diff options
Diffstat (limited to 'src/crepe/system/CollisionSystem.h')
-rw-r--r-- | src/crepe/system/CollisionSystem.h | 292 |
1 files changed, 138 insertions, 154 deletions
diff --git a/src/crepe/system/CollisionSystem.h b/src/crepe/system/CollisionSystem.h index 5b136c6..3fb9723 100644 --- a/src/crepe/system/CollisionSystem.h +++ b/src/crepe/system/CollisionSystem.h @@ -23,6 +23,42 @@ public: using System::System; private: + //! Enum representing movement directions during collision resolution. + enum class Direction { + //! No movement required. + NONE, + //! Movement in the X direction. + X_DIRECTION, + //! Movement in the Y direction. + Y_DIRECTION, + //! Movement in both X and Y directions. + BOTH, + }; + +public: + //! Structure representing components of the collider + struct ColliderInfo { + Transform & transform; + Rigidbody & rigidbody; + Metadata & metadata; + }; + + /** + * \brief Structure representing detailed collision information between two colliders. + * + * Includes information about the colliding objects and the resolution data for handling the collision. + */ + struct CollisionInfo { + ColliderInfo self; + ColliderInfo other; + //! The resolution vector for the collision. + vec2 resolution; + //! The direction of movement for resolving the collision. + Direction resolution_direction = Direction::NONE; + CollisionInfo operator-() const; + }; + +private: //! A variant type that can hold either a BoxCollider or a CircleCollider. using collider_variant = std::variant<std::reference_wrapper<BoxCollider>, std::reference_wrapper<CircleCollider>>; @@ -33,12 +69,13 @@ private: CIRCLE_CIRCLE, BOX_CIRCLE, CIRCLE_BOX, + NONE, }; /** * \brief A structure to store the collision data of a single collider. * - * This structure all components and id that are for needed within this system when calculating or handeling collisions. + * This structure all components and id that are for needed within this system when calculating or handling collisions. * The transform and rigidbody are mostly needed for location and rotation. * In rigidbody additional info is written about what the body of the object is, * and how it should respond on a collision. @@ -46,46 +83,26 @@ private: struct CollisionInternal { game_object_id_t id = 0; collider_variant collider; - Transform & transform; - Rigidbody & rigidbody; - }; - - //! Enum representing movement directions during collision resolution. - enum class Direction { - //! No movement required. - NONE, - //! Movement in the X direction. - X_DIRECTION, - //! Movement in the Y direction. - Y_DIRECTION, - //! Movement in both X and Y directions. - BOTH - }; - -public: - /** - * \brief Structure representing detailed collision information between two colliders. - * - * Includes information about the colliding objects and the resolution data for handling the collision. - */ - struct CollisionInfo { - Collider & this_collider; - Transform & this_transform; - Rigidbody & this_rigidbody; - Metadata & this_metadata; - Collider & other_collider; - Transform & other_transform; - Rigidbody & other_rigidbody; - Metadata & other_metadata; - //! The resolution vector for the collision. + ColliderInfo info; vec2 resolution; - //! The direction of movement for resolving the collision. Direction resolution_direction = Direction::NONE; }; + //! Structure of a collider with additional components + template <typename ColliderType> + struct ColliderInternal { + ColliderType & collider; + Transform & transform; + Rigidbody & rigidbody; + }; + //! Predefined BoxColliderInternal. (System is only made for this type) + using BoxColliderInternal = ColliderInternal<BoxCollider>; + //! Predefined CircleColliderInternal. (System is only made for this type) + using CircleColliderInternal = ColliderInternal<CircleCollider>; + public: //! Updates the collision system by checking for collisions between colliders and handling them. - void update() override; + void fixed_update() override; private: /** @@ -100,114 +117,90 @@ private: CollisionInternalType get_collider_type(const collider_variant & collider1, const collider_variant & collider2) const; - /** - * \brief Calculates the current position of a collider. - * - * Combines the Collider offset, Transform position, and Rigidbody offset to compute the position of the collider. - * - * \param collider_offset The offset of the collider. - * \param transform The Transform of the associated game object. - * \param rigidbody The Rigidbody of the associated game object. - * \return The calculated position of the collider. - */ - vec2 get_current_position(const vec2 & collider_offset, const Transform & transform, - const Rigidbody & rigidbody) const; - private: /** - * \brief Handles collision resolution between two colliders. + * \brief Converts internal collision data into user-accessible collision information. * - * Processes collision data and adjusts objects to resolve collisions and/or calls the user oncollision script function. + * This function processes collision data from two colliding entities and packages it + * into a structured format that is accessible for further use, + * such as resolving collisions and triggering user-defined collision scripts. * * \param data1 Collision data for the first collider. * \param data2 Collision data for the second collider. */ - void collision_handler_request(CollisionInternal & data1, CollisionInternal & data2); + CollisionInfo get_collision_info(const CollisionInternal & data1, + const CollisionInternal & data2) const; /** - * \brief Resolves collision between two colliders and calculates the movement required. + * \brief Corrects the collision resolution vector and determines its direction. * - * Determines the displacement and direction needed to separate colliders based on their types. + * This function adjusts the provided resolution vector based on the + * rigidbody's linear velocity to ensure consistent collision correction. If the resolution + * vector has only one non-zero component (either x or y), the missing component is computed + * based on the rigidbody's velocity. If both components are non-zero, it indicates a corner + * collision. The function also identifies the direction of the resolution and returns it. * - * \param data1 Collision data for the first collider. - * \param data2 Collision data for the second collider. - * \param type The type of collider pair. - * \return A pair containing the resolution vector and direction for the first collider. + * \param resolution resolution vector that needs to be corrected + * \param rigidbody rigidbody data used to correct resolution + * \return A Direction indicating the resolution direction */ - std::pair<vec2, Direction> collision_handler(CollisionInternal & data1, - CollisionInternal & data2, - CollisionInternalType type); + Direction resolution_correction(vec2 & resolution, const Rigidbody::Data & rigidbody); /** - * \brief Calculates the resolution vector for two BoxColliders. + * \brief Determines the appropriate collision handler for a given collision event. * - * Computes the displacement required to separate two overlapping BoxColliders. + * This function identifies the correct collision resolution process based on the body types + * of the colliders involved in the collision. It delegates + * collision handling to specific handlers and calls collision event scripts + * as needed. * - * \param box_collider1 The first BoxCollider. - * \param box_collider2 The second BoxCollider. - * \param position1 The position of the first BoxCollider. - * \param position2 The position of the second BoxCollider. - * \return The resolution vector for the collision. + * \param info Collision information containing data about both colliders. */ - vec2 get_box_box_resolution(const BoxCollider & box_collider1, - const BoxCollider & box_collider2, const vec2 & position1, - const vec2 & position2) const; + void determine_collision_handler(const CollisionInfo & info); /** - * \brief Calculates the resolution vector for two CircleCollider. + * \brief Calls both collision script * - * Computes the displacement required to separate two overlapping CircleCollider. + * Calls both collision script to let user add additonal handling or handle full collision. * - * \param circle_collider1 The first CircleCollider. - * \param circle_collider2 The second CircleCollider. - * \param final_position1 The position of the first CircleCollider. - * \param final_position2 The position of the second CircleCollider. - * \return The resolution vector for the collision. + * \param info Collision information containing data about both colliders. */ - vec2 get_circle_circle_resolution(const CircleCollider & circle_collider1, - const CircleCollider & circle_collider2, - const vec2 & final_position1, - const vec2 & final_position2) const; + void call_collision_events(const CollisionInfo & info); /** - * \brief Calculates the resolution vector for two CircleCollider. - * - * Computes the displacement required to separate two overlapping CircleCollider. + * \brief Handles collisions involving static objects. * - * \param circle_collider The first CircleCollider. - * \param box_collider The second CircleCollider. - * \param circle_position The position of the CircleCollider. - * \param box_position The position of the BoxCollider. - * \return The resolution vector for the collision. - */ - vec2 get_circle_box_resolution(const CircleCollider & circle_collider, - const BoxCollider & box_collider, - const vec2 & circle_position, - const vec2 & box_position) const; - - /** - * \brief Determines the appropriate collision handler for a collision. + * This function resolves collisions between static and dynamic objects by adjusting + * the position of the static object and modifying the velocity of the dynamic object + * if elasticity is enabled. The position of the static object is corrected + * based on the collision resolution, and the dynamic object's velocity is adjusted + * accordingly to reflect the collision response. * - * Decides the correct resolution process based on the dynamic or static nature of the colliders involved. + * The handling includes stopping movement, applying bouncing based on the elasticity + * coefficient, and adjusting the position of the dynamic object if needed. * * \param info Collision information containing data about both colliders. */ - void determine_collision_handler(CollisionInfo & info); + void static_collision_handler(const CollisionInfo & info); /** - * \brief Handles collisions involving static objects. + * \brief Handles collisions involving dynamic objects. * - * Resolves collisions by adjusting positions and modifying velocities if bounce is enabled. + * Resolves collisions between two dynamic objects by adjusting their positions and modifying + * their velocities based on the collision resolution. If elasticity is enabled, + * the velocity of both objects is reversed and scaled by the respective elasticity coefficient. + * The positions of the objects are adjusted based on the collision resolution. * * \param info Collision information containing data about both colliders. */ - void static_collision_handler(CollisionInfo & info); + void dynamic_collision_handler(const CollisionInfo & info); private: /** * \brief Checks for collisions between colliders. * - * Identifies collisions and generates pairs of colliding objects for further processing. + * This function checks all active colliders and identifies pairs of colliding objects. + * For each identified collision, the appropriate collision data is returned as pairs for further processing. * * \param colliders A collection of all active colliders. * \return A list of collision pairs with their associated data. @@ -216,86 +209,77 @@ private: gather_collisions(std::vector<CollisionInternal> & colliders); /** - * \brief Checks if two collision layers have at least one common layer. + * \brief Checks if the settings allow collision * - * This function checks if there is any overlapping layer between the two inputs. - * It compares each layer from the first input to see - * if it exists in the second input. If at least one common layer is found, - * the function returns true, indicating that the two colliders share a common - * collision layer. + * This function checks if there is any collison layer where each object is located in. + * After checking the layers it checks the names and at last the tags. + * if in all three sets nothing is found collision can not happen. * - * \param layers1 all collision layers for the first collider. - * \param layers2 all collision layers for the second collider. - * \return Returns true if there is at least one common layer, false otherwise. + * \param this_rigidbody Rigidbody of first object + * \param other_rigidbody Rigidbody of second collider + * \param this_metadata Rigidbody of first object + * \param other_metadata Rigidbody of second object + * \return Returns true if there is at least one comparison found. */ - - bool have_common_layer(const std::set<int> & layers1, const std::set<int> & layers2); + bool should_collide(const CollisionInternal & self, + const CollisionInternal & other) const; //done /** * \brief Checks for collision between two colliders. * - * Calls the appropriate collision detection function based on the collider types. + * This function determines whether two colliders are colliding based on their types. + * It calls the appropriate collision detection function based on the collider pair type and stores the collision resolution data. + * If a collision is detected, it returns true, otherwise false. * * \param first_info Collision data for the first collider. * \param second_info Collision data for the second collider. * \param type The type of collider pair. * \return True if a collision is detected, otherwise false. */ - bool get_collision(const CollisionInternal & first_info, - const CollisionInternal & second_info, - CollisionInternalType type) const; + bool detect_collision(CollisionInternal & first_info, CollisionInternal & second_info, + const CollisionInternalType & type); /** * \brief Detects collisions between two BoxColliders. * - * \param box1 The first BoxCollider. - * \param box2 The second BoxCollider. - * \param transform1 Transform of the first object. - * \param transform2 Transform of the second object. - * \param rigidbody1 Rigidbody of the first object. - * \param rigidbody2 Rigidbody of the second object. - * \return True if a collision is detected, otherwise false. + * This function checks whether two `BoxCollider` are colliding based on their positions and scaled dimensions. + * If a collision is detected, it calculates the overlap along the X and Y axes and returns the resolution vector. + * If no collision is detected, it returns a vector with NaN values. + + * \param box1 Information about the first BoxCollider. + * \param box2 Information about the second BoxCollider. + * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}. */ - bool get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2, - const Transform & transform1, const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const; + vec2 get_box_box_detection(const BoxColliderInternal & box1, + const BoxColliderInternal & box2) const; /** * \brief Check collision for box on circle collider * - * \param box1 The BoxCollider - * \param circle2 The CircleCollider - * \param transform1 Transform of the first object. - * \param transform2 Transform of the second object. - * \param rigidbody1 Rigidbody of the first object. - * \param rigidbody2 Rigidbody of the second object. - * \return True if a collision is detected, otherwise false. + * This function detects if a collision occurs between a rectangular box and a circular collider. + * If a collision is detected, the function calculates the resolution vector to resolve the collision. + * If no collision is detected, it returns a vector with NaN values + * + * \param box1 Information about the BoxCollider. + * \param circle2 Information about the circleCollider. + * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}. */ - bool get_box_circle_collision(const BoxCollider & box1, const CircleCollider & circle2, - const Transform & transform1, const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const; + vec2 get_box_circle_detection(const BoxColliderInternal & box1, + const CircleColliderInternal & circle2) const; /** * \brief Check collision for circle on circle collider * - * \param circle1 First CircleCollider - * \param circle2 Second CircleCollider - * \param transform1 Transform of the first object. - * \param transform2 Transform of the second object. - * \param rigidbody1 Rigidbody of the first object. - * \param rigidbody2 Rigidbody of the second object. - * \return True if a collision is detected, otherwise false. + * This function detects if a collision occurs between two circular colliders. + * If a collision is detected, it calculates the resolution vector to resolve the collision. + * If no collision is detected, it returns a vector with NaN values. * - * \return status of collision + * \param circle1 Information about the first circleCollider. + * \param circle2 Information about the second circleCollider. + * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}. */ - bool get_circle_circle_collision(const CircleCollider & circle1, - const CircleCollider & circle2, - const Transform & transform1, - const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const; + vec2 get_circle_circle_detection(const CircleColliderInternal & circle1, + const CircleColliderInternal & circle2) const; }; /** |