1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
#include <Wire.h>
// Definitions for GPIO numbers, change these according to your hardware setup
#define TOTAL_LEVELS 5
#define TAG "VaultPuzzle"
// Define the I2C slave address
#define I2C_SLAVE_ADDR 0x40 // Replace 0x40 with your actual I2C slave device address
// Key Matrix Pin Configuration
#define ROWS 4
#define COLS 3
//TODO Update these pin numbers based on your Arduino setup
const int ROW_PINS[ROWS] = {32, 33, 25, 26};
const int COL_PINS[COLS] = {27, 14, 12};
typedef enum {
STATE_UNINITIALIZED = 0x00,
STATE_RESET = 0x01,
STATE_PLAYING = 0x02,
STATE_SOLVED = 0x03,
} PuzzleState;
const char* validButtons[TOTAL_LEVELS] = {"A3", "F1", "U4", "C2", "L1"};
PuzzleState puzzleState = STATE_UNINITIALIZED;
int currentLevel = 0;
// Function prototypes
void send_i2c_update(PuzzleState state);
void display_code(int level);
void initialize_system();
void check_button_press();
void update_state_after_button_press(bool validPress);
void setup() {
Serial.begin(115200);
Wire.begin(); // Initialize I2C as master
initialize_system();
Serial.println("GPIO and I2C initialized.");
}
void initialize_system() {
// Configure the rows as input with pull-up
for (int i = 0; i < ROWS; i++) {
pinMode(ROW_PINS[i], INPUT_PULLUP);
}
// Configure the columns as output
for (int i = 0; i < COLS; i++) {
pinMode(COL_PINS[i], OUTPUT);
digitalWrite(COL_PINS[i], HIGH);
}
}
void loop() {
while (puzzleState != STATE_SOLVED) {
check_button_press();
delay(100); // Non-blocking delay
}
}
void send_i2c_update(PuzzleState state) {
uint8_t data;
switch (state) {
case STATE_UNINITIALIZED: data = STATE_UNINITIALIZED; break;
case STATE_RESET: data = STATE_RESET; break;
case STATE_PLAYING: data = STATE_PLAYING; break;
case STATE_SOLVED: data = STATE_SOLVED; break;
default: data = 0xFF; // Unknown state
}
Serial.print("Sending state "); Serial.println(state);
Wire.beginTransmission(I2C_SLAVE_ADDR);
Wire.write(data);
byte error = Wire.endTransmission();
if (error == 0) {
Serial.println("State update sent successfully.");
} else {
Serial.println("Failed to send state update via I2C.");
}
}
void display_code(int level) {
Serial.print("Displaying code for level "); Serial.println(level);
Wire.beginTransmission(I2C_SLAVE_ADDR);
Wire.write(level);
byte error = Wire.endTransmission();
if (error == 0) {
Serial.print("Code for level "); Serial.print(level); Serial.println(" displayed successfully.");
} else {
Serial.print("Failed to display code for level "); Serial.print(level); Serial.println(" via I2C.");
}
}
void check_button_press() {
char keyPress[3] = {0};
for (int col = 0; col < COLS; col++) {
digitalWrite(COL_PINS[col], LOW); // Activate column
for (int row = 0; row < ROWS; row++) {
if (digitalRead(ROW_PINS[row]) == LOW) { // Detect if any row is activated
keyPress[0] = 'A' + row;
keyPress[1] = '1' + col;
keyPress[2] = '\0';
Serial.print("Keypress detected: "); Serial.println(keyPress);
update_state_after_button_press(strcmp(keyPress, validButtons[currentLevel]) == 0);
while (digitalRead(ROW_PINS[row]) == LOW) {} // Wait for release
}
}
digitalWrite(COL_PINS[col], HIGH); // Deactivate column
}
}
void update_state_after_button_press(bool validPress) {
if (validPress) {
if (currentLevel >= TOTAL_LEVELS) {
puzzleState = STATE_SOLVED;
Serial.println("Puzzle solved!");
send_i2c_update(puzzleState);
} else {
puzzleState = STATE_PLAYING;
currentLevel++;
display_code(currentLevel);
}
}
}
|