1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
#include <stdlib.h>
#include "ppu/consts.h"
#include "ppu/internals.h"
#include "ppu/types.h"
uint8_t g_hh_ppu_vram_buffer[HH_PPU_COMMAND_BUFFER_SIZE] = { 0 };
size_t g_hh_ppu_vram_buffer_head = 0;
bool hh_ppu_vram_valid_address(hh_ppu_addr_t addr) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
if ((addr >= HH_PPU_VRAM_TMM_OFFSET) && (addr < (HH_PPU_VRAM_TMM_OFFSET + HH_PPU_VRAM_TMM_SIZE))) return true;
if ((addr >= HH_PPU_VRAM_BAM_OFFSET) && (addr < (HH_PPU_VRAM_BAM_OFFSET + HH_PPU_VRAM_BAM_SIZE))) return true;
if ((addr >= HH_PPU_VRAM_FAM_OFFSET) && (addr < (HH_PPU_VRAM_FAM_OFFSET + HH_PPU_VRAM_FAM_SIZE))) return true;
if ((addr >= HH_PPU_VRAM_PAL_OFFSET) && (addr < (HH_PPU_VRAM_PAL_OFFSET + HH_PPU_VRAM_PAL_SIZE))) return true;
if ((addr >= HH_PPU_VRAM_AUX_OFFSET) && (addr < (HH_PPU_VRAM_AUX_OFFSET + HH_PPU_VRAM_AUX_SIZE))) return true;
#pragma GCC diagnostic pop
return false;
}
void hh_ppu_vram_write(hh_s_ppu_vram_data data) {
for (unsigned i = 0; i < data.size; i++) {
hh_ppu_addr_t ppu_addr = data.offset + i;
hh_ppu_data_t ppu_data = data.data[i];
hh_ppu_vram_buffer((uint8_t[4]) {
(ppu_addr >> 8) & 0xff,
(ppu_addr >> 0) & 0xff,
(ppu_data >> 8) & 0xff,
(ppu_data >> 0) & 0xff,
});
}
}
hh_s_ppu_vram_data hh_ppu_2nat_bam(hh_s_ppu_loc_bam_entry e) {
hh_ppu_data_t *data = malloc(sizeof(hh_ppu_data_t) * HH_PPU_VRAM_BAM_ENTRY_SIZE);
data[0] = HH_RESIZE(e.tilemap_index, 9, 0) << 0 | HH_RESIZE(e.palette_index, 2, 0) << 10 | e.vertical_flip << 13 | e.horizontal_flip << 14;
hh_s_ppu_vram_data out = {.data = data, .size = HH_PPU_VRAM_BAM_ENTRY_SIZE};
return out;
}
hh_s_ppu_vram_data hh_ppu_2nat_fam(hh_s_ppu_loc_fam_entry e) {
hh_ppu_data_t *data = malloc(sizeof(hh_ppu_data_t) * HH_PPU_VRAM_FAM_ENTRY_SIZE);
e.position_x += 16;
e.position_y += 16;
data[0] = HH_RESIZE(e.tilemap_index, 9, 0) << 0 | HH_RESIZE(e.palette_index, 2, 0) << 10 | HH_RESIZE(e.position_y, 2, 0) << 13;
data[1] = HH_RESIZE(e.position_y, 7, 3) << 0 | HH_RESIZE(e.position_x, 8, 0) << 5 | e.vertical_flip << 14 | e.horizontal_flip << 15;
hh_s_ppu_vram_data out = {.data = data, .size = HH_PPU_VRAM_FAM_ENTRY_SIZE};
return out;
}
hh_s_ppu_vram_data hh_ppu_2nat_aux(hh_s_ppu_loc_aux aux) {
hh_ppu_data_t *data = malloc(sizeof(hh_ppu_data_t) * HH_PPU_VRAM_AUX_SIZE);
data[0] = HH_RESIZE(aux.bg_shift_y, 7, 0) << 0 | HH_RESIZE(aux.bg_shift_x, 7, 0) << 8;
data[1] = HH_RESIZE(aux.bg_shift_x, 8, 8) << 0 | aux.fg_fetch << 1 | aux.sysreset << 2;
hh_s_ppu_vram_data out = {.data = data, .size = HH_PPU_VRAM_AUX_SIZE};
return out;
}
hh_s_ppu_vram_data hh_ppu_2nat_sprite(const hh_ppu_loc_sprite_data_t sprite_data) {
hh_ppu_data_t *data = malloc(sizeof(hh_ppu_data_t) * HH_PPU_VRAM_TMM_SPRITE_SIZE);
for (unsigned i = 0; i < HH_PPU_SPRITE_WIDTH * HH_PPU_SPRITE_HEIGHT; i++) {
unsigned word = i / 5;
unsigned pixel = i % 5;
if (pixel == 0) data[word] = 0;
data[word] |= HH_RESIZE(sprite_data[i], 2, 0) << pixel * 3;
}
hh_s_ppu_vram_data out = {.data = data, .size = HH_PPU_VRAM_TMM_SPRITE_SIZE};
return out;
}
hh_s_ppu_vram_data hh_ppu_2nat_color(hh_ppu_rgb_color_t rgb) {
hh_ppu_data_t *data = malloc(sizeof(hh_ppu_data_t) * HH_PPU_VRAM_PAL_ENTRY_SIZE);
data[0] = HH_RESIZE(rgb[0], 3, 0) << 8 | HH_RESIZE(rgb[1], 3, 0) << 4 | HH_RESIZE(rgb[2], 3, 0) << 0;
hh_s_ppu_vram_data out = {.data = data, .size = HH_PPU_VRAM_PAL_ENTRY_SIZE};
return out;
}
void hh_ppu_vram_buffer(uint8_t data[4]) {
size_t head = g_hh_ppu_vram_buffer_head;
g_hh_ppu_vram_buffer[head+0] = data[0];
g_hh_ppu_vram_buffer[head+1] = data[1];
g_hh_ppu_vram_buffer[head+2] = data[2];
g_hh_ppu_vram_buffer[head+3] = data[3];
g_hh_ppu_vram_buffer_head += 4;
}
void hh_ppu_vram_flush() {
hh_ppu_vram_dwrite(g_hh_ppu_vram_buffer, g_hh_ppu_vram_buffer_head);
g_hh_ppu_vram_buffer_head = 0;
}
|