1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
#include <stdexcept>
#include <type_traits>
#include "AI.h"
#include "types.h"
namespace crepe {
AI::AI(game_object_id_t id, float max_force) : Component(id), max_force(max_force) {}
void AI::make_circle_path(float radius, const vec2 & center, float start_angle,
bool clockwise) {
if (radius <= 0) {
throw std::runtime_error("Radius must be greater than 0");
}
// The step size is determined by the radius (step size is in radians)
float step = RADIUS_TO_STEP / radius;
// Force at least MIN_STEP steps (in case of a small radius)
if (step > 2 * M_PI / MIN_STEP) {
step = 2 * M_PI / MIN_STEP;
}
// The path node distance is determined by the step size and the radius
this->path_node_distance = radius * step * PATH_NODE_DISTANCE_FACTOR;
if (clockwise) {
for (float i = start_angle; i < 2 * M_PI + start_angle; i += step) {
path.push_back(vec2{static_cast<float>(center.x + radius * cos(i)),
static_cast<float>(center.y + radius * sin(i))});
}
} else {
for (float i = start_angle; i > start_angle - 2 * M_PI; i -= step) {
path.push_back(vec2{static_cast<float>(center.x + radius * cos(i)),
static_cast<float>(center.y + radius * sin(i))});
}
}
}
void AI::make_oval_path(float radius_x, float radius_y, const vec2 & center, float start_angle,
bool clockwise, float rotation) {
if (radius_x <= 0 && radius_y <= 0) {
throw std::runtime_error("Radius must be greater than 0");
}
float max_radius = std::max(radius_x, radius_y);
// The step size is determined by the radius (step size is in radians)
float step = RADIUS_TO_STEP / max_radius;
// Force at least MIN_STEP steps (in case of a small radius)
if (step > 2 * M_PI / MIN_STEP) {
step = 2 * M_PI / MIN_STEP;
}
// The path node distance is determined by the step size and the radius
this->path_node_distance = max_radius * step * PATH_NODE_DISTANCE_FACTOR;
std::function<vec2(vec2, vec2)> rotate_point = [rotation](vec2 point, vec2 center) {
float s = sin(rotation);
float c = cos(rotation);
// Translate point back to origin
point.x -= center.x;
point.y -= center.y;
// Rotate point
float xnew = point.x * c - point.y * s;
float ynew = point.x * s + point.y * c;
// Translate point back
point.x = xnew + center.x;
point.y = ynew + center.y;
return point;
};
if (clockwise) {
for (float i = start_angle; i < 2 * M_PI + start_angle; i += step) {
vec2 point = {static_cast<float>(center.x + radius_x * cos(i)),
static_cast<float>(center.y + radius_y * sin(i))};
path.push_back(rotate_point(point, center));
}
} else {
for (float i = start_angle; i > start_angle - 2 * M_PI; i -= step) {
vec2 point = {static_cast<float>(center.x + radius_x * cos(i)),
static_cast<float>(center.y + radius_y * sin(i))};
path.push_back(rotate_point(point, center));
}
}
}
} // namespace crepe
|