1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
|
// Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <cstring>
#include <functional>
#include <stdint.h>
#include "ArmCommon.h"
#include "BitSet.h"
#include "Compat.h"
namespace Arm64Gen
{
using namespace melonDS;
using namespace Common;
// X30 serves a dual purpose as a link register
// Encoded as <u3:type><u5:reg>
// Types:
// 000 - 32bit GPR
// 001 - 64bit GPR
// 010 - VFP single precision
// 100 - VFP double precision
// 110 - VFP quad precision
enum ARM64Reg
{
// 32bit registers
W0 = 0,
W1,
W2,
W3,
W4,
W5,
W6,
W7,
W8,
W9,
W10,
W11,
W12,
W13,
W14,
W15,
W16,
W17,
W18,
W19,
W20,
W21,
W22,
W23,
W24,
W25,
W26,
W27,
W28,
W29,
W30,
WSP, // 32bit stack pointer
// 64bit registers
X0 = 0x20,
X1,
X2,
X3,
X4,
X5,
X6,
X7,
X8,
X9,
X10,
X11,
X12,
X13,
X14,
X15,
X16,
X17,
X18,
X19,
X20,
X21,
X22,
X23,
X24,
X25,
X26,
X27,
X28,
X29,
X30,
SP, // 64bit stack pointer
// VFP single precision registers
S0 = 0x40,
S1,
S2,
S3,
S4,
S5,
S6,
S7,
S8,
S9,
S10,
S11,
S12,
S13,
S14,
S15,
S16,
S17,
S18,
S19,
S20,
S21,
S22,
S23,
S24,
S25,
S26,
S27,
S28,
S29,
S30,
S31,
// VFP Double Precision registers
D0 = 0x80,
D1,
D2,
D3,
D4,
D5,
D6,
D7,
D8,
D9,
D10,
D11,
D12,
D13,
D14,
D15,
D16,
D17,
D18,
D19,
D20,
D21,
D22,
D23,
D24,
D25,
D26,
D27,
D28,
D29,
D30,
D31,
// ASIMD Quad-Word registers
Q0 = 0xC0,
Q1,
Q2,
Q3,
Q4,
Q5,
Q6,
Q7,
Q8,
Q9,
Q10,
Q11,
Q12,
Q13,
Q14,
Q15,
Q16,
Q17,
Q18,
Q19,
Q20,
Q21,
Q22,
Q23,
Q24,
Q25,
Q26,
Q27,
Q28,
Q29,
Q30,
Q31,
// For PRFM(prefetch memory) encoding
// This is encoded in the Rt register
// Data preload
PLDL1KEEP = 0,
PLDL1STRM,
PLDL2KEEP,
PLDL2STRM,
PLDL3KEEP,
PLDL3STRM,
// Instruction preload
PLIL1KEEP = 8,
PLIL1STRM,
PLIL2KEEP,
PLIL2STRM,
PLIL3KEEP,
PLIL3STRM,
// Prepare for store
PLTL1KEEP = 16,
PLTL1STRM,
PLTL2KEEP,
PLTL2STRM,
PLTL3KEEP,
PLTL3STRM,
WZR = WSP,
ZR = SP,
INVALID_REG = 0xFFFFFFFF
};
constexpr bool Is64Bit(ARM64Reg reg)
{
return (reg & 0x20) != 0;
}
constexpr bool IsSingle(ARM64Reg reg)
{
return (reg & 0xC0) == 0x40;
}
constexpr bool IsDouble(ARM64Reg reg)
{
return (reg & 0xC0) == 0x80;
}
constexpr bool IsScalar(ARM64Reg reg)
{
return IsSingle(reg) || IsDouble(reg);
}
constexpr bool IsQuad(ARM64Reg reg)
{
return (reg & 0xC0) == 0xC0;
}
constexpr bool IsVector(ARM64Reg reg)
{
return (reg & 0xC0) != 0;
}
constexpr bool IsGPR(ARM64Reg reg)
{
return static_cast<int>(reg) < 0x40;
}
constexpr ARM64Reg DecodeReg(ARM64Reg reg)
{
return static_cast<ARM64Reg>(reg & 0x1F);
}
constexpr ARM64Reg EncodeRegTo64(ARM64Reg reg)
{
return static_cast<ARM64Reg>(reg | 0x20);
}
constexpr ARM64Reg EncodeRegToSingle(ARM64Reg reg)
{
return static_cast<ARM64Reg>(DecodeReg(reg) + S0);
}
constexpr ARM64Reg EncodeRegToDouble(ARM64Reg reg)
{
return static_cast<ARM64Reg>((reg & ~0xC0) | 0x80);
}
constexpr ARM64Reg EncodeRegToQuad(ARM64Reg reg)
{
return static_cast<ARM64Reg>(reg | 0xC0);
}
enum OpType
{
TYPE_IMM = 0,
TYPE_REG,
TYPE_IMMSREG,
TYPE_RSR,
TYPE_MEM
};
enum ShiftType
{
ST_LSL = 0,
ST_LSR = 1,
ST_ASR = 2,
ST_ROR = 3,
};
enum IndexType
{
INDEX_UNSIGNED,
INDEX_POST,
INDEX_PRE,
INDEX_SIGNED, // used in LDP/STP
};
enum ShiftAmount
{
SHIFT_0 = 0,
SHIFT_16 = 1,
SHIFT_32 = 2,
SHIFT_48 = 3,
};
enum RoundingMode
{
ROUND_A, // round to nearest, ties to away
ROUND_M, // round towards -inf
ROUND_N, // round to nearest, ties to even
ROUND_P, // round towards +inf
ROUND_Z, // round towards zero
};
struct FixupBranch
{
ptrdiff_t ptr;
// Type defines
// 0 = CBZ (32bit)
// 1 = CBNZ (32bit)
// 2 = B (conditional)
// 3 = TBZ
// 4 = TBNZ
// 5 = B (unconditional)
// 6 = BL (unconditional)
u32 type;
// Used with B.cond
CCFlags cond;
// Used with TBZ/TBNZ
u8 bit;
// Used with Test/Compare and Branch
ARM64Reg reg;
};
enum PStateField
{
FIELD_SPSel = 0,
FIELD_DAIFSet,
FIELD_DAIFClr,
FIELD_NZCV, // The only system registers accessible from EL0 (user space)
FIELD_PMCR_EL0,
FIELD_PMCCNTR_EL0,
FIELD_FPCR = 0x340,
FIELD_FPSR = 0x341,
};
enum SystemHint
{
HINT_NOP = 0,
HINT_YIELD,
HINT_WFE,
HINT_WFI,
HINT_SEV,
HINT_SEVL,
};
enum BarrierType
{
OSHLD = 1,
OSHST = 2,
OSH = 3,
NSHLD = 5,
NSHST = 6,
NSH = 7,
ISHLD = 9,
ISHST = 10,
ISH = 11,
LD = 13,
ST = 14,
SY = 15,
};
class ArithOption
{
public:
enum WidthSpecifier
{
WIDTH_DEFAULT,
WIDTH_32BIT,
WIDTH_64BIT,
};
enum ExtendSpecifier
{
EXTEND_UXTB = 0x0,
EXTEND_UXTH = 0x1,
EXTEND_UXTW = 0x2, /* Also LSL on 32bit width */
EXTEND_UXTX = 0x3, /* Also LSL on 64bit width */
EXTEND_SXTB = 0x4,
EXTEND_SXTH = 0x5,
EXTEND_SXTW = 0x6,
EXTEND_SXTX = 0x7,
};
enum TypeSpecifier
{
TYPE_EXTENDEDREG,
TYPE_IMM,
TYPE_SHIFTEDREG,
};
private:
ARM64Reg m_destReg;
WidthSpecifier m_width;
ExtendSpecifier m_extend;
TypeSpecifier m_type;
ShiftType m_shifttype;
u32 m_shift;
public:
ArithOption(ARM64Reg Rd, bool index = false)
{
// Indexed registers are a certain feature of AARch64
// On Loadstore instructions that use a register offset
// We can have the register as an index
// If we are indexing then the offset register will
// be shifted to the left so we are indexing at intervals
// of the size of what we are loading
// 8-bit: Index does nothing
// 16-bit: Index LSL 1
// 32-bit: Index LSL 2
// 64-bit: Index LSL 3
if (index)
m_shift = 4;
else
m_shift = 0;
m_destReg = Rd;
m_type = TYPE_EXTENDEDREG;
if (Is64Bit(Rd))
{
m_width = WIDTH_64BIT;
m_extend = EXTEND_UXTX;
}
else
{
m_width = WIDTH_32BIT;
m_extend = EXTEND_UXTW;
}
m_shifttype = ST_LSL;
}
ArithOption(ARM64Reg Rd, ShiftType shift_type, u32 shift)
{
m_destReg = Rd;
m_shift = shift;
m_shifttype = shift_type;
m_type = TYPE_SHIFTEDREG;
if (Is64Bit(Rd))
{
m_width = WIDTH_64BIT;
if (shift == 64)
m_shift = 0;
}
else
{
m_width = WIDTH_32BIT;
if (shift == 32)
m_shift = 0;
}
}
TypeSpecifier GetType() const { return m_type; }
ARM64Reg GetReg() const { return m_destReg; }
ShiftType GetShiftType() const { return m_shifttype; }
u32 GetShiftAmount() const { return m_shift; }
u32 GetData() const
{
switch (m_type)
{
case TYPE_EXTENDEDREG:
return (m_extend << 13) | (m_shift << 10);
break;
case TYPE_SHIFTEDREG:
return (m_shifttype << 22) | (m_shift << 10);
break;
default:
DEBUG_ASSERT_MSG(DYNA_REC, false, "Invalid type in GetData");
break;
}
return 0;
}
};
class ARM64XEmitter
{
friend class ARM64FloatEmitter;
private:
ptrdiff_t m_code;
ptrdiff_t m_lastCacheFlushEnd;
u8* m_rwbase;
u8* m_rxbase;
void AddImmediate(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool shift, bool negative, bool flags);
void EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr);
void EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr);
void EncodeUnconditionalBranchInst(u32 op, const void* ptr);
void EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn);
void EncodeExceptionInst(u32 instenc, u32 imm);
void EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt);
void EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm,
ArithOption Option);
void EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
void EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
void EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn);
void EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm);
void EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt);
void EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
void EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size);
void EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos);
void EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd);
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n);
void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn,
s32 imm);
void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm);
void EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
protected:
// TODO: make this less ugly
// used for Switch where memory is executable and writeable and different addresses
// we need to take this for relative addressing in account
void Write32(u32 value);
public:
ARM64XEmitter() : m_code(0), m_lastCacheFlushEnd(0), m_rwbase(nullptr), m_rxbase(nullptr) {}
ARM64XEmitter(u8* rwbase, u8* rxbase, ptrdiff_t offset)
{
m_rwbase = rwbase;
m_rxbase = rxbase;
m_code = offset;
m_lastCacheFlushEnd = offset;
}
virtual ~ARM64XEmitter() {}
void SetCodePtr(ptrdiff_t ptr);
void SetCodePtrUnsafe(ptrdiff_t ptr);
void SetCodeBase(u8* rwbase, u8* rxbase);
void ReserveCodeSpace(u32 bytes);
ptrdiff_t AlignCode16();
ptrdiff_t AlignCodePage();
ptrdiff_t GetCodeOffset();
const u8* GetRWPtr();
u8* GetWriteableRWPtr();
void* GetRXPtr();
u8* GetRXBase();
void FlushIcache();
void FlushIcacheSection(u8* start, u8* end);
// FixupBranch branching
void SetJumpTarget(FixupBranch const& branch);
FixupBranch CBZ(ARM64Reg Rt);
FixupBranch CBNZ(ARM64Reg Rt);
FixupBranch B(CCFlags cond);
FixupBranch TBZ(ARM64Reg Rt, u8 bit);
FixupBranch TBNZ(ARM64Reg Rt, u8 bit);
FixupBranch B();
FixupBranch BL();
// Compare and Branch
void CBZ(ARM64Reg Rt, const void* ptr);
void CBNZ(ARM64Reg Rt, const void* ptr);
// Conditional Branch
void B(CCFlags cond, const void* ptr);
// Test and Branch
void TBZ(ARM64Reg Rt, u8 bits, const void* ptr);
void TBNZ(ARM64Reg Rt, u8 bits, const void* ptr);
// Unconditional Branch
void B(const void* ptr);
void BL(const void* ptr);
// Unconditional Branch (register)
void BR(ARM64Reg Rn);
void BLR(ARM64Reg Rn);
void RET(ARM64Reg Rn = X30);
void ERET();
void DRPS();
// Exception generation
void SVC(u32 imm);
void HVC(u32 imm);
void SMC(u32 imm);
void BRK(u32 imm);
void HLT(u32 imm);
void DCPS1(u32 imm);
void DCPS2(u32 imm);
void DCPS3(u32 imm);
// System
void _MSR(PStateField field, u8 imm);
void _MSR(PStateField field, ARM64Reg Rt);
void MRS(ARM64Reg Rt, PStateField field);
void CNTVCT(ARM64Reg Rt);
void HINT(SystemHint op);
void CLREX();
void DSB(BarrierType type);
void DMB(BarrierType type);
void ISB(BarrierType type);
// Add/Subtract (Extended/Shifted register)
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void CMN(ARM64Reg Rn, ARM64Reg Rm);
void CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void CMP(ARM64Reg Rn, ARM64Reg Rm);
void CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
// Add/Subtract (with carry)
void ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Conditional Compare (immediate)
void CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
void CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
// Conditional Compare (register)
void CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
void CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
// Conditional Select
void CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
// Aliases
void CSET(ARM64Reg Rd, CCFlags cond)
{
ARM64Reg zr = Is64Bit(Rd) ? ZR : WZR;
CSINC(Rd, zr, zr, (CCFlags)((u32)cond ^ 1));
}
void CSETM(ARM64Reg Rd, CCFlags cond)
{
ARM64Reg zr = Is64Bit(Rd) ? ZR : WZR;
CSINV(Rd, zr, zr, (CCFlags)((u32)cond ^ 1));
}
void NEG(ARM64Reg Rd, ARM64Reg Rs) { SUB(Rd, Is64Bit(Rd) ? ZR : WZR, Rs); }
// Data-Processing 1 source
void RBIT(ARM64Reg Rd, ARM64Reg Rn);
void REV16(ARM64Reg Rd, ARM64Reg Rn);
void REV32(ARM64Reg Rd, ARM64Reg Rn);
void REV64(ARM64Reg Rd, ARM64Reg Rn);
void CLZ(ARM64Reg Rd, ARM64Reg Rn);
void CLS(ARM64Reg Rd, ARM64Reg Rn);
// Data-Processing 2 source
void UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Data-Processing 3 source
void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Logical (shifted register)
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
// Wrap the above for saner syntax
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { AND(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { BIC(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ORR(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ORN(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EOR(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EON(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ANDS(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { BICS(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); }
// Convenience wrappers around ORR. These match the official convenience syntax.
void MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift);
void MOV(ARM64Reg Rd, ARM64Reg Rm);
void MVN(ARM64Reg Rd, ARM64Reg Rm);
// Convenience wrappers around UBFM/EXTR.
void LSR(ARM64Reg Rd, ARM64Reg Rm, int shift);
void LSL(ARM64Reg Rd, ARM64Reg Rm, int shift);
void ASR(ARM64Reg Rd, ARM64Reg Rm, int shift);
void ROR(ARM64Reg Rd, ARM64Reg Rm, int shift);
// Logical (immediate)
void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void TST(ARM64Reg Rn, ARM64Reg Rm) { ANDS(Is64Bit(Rn) ? ZR : WZR, Rn, Rm); }
// Add/subtract (immediate)
void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void CMP(ARM64Reg Rn, u32 imm, bool shift = false);
// Data Processing (Immediate)
void MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
void MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
void MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
// Bitfield move
void BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void BFI(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
void UBFIZ(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
// Extract register (ROR with two inputs, if same then faster on A67)
void EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift);
// Aliases
void SXTB(ARM64Reg Rd, ARM64Reg Rn);
void SXTH(ARM64Reg Rd, ARM64Reg Rn);
void SXTW(ARM64Reg Rd, ARM64Reg Rn);
void UXTB(ARM64Reg Rd, ARM64Reg Rn);
void UXTH(ARM64Reg Rd, ARM64Reg Rn);
void UBFX(ARM64Reg Rd, ARM64Reg Rn, int lsb, int width) { UBFM(Rd, Rn, lsb, lsb + width - 1); }
void SBFX(ARM64Reg Rd, ARM64Reg Rn, int lsb, int width) { SBFM(Rd, Rn, lsb, lsb + width - 1); }
// Load Register (Literal)
void LDR(ARM64Reg Rt, u32 imm);
void LDRSW(ARM64Reg Rt, u32 imm);
void PRFM(ARM64Reg Rt, u32 imm);
// Load/Store Exclusive
void STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void LDXRB(ARM64Reg Rt, ARM64Reg Rn);
void LDAXRB(ARM64Reg Rt, ARM64Reg Rn);
void STLRB(ARM64Reg Rt, ARM64Reg Rn);
void LDARB(ARM64Reg Rt, ARM64Reg Rn);
void STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void LDXRH(ARM64Reg Rt, ARM64Reg Rn);
void LDAXRH(ARM64Reg Rt, ARM64Reg Rn);
void STLRH(ARM64Reg Rt, ARM64Reg Rn);
void LDARH(ARM64Reg Rt, ARM64Reg Rn);
void STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void LDXR(ARM64Reg Rt, ARM64Reg Rn);
void LDAXR(ARM64Reg Rt, ARM64Reg Rn);
void LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void STLR(ARM64Reg Rt, ARM64Reg Rn);
void LDAR(ARM64Reg Rt, ARM64Reg Rn);
// Load/Store no-allocate pair (offset)
void STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
void LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
// Load/Store register (immediate indexed)
void STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Load/Store register (register offset)
void STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
// Load/Store register (unscaled offset)
void STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Load/Store pair
void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void LDRGeneric(int size, bool signExtend, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void STRGeneric(int size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDRGeneric(int size, bool signExtend, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STRGeneric(int size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Address of label/page PC-relative
void ADR(ARM64Reg Rd, s32 imm);
void ADRP(ARM64Reg Rd, s32 imm);
// Wrapper around MOVZ+MOVK
void MOVI2R(ARM64Reg Rd, u64 imm, bool optimize = true);
bool MOVI2R2(ARM64Reg Rd, u64 imm1, u64 imm2);
template <class P>
void MOVP2R(ARM64Reg Rd, P* ptr)
{
ASSERT_MSG(DYNA_REC, Is64Bit(Rd), "Can't store pointers in 32-bit registers");
MOVI2R(Rd, (uintptr_t)ptr);
}
// Wrapper around AND x, y, imm etc. If you are sure the imm will work, no need to pass a scratch
// register.
void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG)
{
ANDSI2R(Is64Bit(Rn) ? ZR : WZR, Rn, imm, scratch);
}
void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags,
ARM64Reg scratch);
void ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
void SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = INVALID_REG);
bool TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
bool TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
bool TryCMPI2R(ARM64Reg Rn, u32 imm);
bool TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
bool TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
bool TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm);
// ABI related
void ABI_PushRegisters(BitSet32 registers);
void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0));
// Utility to generate a call to a std::function object.
//
// Unfortunately, calling operator() directly is undefined behavior in C++
// (this method might be a thunk in the case of multi-inheritance) so we
// have to go through a trampoline function.
template <typename T, typename... Args>
static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args)
{
return (*f)(args...);
}
// This function expects you to have set up the state.
// Overwrites X0 and X30
template <typename T, typename... Args>
ARM64Reg ABI_SetupLambda(const std::function<T(Args...)>* f)
{
auto trampoline = &ARM64XEmitter::CallLambdaTrampoline<T, Args...>;
MOVI2R(X30, (uintptr_t)trampoline);
MOVI2R(X0, (uintptr_t) const_cast<void*>((const void*)f));
return X30;
}
void QuickTailCall(ARM64Reg scratchreg, const void* func);
template <typename T>
void QuickTailCall(ARM64Reg scratchreg, T func)
{
QuickTailCall(scratchreg, (const void*)func);
}
// Plain function call
void QuickCallFunction(ARM64Reg scratchreg, const void* func);
template <typename T>
void QuickCallFunction(ARM64Reg scratchreg, T func)
{
QuickCallFunction(scratchreg, (const void*)func);
}
};
class ARM64FloatEmitter
{
public:
ARM64FloatEmitter(ARM64XEmitter* emit) : m_emit(emit) {}
void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Loadstore unscaled
void LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Loadstore single structure
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
void LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
void LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
// Loadstore multiple structure
void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
void LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = SP);
void ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
void ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = SP);
// Loadstore paired
void LDP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void STP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
// Loadstore register offset
void STR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void LDR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
// Scalar - 1 Source
void FABS(ARM64Reg Rd, ARM64Reg Rn);
void FNEG(ARM64Reg Rd, ARM64Reg Rn);
void FSQRT(ARM64Reg Rd, ARM64Reg Rn);
void FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top = false); // Also generalized move between GPR/FP
// Scalar - 2 Source
void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Scalar - 3 Source. Note - the accumulator is last on ARM!
void FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
// Scalar floating point immediate
void FMOV(ARM64Reg Rd, uint8_t imm8);
// Vector
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
void FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMAX(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMIN(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTL2(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FRECPE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void NOT(ARM64Reg Rd, ARM64Reg Rn);
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void MOV(ARM64Reg Rd, ARM64Reg Rn) { ORR(Rd, Rn, Rn); }
void REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale);
void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale);
void SQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void SQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void UQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void UQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
void XTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
// Move
void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn);
void INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2);
void UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
void SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
// One source
void FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn);
// Scalar convert float to int, in a lot of variants.
// Note that the scalar version of this operation has two encodings, one that goes to an integer
// register
// and one that outputs to a scalar fp register.
void FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round);
void FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round);
// Scalar convert int to float. No rounding mode specifier necessary.
void SCVTF(ARM64Reg Rd, ARM64Reg Rn);
void UCVTF(ARM64Reg Rd, ARM64Reg Rn);
// Scalar fixed point to float. scale is the number of fractional bits.
void SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale);
void UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale);
// Float comparison
void FCMP(ARM64Reg Rn, ARM64Reg Rm);
void FCMP(ARM64Reg Rn);
void FCMPE(ARM64Reg Rn, ARM64Reg Rm);
void FCMPE(ARM64Reg Rn);
void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
void FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
// Conditional select
void FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
// Permute
void UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Shift by immediate
void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void SSHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void USHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void SHRN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
void SXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
void UXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
// vector x indexed element
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
void FMLA(u8 esize, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
// Modified Immediate
void MOVI(u8 size, ARM64Reg Rd, u64 imm, u8 shift = 0);
void BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift = 0);
void MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch = INVALID_REG, bool negate = false);
void MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch = INVALID_REG);
// ABI related
void ABI_PushRegisters(BitSet32 registers, ARM64Reg tmp = INVALID_REG);
void ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp = INVALID_REG);
private:
ARM64XEmitter* m_emit;
inline void Write32(u32 value) { m_emit->Write32(value); }
// Emitting functions
void EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn,
ARM64Reg Rm);
void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn);
void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt,
ARM64Reg Rn);
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt,
ARM64Reg Rn, ARM64Reg Rm);
void Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, u32 opcode, int scale,
ARM64Reg Rd, ARM64Reg Rn);
void EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm);
void EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8);
void EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn);
void EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn,
ARM64Reg Rm);
void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn,
ARM64Reg Rm);
void EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, bool sign);
void EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra,
int opcode);
void EncodeLoadStorePair(u32 size, bool load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2,
ARM64Reg Rn, s32 imm);
void EncodeLoadStoreRegisterOffset(u32 size, bool load, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void EncodeModImm(bool Q, u8 op, u8 cmode, u8 o2, ARM64Reg Rd, u8 abcdefgh);
void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper);
void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper);
};
}
|