1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
#include <cmath>
#include <algorithm>
#include <cstddef>
#include <utility>
#include <variant>
#include "api/Event.h"
#include "api/EventManager.h"
#include "api/BoxCollider.h"
#include "api/CircleCollider.h"
#include "api/Vector2.h"
#include "api/Rigidbody.h"
#include "api/Transform.h"
#include "ComponentManager.h"
#include "CollisionSystem.h"
#include "Collider.h"
using namespace crepe;
void CollisionSystem::update() {
// Get collider components and keep them seperate
ComponentManager & mgr = this->component_manager;
std::vector<std::reference_wrapper<BoxCollider>> boxcolliders = mgr.get_components_by_type<BoxCollider>();
std::vector<std::reference_wrapper<CircleCollider>> circlecolliders = mgr.get_components_by_type<CircleCollider>();
// Check between all colliders if there is a collision
std::vector<std::pair<CollidedInfoStor,CollidedInfoStor>> collided = check_collisions(boxcolliders,circlecolliders);
// For both objects call the collision handler
for (auto& collision_pair : collided) {
collision_handler(collision_pair.first,collision_pair.second);
collision_handler(collision_pair.second,collision_pair.first);
}
}
void CollisionSystem::collision_handler(CollidedInfoStor& data1,CollidedInfoStor& data2){
// Data needed for collision handler info
const Collider* collider1 = nullptr;
const Collider* collider2 = nullptr;
Vector2 move_back;
// Check collision type and get values for handler
if (std::holds_alternative<BoxCollider>(data1.collider)) {
if (std::holds_alternative<BoxCollider>(data2.collider)) {
// Get colliders from variant to be used to determine collision handler info
const BoxCollider& box_collider1 = std::get<BoxCollider>(data1.collider);
const BoxCollider& box_collider2 = std::get<BoxCollider>(data2.collider);
collider1 = &box_collider1;
collider2 = &box_collider2;
// TODO: send with the collider info to this function because this is calculated previously
// Get the current position of the collider
Vector2 final_position1 = current_position(box_collider1,data1.transform,data1.rigidbody);
Vector2 final_position2 = current_position(box_collider2,data2.transform,data2.rigidbody);
// Determine move_back value for smallest overlap (x or y)
move_back = box_box_collision_move_back(box_collider1,box_collider2,final_position1,final_position2);
}
else {
// TODO: calcualte Box - Circle collision info
const BoxCollider& box_collider = std::get<BoxCollider>(data1.collider);
const CircleCollider& circle_collider = std::get<CircleCollider>(data2.collider);
collider1 = &box_collider;
collider2 = &circle_collider;
}
}
else {
if (std::holds_alternative<CircleCollider>(data2.collider)) {
// TODO: calcualte Circle - Circle collision info
const CircleCollider& circle_collider1 = std::get<CircleCollider>(data1.collider);
const CircleCollider& circle_collider2 = std::get<CircleCollider>(data2.collider);
collider1 = &circle_collider1;
collider2 = &circle_collider2;
}
else {
// TODO: calcualte Circle - Box collision info
const CircleCollider& circle_collider = std::get<CircleCollider>(data1.collider);
const BoxCollider& box_collider = std::get<BoxCollider>(data2.collider);
collider1 = &circle_collider;
collider2 = &box_collider;
}
}
// One vaue is calculated for moving back. Calculate the other value (x or y) relateive to the move_back value.
Direction move_back_direction = Direction::NONE;
if(move_back.x != 0 && move_back.y > 0) {
move_back_direction = Direction::BOTH;
} else if (move_back.x != 0) {
move_back_direction = Direction::X_DIRECTION;
if(data1.rigidbody.data.linear_velocity.y != 0)
move_back.y = data1.rigidbody.data.linear_velocity.y * (move_back.x/data1.rigidbody.data.linear_velocity.x);
} else if (move_back.y != 0) {
move_back_direction = Direction::Y_DIRECTION;
if(data1.rigidbody.data.linear_velocity.x != 0)
move_back.x = data1.rigidbody.data.linear_velocity.x * (move_back.y/data1.rigidbody.data.linear_velocity.y);
}
// collision info
crepe::CollisionSystem::CollisionInfo collision_info{
.first={ *collider1, data1.transform, data1.rigidbody },
.second={ *collider2, data2.transform, data2.rigidbody },
.move_back_value = move_back,
.move_back_direction = move_back_direction,
};
// Determine if static needs to be called
determine_collision_handler(collision_info);
}
Vector2 CollisionSystem::box_box_collision_move_back(const BoxCollider& box_collider1,const BoxCollider& box_collider2,Vector2 final_position1,Vector2 final_position2)
{
Vector2 resolution; // Default resolution vector
Vector2 delta = final_position2 - final_position1;
// Compute half-dimensions of the boxes
double half_width1 = box_collider1.width / 2.0;
double half_height1 = box_collider1.height / 2.0;
double half_width2 = box_collider2.width / 2.0;
double half_height2 = box_collider2.height / 2.0;
// Calculate overlaps along X and Y axes
double overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
double overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
// Check if there is a collision
if (overlap_x > 0 && overlap_y > 0) {//should always be true check if this can be removed
// Determine the direction of resolution
if (overlap_x < overlap_y) {
// Resolve along the X-axis (smallest overlap)
resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
} else if (overlap_y < overlap_x) {
// Resolve along the Y-axis (smallest overlap)
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
} else {
// Equal overlap, resolve both directions with preference
resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
}
}
return resolution;
}
void CollisionSystem::determine_collision_handler(CollisionInfo& info){
// Check rigidbody type for static
if(info.first.rigidbody.data.body_type != Rigidbody::BodyType::STATIC)
{
// If second body is static perform the static collision handler in this system
if(info.second.rigidbody.data.body_type == Rigidbody::BodyType::STATIC){
static_collision_handler(info);
};
// Call collision event for user
CollisionEvent data(info);
EventManager::get_instance().trigger_event<CollisionEvent>(data, info.first.collider.game_object_id);
}
}
void CollisionSystem::static_collision_handler(CollisionInfo& info){
// Move object back using calculate move back value
info.first.transform.position += info.move_back_value;
// If bounce is enabled mirror velocity
if(info.first.rigidbody.data.bounce) {
if(info.move_back_direction == Direction::BOTH)
{
info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.elastisity;
info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.elastisity;
}
else if(info.move_back_direction == Direction::Y_DIRECTION) {
info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.elastisity;
}
else if(info.move_back_direction == Direction::X_DIRECTION){
info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.elastisity;
}
}
// Stop movement if bounce is disabled
else {
info.first.rigidbody.data.linear_velocity = {0,0};
}
}
std::vector<std::pair<CollisionSystem::CollidedInfoStor,CollisionSystem::CollidedInfoStor>> CollisionSystem::check_collisions(const std::vector<std::reference_wrapper<BoxCollider>>& boxcolliders, const std::vector<std::reference_wrapper<CircleCollider>>& circlecolliders) {
ComponentManager & mgr = this->component_manager;
std::vector<std::pair<CollidedInfoStor,CollidedInfoStor>> collisions_ret;
// TODO:
// If no colliders skip
// Check if colliders has rigidbody if not skip
// TODO:
// If amount is higer than lets say 16 for now use quadtree otwerwise skip
// Quadtree code
// Quadtree is placed over the input vector
// Check collisions for each collider
for (size_t i = 0; i < boxcolliders.size(); ++i) {
// Fetch components for the first box collider
if(!boxcolliders[i].get().active) continue;
int game_object_id_1 = boxcolliders[i].get().game_object_id;
Transform& transform1 = mgr.get_components_by_id<Transform>(game_object_id_1).front().get();
if(!transform1.active) continue;
Rigidbody& rigidbody1 = mgr.get_components_by_id<Rigidbody>(game_object_id_1).front().get();
if(!rigidbody1.active) continue;
// Check BoxCollider vs BoxCollider
for (size_t j = i + 1; j < boxcolliders.size(); ++j) {
if(!boxcolliders[j].get().active) continue;
// Skip self collision
int game_object_id_2 = boxcolliders[j].get().game_object_id;
if (game_object_id_1 == game_object_id_2) continue;
// Fetch components for the second box collider
Transform & transform2 = mgr.get_components_by_id<Transform>(boxcolliders[j].get().game_object_id).front().get();
if(!transform2.active) continue;
Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(boxcolliders[j].get().game_object_id).front().get();
if(!rigidbody2.active) continue;
// Check collision
if (check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
collisions_ret.emplace_back(std::make_pair(
CollidedInfoStor{boxcolliders[i], transform1, rigidbody1},
CollidedInfoStor{boxcolliders[j], transform2, rigidbody2}
));
}
}
// Check BoxCollider vs CircleCollider
for (size_t j = 0; j < circlecolliders.size(); ++j) {
if(!circlecolliders[j].get().active) continue;
// Skip self collision
int game_object_id_2 = circlecolliders[j].get().game_object_id;
if (game_object_id_1 == game_object_id_2) continue;
// Fetch components for the second collider (circle)
Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
if(!transform2.active) continue;
Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
if(!rigidbody2.active) continue;
// Check collision
if (check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
collisions_ret.emplace_back(std::make_pair(
CollidedInfoStor{boxcolliders[i], transform1, rigidbody1},
CollidedInfoStor{circlecolliders[j], transform2, rigidbody2}
));
}
}
}
// Check CircleCollider vs CircleCollider
for (size_t i = 0; i < circlecolliders.size(); ++i) {
if(!circlecolliders[i].get().active) continue;
// Fetch components for the first circle collider
int game_object_id_1 = circlecolliders[i].get().game_object_id;
Transform & transform1 = mgr.get_components_by_id<Transform>(circlecolliders[i].get().game_object_id).front().get();
if(!transform1.active) continue;
Rigidbody & rigidbody1 = mgr.get_components_by_id<Rigidbody>(circlecolliders[i].get().game_object_id).front().get();
if(!rigidbody1.active) continue;
for (size_t j = i + 1; j < circlecolliders.size(); ++j) {
if(!circlecolliders[j].get().active) continue;
// Skip self collision
int game_object_id_2 = circlecolliders[j].get().game_object_id;
if (game_object_id_1 == game_object_id_2) continue;
// Fetch components for the second circle collider
Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
if(!transform2.active) continue;
Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
if(!rigidbody2.active) continue;
// Check collision
if (check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
collisions_ret.emplace_back(std::make_pair(
CollidedInfoStor{circlecolliders[i], transform1, rigidbody1},
CollidedInfoStor{circlecolliders[j], transform2, rigidbody2}
));
}
}
}
return collisions_ret;
}
bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2)
{
// Get current positions of colliders
Vector2 final_position1 = current_position(box1,transform1,rigidbody1);
Vector2 final_position2 = current_position(box2,transform2,rigidbody2);
// Calculate half-extents (half width and half height)
double half_width1 = box1.width / 2.0;
double half_height1 = box1.height / 2.0;
double half_width2 = box2.width / 2.0;
double half_height2 = box2.height / 2.0;
// Check if the boxes overlap along the X and Y axes
return !(final_position1.x + half_width1 <= final_position2.x - half_width2 || // box1 is left of box2
final_position1.x - half_width1 >= final_position2.x + half_width2 || // box1 is right of box2
final_position1.y + half_height1 <= final_position2.y - half_height2 || // box1 is above box2
final_position1.y - half_height1 >= final_position2.y + half_height2); // box1 is below box2
}
bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
// Get current positions of colliders
Vector2 final_position1 = current_position(box1, transform1, rigidbody1);
Vector2 final_position2 = current_position(circle2, transform2, rigidbody2);
// Calculate box half-extents
double half_width = box1.width / 2.0;
double half_height = box1.height / 2.0;
// Find the closest point on the box to the circle's center
double closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width));
double closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height));
// Calculate the distance squared between the circle's center and the closest point on the box
double distance_x = final_position2.x - closest_x;
double distance_y = final_position2.y - closest_y;
double distance_squared = distance_x * distance_x + distance_y * distance_y;
// Compare distance squared with the square of the circle's radius
return distance_squared <= circle2.radius * circle2.radius;
}
bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
// Get current positions of colliders
Vector2 final_position1 = current_position(circle1,transform1,rigidbody1);
Vector2 final_position2 = current_position(circle2,transform2,rigidbody2);
double distance_x = final_position1.x - final_position2.x;
double distance_y = final_position1.y - final_position2.y;
double distance_squared = distance_x * distance_x + distance_y * distance_y;
// Calculate the sum of the radii
double radius_sum = circle1.radius + circle2.radius;
// Check if the distance between the centers is less than or equal to the sum of the radii
return distance_squared <= radius_sum * radius_sum;
}
Vector2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) {
// Get the rotation in radians
double radians1 = transform.rotation * (M_PI / 180.0);
// Calculate total offset with scale
Vector2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale;
// Rotate
double rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
double rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1);
// Final positions considering scaling and rotation
return(transform.position + Vector2(rotated_total_offset_x1, rotated_total_offset_y1));
}
|