1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
|
/*
Copyright 2016-2023 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include <cmath>
#include "Platform.h"
#include "NDS.h"
#include "DSi.h"
#include "SPU.h"
namespace melonDS
{
using Platform::Log;
using Platform::LogLevel;
// SPU TODO
// * capture addition modes, overflow bugs
// * channel hold
const s8 SPUChannel::ADPCMIndexTable[8] = {-1, -1, -1, -1, 2, 4, 6, 8};
const u16 SPUChannel::ADPCMTable[89] =
{
0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E,
0x0010, 0x0011, 0x0013, 0x0015, 0x0017, 0x0019, 0x001C, 0x001F,
0x0022, 0x0025, 0x0029, 0x002D, 0x0032, 0x0037, 0x003C, 0x0042,
0x0049, 0x0050, 0x0058, 0x0061, 0x006B, 0x0076, 0x0082, 0x008F,
0x009D, 0x00AD, 0x00BE, 0x00D1, 0x00E6, 0x00FD, 0x0117, 0x0133,
0x0151, 0x0173, 0x0198, 0x01C1, 0x01EE, 0x0220, 0x0256, 0x0292,
0x02D4, 0x031C, 0x036C, 0x03C3, 0x0424, 0x048E, 0x0502, 0x0583,
0x0610, 0x06AB, 0x0756, 0x0812, 0x08E0, 0x09C3, 0x0ABD, 0x0BD0,
0x0CFF, 0x0E4C, 0x0FBA, 0x114C, 0x1307, 0x14EE, 0x1706, 0x1954,
0x1BDC, 0x1EA5, 0x21B6, 0x2515, 0x28CA, 0x2CDF, 0x315B, 0x364B,
0x3BB9, 0x41B2, 0x4844, 0x4F7E, 0x5771, 0x602F, 0x69CE, 0x7462,
0x7FFF
};
const s16 SPUChannel::PSGTable[8][8] =
{
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF}
};
template <typename T>
constexpr T ipow(T num, unsigned int pow)
{
T product = 1;
for (int i = 0; i < pow; ++i)
{
product *= num;
}
return product;
}
template <typename T>
constexpr T factorial(T num)
{
T product = 1;
for (T i = 1; i <= num; ++i)
{
product *= i;
}
return product;
}
// We can't use std::cos in constexpr functions until C++26,
// so we need to compute the cosine ourselves with the Taylor series.
// Code adapted from https://prosepoetrycode.potterpcs.net/2015/07/a-simple-constexpr-power-function-c/
template <int Iterations = 10>
constexpr double cosine (double theta)
{
return (ipow(-1, Iterations) * ipow(theta, 2 * Iterations)) /
static_cast<double>(factorial(2ull * Iterations))
+ cosine<Iterations-1>(theta);
}
template <>
constexpr double cosine<0> (double theta)
{
return 1.0;
}
// generate interpolation tables
// values are 1:1:14 fixed-point
constexpr std::array<s16, 0x100> InterpCos = []() constexpr {
std::array<s16, 0x100> interp {};
for (int i = 0; i < 0x100; i++)
{
float ratio = (i * M_PI) / 255.0f;
ratio = 1.0f - cosine(ratio);
interp[i] = (s16)(ratio * 0x2000);
}
return interp;
}();
constexpr array2d<s16, 0x100, 4> InterpCubic = []() constexpr {
array2d<s16, 0x100, 4> interp {};
for (int i = 0; i < 0x100; i++)
{
s32 i1 = i << 6;
s32 i2 = (i * i) >> 2;
s32 i3 = (i * i * i) >> 10;
interp[i][0] = -i3 + 2*i2 - i1;
interp[i][1] = i3 - 2*i2 + 0x4000;
interp[i][2] = -i3 + i2 + i1;
interp[i][3] = i3 - i2;
}
return interp;
}();
SPU::SPU(melonDS::NDS& nds, AudioBitDepth bitdepth, AudioInterpolation interpolation) :
NDS(nds),
Channels {
SPUChannel(0, nds, interpolation),
SPUChannel(1, nds, interpolation),
SPUChannel(2, nds, interpolation),
SPUChannel(3, nds, interpolation),
SPUChannel(4, nds, interpolation),
SPUChannel(5, nds, interpolation),
SPUChannel(6, nds, interpolation),
SPUChannel(7, nds, interpolation),
SPUChannel(8, nds, interpolation),
SPUChannel(9, nds, interpolation),
SPUChannel(10, nds, interpolation),
SPUChannel(11, nds, interpolation),
SPUChannel(12, nds, interpolation),
SPUChannel(13, nds, interpolation),
SPUChannel(14, nds, interpolation),
SPUChannel(15, nds, interpolation),
},
Capture {
SPUCaptureUnit(0, nds),
SPUCaptureUnit(1, nds),
},
AudioLock(Platform::Mutex_Create()),
Degrade10Bit(bitdepth == AudioBitDepth::_10Bit || (nds.ConsoleType == 1 && bitdepth == AudioBitDepth::Auto))
{
NDS.RegisterEventFunc(Event_SPU, 0, MemberEventFunc(SPU, Mix));
ApplyBias = true;
Degrade10Bit = false;
memset(OutputFrontBuffer, 0, 2*OutputBufferSize*2);
OutputBackbufferWritePosition = 0;
OutputFrontBufferReadPosition = 0;
OutputFrontBufferWritePosition = 0;
}
SPU::~SPU()
{
Platform::Mutex_Free(AudioLock);
AudioLock = nullptr;
NDS.UnregisterEventFunc(Event_SPU, 0);
}
void SPU::Reset()
{
InitOutput();
Cnt = 0;
MasterVolume = 0;
Bias = 0;
for (int i = 0; i < 16; i++)
Channels[i].Reset();
Capture[0].Reset();
Capture[1].Reset();
NDS.ScheduleEvent(Event_SPU, false, 1024, 0, 0);
}
void SPU::Stop()
{
Platform::Mutex_Lock(AudioLock);
memset(OutputFrontBuffer, 0, 2*OutputBufferSize*2);
OutputBackbufferWritePosition = 0;
OutputFrontBufferReadPosition = 0;
OutputFrontBufferWritePosition = 0;
Platform::Mutex_Unlock(AudioLock);
}
void SPU::DoSavestate(Savestate* file)
{
file->Section("SPU.");
file->Var16(&Cnt);
file->Var8(&MasterVolume);
file->Var16(&Bias);
for (SPUChannel& channel : Channels)
channel.DoSavestate(file);
for (SPUCaptureUnit& capture : Capture)
capture.DoSavestate(file);
}
void SPU::SetPowerCnt(u32 val)
{
// TODO
}
void SPU::SetInterpolation(AudioInterpolation type)
{
for (SPUChannel& channel : Channels)
channel.InterpType = type;
}
void SPU::SetBias(u16 bias)
{
Bias = bias;
}
void SPU::SetApplyBias(bool enable)
{
ApplyBias = enable;
}
void SPU::SetDegrade10Bit(bool enable)
{
Degrade10Bit = enable;
}
void SPU::SetDegrade10Bit(AudioBitDepth depth)
{
switch (depth)
{
case AudioBitDepth::Auto:
Degrade10Bit = (NDS.ConsoleType == 0);
break;
case AudioBitDepth::_10Bit:
Degrade10Bit = true;
break;
case AudioBitDepth::_16Bit:
Degrade10Bit = false;
break;
}
}
SPUChannel::SPUChannel(u32 num, melonDS::NDS& nds, AudioInterpolation interpolation) :
NDS(nds),
Num(num),
InterpType(interpolation)
{
}
void SPUChannel::Reset()
{
KeyOn = false;
SetCnt(0);
SrcAddr = 0;
TimerReload = 0;
LoopPos = 0;
Length = 0;
Timer = 0;
Pos = 0;
FIFOReadPos = 0;
FIFOWritePos = 0;
FIFOReadOffset = 0;
FIFOLevel = 0;
}
void SPUChannel::DoSavestate(Savestate* file)
{
file->Var32(&Cnt);
file->Var32(&SrcAddr);
file->Var16(&TimerReload);
file->Var32(&LoopPos);
file->Var32(&Length);
file->Var8(&Volume);
file->Var8(&VolumeShift);
file->Var8(&Pan);
file->Var8((u8*)&KeyOn);
file->Var32(&Timer);
file->Var32((u32*)&Pos);
file->VarArray(PrevSample, sizeof(PrevSample));
file->Var16((u16*)&CurSample);
file->Var16(&NoiseVal);
file->Var32((u32*)&ADPCMVal);
file->Var32((u32*)&ADPCMIndex);
file->Var32((u32*)&ADPCMValLoop);
file->Var32((u32*)&ADPCMIndexLoop);
file->Var8(&ADPCMCurByte);
file->Var32(&FIFOReadPos);
file->Var32(&FIFOWritePos);
file->Var32(&FIFOReadOffset);
file->Var32(&FIFOLevel);
file->VarArray(FIFO, sizeof(FIFO));
}
void SPUChannel::FIFO_BufferData()
{
u32 totallen = LoopPos + Length;
if (FIFOReadOffset >= totallen)
{
u32 repeatmode = (Cnt >> 27) & 0x3;
if (repeatmode & 1) FIFOReadOffset = LoopPos;
else if (repeatmode & 2) return; // one-shot sound, we're done
}
u32 burstlen = 16;
if ((FIFOReadOffset + 16) > totallen)
burstlen = totallen - FIFOReadOffset;
// sound DMA can't read from the ARM7 BIOS
if ((SrcAddr + FIFOReadOffset) >= 0x00004000)
{
for (u32 i = 0; i < burstlen; i += 4)
{
FIFO[FIFOWritePos] = NDS.ARM7Read32(SrcAddr + FIFOReadOffset);
FIFOReadOffset += 4;
FIFOWritePos++;
FIFOWritePos &= 0x7;
}
}
else
{
for (u32 i = 0; i < burstlen; i += 4)
{
FIFO[FIFOWritePos] = 0;
FIFOReadOffset += 4;
FIFOWritePos++;
FIFOWritePos &= 0x7;
}
}
FIFOLevel += burstlen;
}
template<typename T>
T SPUChannel::FIFO_ReadData()
{
T ret = *(T*)&((u8*)FIFO)[FIFOReadPos];
FIFOReadPos += sizeof(T);
FIFOReadPos &= 0x1F;
FIFOLevel -= sizeof(T);
if (FIFOLevel <= 16)
FIFO_BufferData();
return ret;
}
void SPUChannel::Start()
{
Timer = TimerReload;
if (((Cnt >> 29) & 0x3) == 3)
Pos = -1;
else
Pos = -3;
NoiseVal = 0x7FFF;
PrevSample[0] = 0;
PrevSample[1] = 0;
PrevSample[2] = 0;
CurSample = 0;
FIFOReadPos = 0;
FIFOWritePos = 0;
FIFOReadOffset = 0;
FIFOLevel = 0;
// when starting a channel, buffer data
if (((Cnt >> 29) & 0x3) != 3)
{
FIFO_BufferData();
FIFO_BufferData();
}
}
void SPUChannel::NextSample_PCM8()
{
Pos++;
if (Pos < 0) return;
if (Pos >= (LoopPos + Length))
{
u32 repeat = (Cnt >> 27) & 0x3;
if (repeat & 1)
{
Pos = LoopPos;
}
else if (repeat & 2)
{
CurSample = 0;
Cnt &= ~(1<<31);
return;
}
}
s8 val = FIFO_ReadData<s8>();
CurSample = val << 8;
}
void SPUChannel::NextSample_PCM16()
{
Pos++;
if (Pos < 0) return;
if ((Pos<<1) >= (LoopPos + Length))
{
u32 repeat = (Cnt >> 27) & 0x3;
if (repeat & 1)
{
Pos = LoopPos>>1;
}
else if (repeat & 2)
{
CurSample = 0;
Cnt &= ~(1<<31);
return;
}
}
s16 val = FIFO_ReadData<s16>();
CurSample = val;
}
void SPUChannel::NextSample_ADPCM()
{
Pos++;
if (Pos < 8)
{
if (Pos == 0)
{
// setup ADPCM
u32 header = FIFO_ReadData<u32>();
ADPCMVal = (s32)(s16)(header & 0xFFFF);
ADPCMIndex = (header >> 16) & 0x7F;
if (ADPCMIndex > 88) ADPCMIndex = 88;
ADPCMValLoop = ADPCMVal;
ADPCMIndexLoop = ADPCMIndex;
}
return;
}
if ((Pos>>1) >= (LoopPos + Length))
{
u32 repeat = (Cnt >> 27) & 0x3;
if (repeat & 1)
{
Pos = LoopPos<<1;
ADPCMVal = ADPCMValLoop;
ADPCMIndex = ADPCMIndexLoop;
ADPCMCurByte = FIFO_ReadData<u8>();
}
else if (repeat & 2)
{
CurSample = 0;
Cnt &= ~(1<<31);
return;
}
}
else
{
if (!(Pos & 0x1))
ADPCMCurByte = FIFO_ReadData<u8>();
else
ADPCMCurByte >>= 4;
u16 val = ADPCMTable[ADPCMIndex];
u16 diff = val >> 3;
if (ADPCMCurByte & 0x1) diff += (val >> 2);
if (ADPCMCurByte & 0x2) diff += (val >> 1);
if (ADPCMCurByte & 0x4) diff += val;
if (ADPCMCurByte & 0x8)
{
ADPCMVal -= diff;
if (ADPCMVal < -0x7FFF) ADPCMVal = -0x7FFF;
}
else
{
ADPCMVal += diff;
if (ADPCMVal > 0x7FFF) ADPCMVal = 0x7FFF;
}
ADPCMIndex += ADPCMIndexTable[ADPCMCurByte & 0x7];
if (ADPCMIndex < 0) ADPCMIndex = 0;
else if (ADPCMIndex > 88) ADPCMIndex = 88;
if (Pos == (LoopPos<<1))
{
ADPCMValLoop = ADPCMVal;
ADPCMIndexLoop = ADPCMIndex;
}
}
CurSample = ADPCMVal;
}
void SPUChannel::NextSample_PSG()
{
Pos++;
CurSample = PSGTable[(Cnt >> 24) & 0x7][Pos & 0x7];
}
void SPUChannel::NextSample_Noise()
{
if (NoiseVal & 0x1)
{
NoiseVal = (NoiseVal >> 1) ^ 0x6000;
CurSample = -0x7FFF;
}
else
{
NoiseVal >>= 1;
CurSample = 0x7FFF;
}
}
template<u32 type>
s32 SPUChannel::Run()
{
if (!(Cnt & (1<<31))) return 0;
if ((type < 3) && ((Length+LoopPos) < 16)) return 0;
if (KeyOn)
{
Start();
KeyOn = false;
}
Timer += 512; // 1 sample = 512 cycles at 16MHz
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
// for optional interpolation: save previous samples
// the interpolated audio will be delayed by a couple samples,
// but it's easier to deal with this way
if ((type < 3) && (InterpType != AudioInterpolation::None))
{
PrevSample[2] = PrevSample[1];
PrevSample[1] = PrevSample[0];
PrevSample[0] = CurSample;
}
switch (type)
{
case 0: NextSample_PCM8(); break;
case 1: NextSample_PCM16(); break;
case 2: NextSample_ADPCM(); break;
case 3: NextSample_PSG(); break;
case 4: NextSample_Noise(); break;
}
}
s32 val = (s32)CurSample;
// interpolation (emulation improvement, not a hardware feature)
if ((type < 3) && (InterpType != AudioInterpolation::None))
{
s32 samplepos = ((Timer - TimerReload) * 0x100) / (0x10000 - TimerReload);
if (samplepos > 0xFF) samplepos = 0xFF;
switch (InterpType)
{
case AudioInterpolation::Linear:
val = ((val * samplepos) +
(PrevSample[0] * (0xFF-samplepos))) >> 8;
break;
case AudioInterpolation::Cosine:
val = ((val * InterpCos[samplepos]) +
(PrevSample[0] * InterpCos[0xFF-samplepos])) >> 14;
break;
case AudioInterpolation::Cubic:
val = ((PrevSample[2] * InterpCubic[samplepos][0]) +
(PrevSample[1] * InterpCubic[samplepos][1]) +
(PrevSample[0] * InterpCubic[samplepos][2]) +
(val * InterpCubic[samplepos][3])) >> 14;
break;
}
}
val <<= VolumeShift;
val *= Volume;
return val;
}
void SPUChannel::PanOutput(s32 in, s32& left, s32& right)
{
left += ((s64)in * (128-Pan)) >> 10;
right += ((s64)in * Pan) >> 10;
}
SPUCaptureUnit::SPUCaptureUnit(u32 num, melonDS::NDS& nds) : NDS(nds), Num(num)
{
}
void SPUCaptureUnit::Reset()
{
SetCnt(0);
DstAddr = 0;
TimerReload = 0;
Length = 0;
Timer = 0;
Pos = 0;
FIFOReadPos = 0;
FIFOWritePos = 0;
FIFOWriteOffset = 0;
FIFOLevel = 0;
}
void SPUCaptureUnit::DoSavestate(Savestate* file)
{
file->Var8(&Cnt);
file->Var32(&DstAddr);
file->Var16(&TimerReload);
file->Var32(&Length);
file->Var32(&Timer);
file->Var32((u32*)&Pos);
file->Var32(&FIFOReadPos);
file->Var32(&FIFOWritePos);
file->Var32(&FIFOWriteOffset);
file->Var32(&FIFOLevel);
file->VarArray(FIFO, 4*4);
}
void SPUCaptureUnit::FIFO_FlushData()
{
for (u32 i = 0; i < 4; i++)
{
NDS.ARM7Write32(DstAddr + FIFOWriteOffset, FIFO[FIFOReadPos]);
// Calls the NDS or DSi version, depending on the class
FIFOReadPos++;
FIFOReadPos &= 0x3;
FIFOLevel -= 4;
FIFOWriteOffset += 4;
if (FIFOWriteOffset >= Length)
{
FIFOWriteOffset = 0;
break;
}
}
}
template<typename T>
void SPUCaptureUnit::FIFO_WriteData(T val)
{
*(T*)&((u8*)FIFO)[FIFOWritePos] = val;
FIFOWritePos += sizeof(T);
FIFOWritePos &= 0xF;
FIFOLevel += sizeof(T);
if (FIFOLevel >= 16)
FIFO_FlushData();
}
void SPUCaptureUnit::Run(s32 sample)
{
Timer += 512;
if (Cnt & 0x08)
{
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
FIFO_WriteData<s8>((s8)(sample >> 8));
Pos++;
if (Pos >= Length)
{
if (FIFOLevel >= 4)
FIFO_FlushData();
if (Cnt & 0x04)
{
Cnt &= 0x7F;
return;
}
else
Pos = 0;
}
}
}
else
{
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
FIFO_WriteData<s16>((s16)sample);
Pos += 2;
if (Pos >= Length)
{
if (FIFOLevel >= 4)
FIFO_FlushData();
if (Cnt & 0x04)
{
Cnt &= 0x7F;
return;
}
else
Pos = 0;
}
}
}
}
void SPU::Mix(u32 dummy)
{
s32 left = 0, right = 0;
s32 leftoutput = 0, rightoutput = 0;
if ((Cnt & (1<<15)) && (!dummy))
{
s32 ch0 = Channels[0].DoRun();
s32 ch1 = Channels[1].DoRun();
s32 ch2 = Channels[2].DoRun();
s32 ch3 = Channels[3].DoRun();
// TODO: addition from capture registers
Channels[0].PanOutput(ch0, left, right);
Channels[2].PanOutput(ch2, left, right);
if (!(Cnt & (1<<12))) Channels[1].PanOutput(ch1, left, right);
if (!(Cnt & (1<<13))) Channels[3].PanOutput(ch3, left, right);
for (int i = 4; i < 16; i++)
{
SPUChannel* chan = &Channels[i];
s32 channel = chan->DoRun();
chan->PanOutput(channel, left, right);
}
// sound capture
// TODO: other sound capture sources, along with their bugs
if (Capture[0].Cnt & (1<<7))
{
s32 val = left;
val >>= 8;
if (val < -0x8000) val = -0x8000;
else if (val > 0x7FFF) val = 0x7FFF;
Capture[0].Run(val);
}
if (Capture[1].Cnt & (1<<7))
{
s32 val = right;
val >>= 8;
if (val < -0x8000) val = -0x8000;
else if (val > 0x7FFF) val = 0x7FFF;
Capture[1].Run(val);
}
// final output
switch (Cnt & 0x0300)
{
case 0x0000: // left mixer
leftoutput = left;
break;
case 0x0100: // channel 1
{
s32 pan = 128 - Channels[1].Pan;
leftoutput = ((s64)ch1 * pan) >> 10;
}
break;
case 0x0200: // channel 3
{
s32 pan = 128 - Channels[3].Pan;
leftoutput = ((s64)ch3 * pan) >> 10;
}
break;
case 0x0300: // channel 1+3
{
s32 pan1 = 128 - Channels[1].Pan;
s32 pan3 = 128 - Channels[3].Pan;
leftoutput = (((s64)ch1 * pan1) >> 10) + (((s64)ch3 * pan3) >> 10);
}
break;
}
switch (Cnt & 0x0C00)
{
case 0x0000: // right mixer
rightoutput = right;
break;
case 0x0400: // channel 1
{
s32 pan = Channels[1].Pan;
rightoutput = ((s64)ch1 * pan) >> 10;
}
break;
case 0x0800: // channel 3
{
s32 pan = Channels[3].Pan;
rightoutput = ((s64)ch3 * pan) >> 10;
}
break;
case 0x0C00: // channel 1+3
{
s32 pan1 = Channels[1].Pan;
s32 pan3 = Channels[3].Pan;
rightoutput = (((s64)ch1 * pan1) >> 10) + (((s64)ch3 * pan3) >> 10);
}
break;
}
}
leftoutput = ((s64)leftoutput * MasterVolume) >> 7;
rightoutput = ((s64)rightoutput * MasterVolume) >> 7;
leftoutput >>= 8;
rightoutput >>= 8;
// Add SOUNDBIAS value
// The value used by all commercial games is 0x200, so we subtract that so it won't offset the final sound output.
if (ApplyBias)
{
leftoutput += (Bias << 6) - 0x8000;
rightoutput += (Bias << 6) - 0x8000;
}
if (leftoutput < -0x8000) leftoutput = -0x8000;
else if (leftoutput > 0x7FFF) leftoutput = 0x7FFF;
if (rightoutput < -0x8000) rightoutput = -0x8000;
else if (rightoutput > 0x7FFF) rightoutput = 0x7FFF;
// The original DS and DS lite degrade the output from 16 to 10 bit before output
if (Degrade10Bit)
{
leftoutput &= 0xFFFFFFC0;
rightoutput &= 0xFFFFFFC0;
}
// OutputBufferFrame can never get full because it's
// transfered to OutputBuffer at the end of the frame
// FIXME: apparently this does happen!!!
if (OutputBackbufferWritePosition * 2 < OutputBufferSize - 1)
{
OutputBackbuffer[OutputBackbufferWritePosition ] = leftoutput >> 1;
OutputBackbuffer[OutputBackbufferWritePosition + 1] = rightoutput >> 1;
OutputBackbufferWritePosition += 2;
}
NDS.ScheduleEvent(Event_SPU, true, 1024, 0, 0);
}
void SPU::TransferOutput()
{
Platform::Mutex_Lock(AudioLock);
for (u32 i = 0; i < OutputBackbufferWritePosition; i += 2)
{
OutputFrontBuffer[OutputFrontBufferWritePosition ] = OutputBackbuffer[i ];
OutputFrontBuffer[OutputFrontBufferWritePosition + 1] = OutputBackbuffer[i + 1];
OutputFrontBufferWritePosition += 2;
OutputFrontBufferWritePosition &= OutputBufferSize*2-1;
if (OutputFrontBufferWritePosition == OutputFrontBufferReadPosition)
{
// advance the read position too, to avoid losing the entire FIFO
OutputFrontBufferReadPosition += 2;
OutputFrontBufferReadPosition &= OutputBufferSize*2-1;
}
}
OutputBackbufferWritePosition = 0;
Platform::Mutex_Unlock(AudioLock);;
}
void SPU::TrimOutput()
{
Platform::Mutex_Lock(AudioLock);
const int halflimit = (OutputBufferSize / 2);
int readpos = OutputFrontBufferWritePosition - (halflimit*2);
if (readpos < 0) readpos += (OutputBufferSize*2);
OutputFrontBufferReadPosition = readpos;
Platform::Mutex_Unlock(AudioLock);
}
void SPU::DrainOutput()
{
Platform::Mutex_Lock(AudioLock);
OutputFrontBufferWritePosition = 0;
OutputFrontBufferReadPosition = 0;
Platform::Mutex_Unlock(AudioLock);
}
void SPU::InitOutput()
{
Platform::Mutex_Lock(AudioLock);
memset(OutputBackbuffer, 0, 2*OutputBufferSize*2);
memset(OutputFrontBuffer, 0, 2*OutputBufferSize*2);
OutputFrontBufferReadPosition = 0;
OutputFrontBufferWritePosition = 0;
Platform::Mutex_Unlock(AudioLock);
}
int SPU::GetOutputSize() const
{
Platform::Mutex_Lock(AudioLock);
int ret;
if (OutputFrontBufferWritePosition >= OutputFrontBufferReadPosition)
ret = OutputFrontBufferWritePosition - OutputFrontBufferReadPosition;
else
ret = (OutputBufferSize*2) - OutputFrontBufferReadPosition + OutputFrontBufferWritePosition;
ret >>= 1;
Platform::Mutex_Unlock(AudioLock);
return ret;
}
void SPU::Sync(bool wait)
{
// this function is currently not used anywhere
// depending on the usage context the thread safety measures could be made
// a lot faster
// sync to audio output in case the core is running too fast
// * wait=true: wait until enough audio data has been played
// * wait=false: merely skip some audio data to avoid a FIFO overflow
const int halflimit = (OutputBufferSize / 2);
if (wait)
{
// TODO: less CPU-intensive wait?
while (GetOutputSize() > halflimit);
}
else if (GetOutputSize() > halflimit)
{
Platform::Mutex_Lock(AudioLock);
int readpos = OutputFrontBufferWritePosition - (halflimit*2);
if (readpos < 0) readpos += (OutputBufferSize*2);
OutputFrontBufferReadPosition = readpos;
Platform::Mutex_Unlock(AudioLock);
}
}
int SPU::ReadOutput(s16* data, int samples)
{
Platform::Mutex_Lock(AudioLock);
if (OutputFrontBufferReadPosition == OutputFrontBufferWritePosition)
{
Platform::Mutex_Unlock(AudioLock);
return 0;
}
for (int i = 0; i < samples; i++)
{
*data++ = OutputFrontBuffer[OutputFrontBufferReadPosition];
*data++ = OutputFrontBuffer[OutputFrontBufferReadPosition + 1];
OutputFrontBufferReadPosition += 2;
OutputFrontBufferReadPosition &= ((2*OutputBufferSize)-1);
if (OutputFrontBufferWritePosition == OutputFrontBufferReadPosition)
{
Platform::Mutex_Unlock(AudioLock);
return i+1;
}
}
Platform::Mutex_Unlock(AudioLock);
return samples;
}
u8 SPU::Read8(u32 addr)
{
if (addr < 0x04000500)
{
SPUChannel* chan = &Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt & 0xFF;
case 0x1: return (chan->Cnt >> 8) & 0xFF;
case 0x2: return (chan->Cnt >> 16) & 0xFF;
case 0x3: return chan->Cnt >> 24;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt & 0x7F;
case 0x04000501: return Cnt >> 8;
case 0x04000508: return Capture[0].Cnt;
case 0x04000509: return Capture[1].Cnt;
}
}
Log(LogLevel::Warn, "unknown SPU read8 %08X\n", addr);
return 0;
}
u16 SPU::Read16(u32 addr)
{
if (addr < 0x04000500)
{
SPUChannel* chan = &Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt & 0xFFFF;
case 0x2: return chan->Cnt >> 16;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt;
case 0x04000504: return Bias;
case 0x04000508: return Capture[0].Cnt | (Capture[1].Cnt << 8);
}
}
Log(LogLevel::Warn, "unknown SPU read16 %08X\n", addr);
return 0;
}
u32 SPU::Read32(u32 addr)
{
if (addr < 0x04000500)
{
SPUChannel* chan = &Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt;
case 0x04000504: return Bias;
case 0x04000508: return Capture[0].Cnt | (Capture[1].Cnt << 8);
case 0x04000510: return Capture[0].DstAddr;
case 0x04000518: return Capture[1].DstAddr;
}
}
Log(LogLevel::Warn, "unknown SPU read32 %08X\n", addr);
return 0;
}
void SPU::Write8(u32 addr, u8 val)
{
if (addr < 0x04000500)
{
SPUChannel* chan = &Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt((chan->Cnt & 0xFFFFFF00) | val); return;
case 0x1: chan->SetCnt((chan->Cnt & 0xFFFF00FF) | (val << 8)); return;
case 0x2: chan->SetCnt((chan->Cnt & 0xFF00FFFF) | (val << 16)); return;
case 0x3: chan->SetCnt((chan->Cnt & 0x00FFFFFF) | (val << 24)); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = (Cnt & 0xBF00) | (val & 0x7F);
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000501:
Cnt = (Cnt & 0x007F) | ((val & 0xBF) << 8);
return;
case 0x04000508:
Capture[0].SetCnt(val);
if (val & 0x03) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %02X\n", val);
return;
case 0x04000509:
Capture[1].SetCnt(val);
if (val & 0x03) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %02X\n", val);
return;
}
}
Log(LogLevel::Warn, "unknown SPU write8 %08X %02X\n", addr, val);
}
void SPU::Write16(u32 addr, u16 val)
{
if (addr < 0x04000500)
{
SPUChannel* chan = &Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt((chan->Cnt & 0xFFFF0000) | val); return;
case 0x2: chan->SetCnt((chan->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x8:
chan->SetTimerReload(val);
if ((addr & 0xF0) == 0x10) Capture[0].SetTimerReload(val);
else if ((addr & 0xF0) == 0x30) Capture[1].SetTimerReload(val);
return;
case 0xA: chan->SetLoopPos(val); return;
case 0xC: chan->SetLength(((chan->Length >> 2) & 0xFFFF0000) | val); return;
case 0xE: chan->SetLength(((chan->Length >> 2) & 0x0000FFFF) | (val << 16)); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = val & 0xBF7F;
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000504:
Bias = val & 0x3FF;
return;
case 0x04000508:
Capture[0].SetCnt(val & 0xFF);
Capture[1].SetCnt(val >> 8);
if (val & 0x0303) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %04X\n", val);
return;
case 0x04000514: Capture[0].SetLength(val); return;
case 0x0400051C: Capture[1].SetLength(val); return;
}
}
Log(LogLevel::Warn, "unknown SPU write16 %08X %04X\n", addr, val);
}
void SPU::Write32(u32 addr, u32 val)
{
if (addr < 0x04000500)
{
SPUChannel* chan = &Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt(val); return;
case 0x4: chan->SetSrcAddr(val); return;
case 0x8:
chan->SetLoopPos(val >> 16);
val &= 0xFFFF;
chan->SetTimerReload(val);
if ((addr & 0xF0) == 0x10) Capture[0].SetTimerReload(val);
else if ((addr & 0xF0) == 0x30) Capture[1].SetTimerReload(val);
return;
case 0xC: chan->SetLength(val); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = val & 0xBF7F;
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000504:
Bias = val & 0x3FF;
return;
case 0x04000508:
Capture[0].SetCnt(val & 0xFF);
Capture[1].SetCnt(val >> 8);
if (val & 0x0303) Log(LogLevel::Warn, "!! UNSUPPORTED SPU CAPTURE MODE %04X\n", val);
return;
case 0x04000510: Capture[0].SetDstAddr(val); return;
case 0x04000514: Capture[0].SetLength(val & 0xFFFF); return;
case 0x04000518: Capture[1].SetDstAddr(val); return;
case 0x0400051C: Capture[1].SetLength(val & 0xFFFF); return;
}
}
}
}
|