 delta = final_position2 - final_position1;

		// Compute the distance between the two circle centers
		float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y);

		// Compute the combined radii of the two circles
		float combined_radius = scaled_circle1 + scaled_circle2;

		// Compute the penetration depth
		float penetration_depth = combined_radius - distance;

		// Normalize the delta vector to get the collision direction
		vec2 collision_normal = delta / distance;

		// Compute the resolution vector
		vec2 resolution = -collision_normal * penetration_depth;

		return resolution;
	}
	// No collision
	return vec2{std::nanf(""), std::nanf("")};
}

CollisionSystem::Direction
CollisionSystem::resolution_correction(vec2 & resolution, const Rigidbody::Data & rigidbody) {

	// Calculate the other value to move back correctly
	// If only X or Y has a value determine what is should be to move back.
	Direction resolution_direction = Direction::NONE;
	// If both are not zero a perfect corner has been hit
	if (resolution.x != 0 && resolution.y != 0) {
		resolution_direction = Direction::BOTH;
		// If x is not zero a horizontal action was latest action.
	} else if (resolution.x != 0) {
		resolution_direction = Direction::X_DIRECTION;
		// If both are 0 resolution y should not be changed (y_velocity can be 0 by kinematic object movement)
		if (rigidbody.linear_velocity.x != 0 && rigidbody.linear_velocity.y != 0)
			resolution.y
				= -rigidbody.linear_velocity.y * (resolution.x / rigidbody.linear_velocity.x);
	} else if (resolution.y != 0) {
		resolution_direction = Direction::Y_DIRECTION;
		// If both are 0 resolution x should not be changed (x_velocity can be 0 by kinematic object movement)
		if (rigidbody.linear_velocity.x != 0 && rigidbody.linear_velocity.y != 0)
			resolution.x
				= -rigidbody.linear_velocity.x * (resolution.y / rigidbody.linear_velocity.y);
	}

	return resolution_direction;
}

CollisionSystem::CollisionInfo
CollisionSystem::get_collision_info(const CollisionInternal & in_self,
									const CollisionInternal & in_other) const {

	crepe::CollisionSystem::ColliderInfo self{
		.transform = in_self.info.transform,
		.rigidbody = in_self.info.rigidbody,
		.metadata = in_self.info.metadata,
	};

	crepe::CollisionSystem::ColliderInfo other{
		.transform = in_other.info.transform,
		.rigidbody = in_other.info.rigidbody,
		.metadata = in_other.info.metadata,
	};

	struct CollisionInfo collision_info {
		.self = self, .other = other, .resolution = in_self.resolution,
		.resolution_direction = in_self.resolution_direction,
	};
	return collision_info;
}

void CollisionSystem::determine_collision_handler(const CollisionInfo & info) {
	Rigidbody::BodyType self_type = info.self.rigidbody.data.body_type;
	Rigidbody::BodyType other_type = info.other.rigidbody.data.body_type;
	bool self_kinematic = info.self.rigidbody.data.kinematic_collision;
	bool other_kinematic = info.other.rigidbody.data.kinematic_collision;
	// Inverted collision info
	CollisionInfo inverted = -info;
	// If both objects are static skip handle call collision script
	if (self_type == STATIC && other_type == STATIC) return;

	//	First body is not dynamic
	if (self_type != DYNAMIC) {
		bool static_collision = self_type == STATIC && other_type == DYNAMIC;
		bool kinematic_collision
			= self_type == KINEMATIC && other_type == DYNAMIC && self_kinematic;

		// Handle collision
		if (static_collision || kinematic_collision) this->static_collision_handler(inverted);
		// Call scripts
		this->call_collision_events(inverted);
		return;
	}

	// Second body is not dynamic
	if (other_type != DYNAMIC) {
		bool static_collision = other_type == STATIC;
		bool kinematic_collision = other_type == KINEMATIC && other_kinematic;
		// Handle collision
		if (static_collision || kinematic_collision) this->static_collision_handler(info);
		// Call scripts
		this->call_collision_events(info);
		return;
	}

	// Dynamic
	// Handle collision
	this->dynamic_collision_handler(info);
	// Call scripts
	this->call_collision_events(info);
}

void CollisionSystem::static_collision_handler(const CollisionInfo & info) {

	vec2 & transform_pos = info.self.transform.position;
	float elasticity = info.self.rigidbody.data.elasticity_coefficient;
	vec2 & rigidbody_vel = info.self.rigidbody.data.linear_velocity;

	// Move object back using calculate move back value
	transform_pos += info.resolution;

	switch (info.resolution_direction) {
		case Direction::BOTH:
			//bounce
			if (elasticity > 0) {
				rigidbody_vel = -rigidbody_vel * elasticity;
			}
			//stop movement
			else {
				rigidbody_vel = {0, 0};
			}
			break;
		case Direction::Y_DIRECTION:
			// Bounce
			if (elasticity > 0) {
				rigidbody_vel.y = -rigidbody_vel.y * elasticity;
			}
			// Stop movement
			else {
				rigidbody_vel.y = 0;
				transform_pos.x -= info.resolution.x;
			}
			break;
		case Direction::X_DIRECTION:
			// Bounce
			if (elasticity > 0) {
				rigidbody_vel.x = -rigidbody_vel.x * elasticity;
			}
			// Stop movement
			else {
				rigidbody_vel.x = 0;
				transform_pos.y -= info.resolution.y;
			}
			break;
		case Direction::NONE:
			// Not possible
			break;
	}
}

void CollisionSystem::dynamic_collision_handler(const CollisionInfo & info) {

	vec2 & self_transform_pos = info.self.transform.position;
	vec2 & other_transform_pos = info.other.transform.position;
	float self_elasticity = info.self.rigidbody.data.elasticity_coefficient;
	float other_elasticity = info.other.rigidbody.data.elasticity_coefficient;
	vec2 & self_rigidbody_vel = info.self.rigidbody.data.linear_velocity;
	vec2 & other_rigidbody_vel = info.other.rigidbody.data.linear_velocity;

	self_transform_pos += info.resolution / 2;
	other_transform_pos += -(info.resolution / 2);

	switch (info.resolution_direction) {
		case Direction::BOTH:
			if (self_elasticity > 0) {
				self_rigidbody_vel = -self_rigidbody_vel * self_elasticity;
			} else {
				self_rigidbody_vel = {0, 0};
			}

			if (other_elasticity > 0) {
				other_rigidbody_vel = -other_rigidbody_vel * other_elasticity;
			} else {
				other_rigidbody_vel = {0, 0};
			}
			break;
		case Direction::Y_DIRECTION:
			if (self_elasticity > 0) {
				self_rigidbody_vel.y = -self_rigidbody_vel.y * self_elasticity;
			}
			// Stop movement
			else {
				self_rigidbody_vel.y = 0;
				self_transform_pos.x -= info.resolution.x;
			}

			if (other_elasticity > 0) {
				other_rigidbody_vel.y = -other_rigidbody_vel.y * other_elasticity;
			}
			// Stop movement
			else {
				other_rigidbody_vel.y = 0;
				other_transform_pos.x -= info.resolution.x;
			}
			break;
		case Direction::X_DIRECTION:
			if (self_elasticity > 0) {
				self_rigidbody_vel.x = -self_rigidbody_vel.x * self_elasticity;
			}
			// Stop movement
			else {
				self_rigidbody_vel.x = 0;
				self_transform_pos.y -= info.resolution.y;
			}

			if (other_elasticity > 0) {
				other_rigidbody_vel.x = -other_rigidbody_vel.x * other_elasticity;
			}
			// Stop movement
			else {
				other_rigidbody_vel.x = 0;
				other_transform_pos.y -= info.resolution.y;
			}
			break;
		case Direction::NONE:
			// Not possible
			break;
	}
}

void CollisionSystem::call_collision_events(const CollisionInfo & info) {
	CollisionEvent data(info);
	CollisionEvent data_inverted(-info);
	EventManager & emgr = this->mediator.event_manager;
	emgr.trigger_event<CollisionEvent>(data, info.self.transform.game_object_id);
	emgr.trigger_event<CollisionEvent>(data_inverted, -info.self.transform.game_object_id);
}