1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "SPU.h"
namespace SPU
{
const u32 OutputBufferSize = 2*1024;
s16 OutputBuffer[2 * OutputBufferSize];
u32 OutputReadOffset;
u32 OutputWriteOffset;
u16 Cnt;
u8 MasterVolume;
u16 Bias;
Channel* Channels[16];
bool Init()
{
for (int i = 0; i < 16; i++)
Channels[i] = new Channel(i);
return true;
}
void DeInit()
{
for (int i = 0; i < 16; i++)
delete Channels[i];
}
void Reset()
{
memset(OutputBuffer, 0, 2*OutputBufferSize*2);
OutputReadOffset = 0;
OutputWriteOffset = 0;
Cnt = 0;
MasterVolume = 0;
Bias = 0;
for (int i = 0; i < 16; i++)
Channels[i]->Reset();
NDS::ScheduleEvent(NDS::Event_SPU, true, 1024*16, Mix, 16);
}
Channel::Channel(u32 num)
{
Num = num;
}
Channel::~Channel()
{
}
void Channel::Reset()
{
SetCnt(0);
SrcAddr = 0;
TimerReload = 0;
LoopPos = 0;
Length = 0;
}
void Channel::Start()
{
Timer = TimerReload;
Pos = 0;
// hax
NextSample_PSG();
}
void Channel::NextSample_PSG()
{
s16 psgtable[8][8] =
{
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, -0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{-0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF},
{ 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF}
};
CurSample = psgtable[(Cnt >> 24) & 0x7][Pos & 0x7];
}
void Channel::Run(s32* buf, u32 samples)
{
for (u32 s = 0; s < samples; s++)
buf[s] = 0;
if (!(Cnt & (1<<31))) return;
if (Num < 8) return;
if (!(Cnt & 0x7F)) return;
for (u32 s = 0; s < samples; s++)
{
Timer += 512; // 1 sample = 512 cycles at 16MHz
// will probably shit itself for very high-pitched sounds
while (Timer >> 16)
{
Timer = TimerReload + (Timer - 0x10000);
Pos++;
NextSample_PSG();
}
buf[s] = (s32)CurSample;
}
}
void Mix(u32 samples)
{
s32 channelbuf[32];
s32 finalbuf[32];
for (u32 s = 0; s < samples; s++)
finalbuf[s] = 0;
for (int i = 0; i < 16; i++)
//int i = 8;
{
Channel* chan = Channels[i];
chan->Run(channelbuf, samples);
for (u32 s = 0; s < samples; s++)
{
finalbuf[s] += channelbuf[s];
}
}
//
for (u32 s = 0; s < samples; s++)
{
s16 val = (s16)(finalbuf[s] >> 4);
// TODO panning! also volume and all
OutputBuffer[OutputWriteOffset] = val;
OutputBuffer[OutputWriteOffset + 1] = val;
OutputWriteOffset += 2;
OutputWriteOffset &= ((2*OutputBufferSize)-1);
}
NDS::ScheduleEvent(NDS::Event_SPU, true, 1024*16, Mix, 16);
}
void ReadOutput(s16* data, int samples)
{u32 zarp = 0;
for (int i = 0; i < samples; i++)
{
*data++ = OutputBuffer[OutputReadOffset];
*data++ = OutputBuffer[OutputReadOffset + 1];
if (OutputReadOffset != OutputWriteOffset)
{zarp += 2;
OutputReadOffset += 2;
OutputReadOffset &= ((2*OutputBufferSize)-1);
}
}printf("read %d samples, took %d\n", samples, zarp);
}
u8 Read8(u32 addr)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt & 0xFF;
case 0x1: return (chan->Cnt >> 8) & 0xFF;
case 0x2: return (chan->Cnt >> 16) & 0xFF;
case 0x3: return chan->Cnt >> 24;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt & 0x7F;
case 0x04000501: return Cnt >> 8;
}
}
printf("unknown SPU read8 %08X\n", addr);
return 0;
}
u16 Read16(u32 addr)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt & 0xFFFF;
case 0x2: return chan->Cnt >> 16;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt;
case 0x04000504: return Bias;
}
}
printf("unknown SPU read16 %08X\n", addr);
return 0;
}
u32 Read32(u32 addr)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: return chan->Cnt;
}
}
else
{
switch (addr)
{
case 0x04000500: return Cnt;
case 0x04000504: return Bias;
}
}
printf("unknown SPU read32 %08X\n", addr);
return 0;
}
void Write8(u32 addr, u8 val)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt((chan->Cnt & 0xFFFFFF00) | val); return;
case 0x1: chan->SetCnt((chan->Cnt & 0xFFFF00FF) | (val << 8)); return;
case 0x2: chan->SetCnt((chan->Cnt & 0xFF00FFFF) | (val << 16)); return;
case 0x3: chan->SetCnt((chan->Cnt & 0x00FFFFFF) | (val << 24)); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = (Cnt & 0xBF00) | (val & 0x7F);
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000501:
Cnt = (Cnt & 0x007F) | ((val & 0xBF) << 8);
return;
}
}
printf("unknown SPU write8 %08X %02X\n", addr, val);
}
void Write16(u32 addr, u16 val)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt((chan->Cnt & 0xFFFF0000) | val); return;
case 0x2: chan->SetCnt((chan->Cnt & 0x0000FFFF) | (val << 16)); return;
case 0x8: chan->SetTimerReload(val); return;
case 0xA: chan->SetLoopPos(val); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = val & 0xBF7F;
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000504:
Bias = val & 0x3FF;
return;
}
}
printf("unknown SPU write16 %08X %04X\n", addr, val);
}
void Write32(u32 addr, u32 val)
{
if (addr < 0x04000500)
{
Channel* chan = Channels[(addr >> 4) & 0xF];
switch (addr & 0xF)
{
case 0x0: chan->SetCnt(val); return;
case 0x4: chan->SetSrcAddr(val); return;
case 0x8:
chan->SetTimerReload(val & 0xFFFF);
chan->SetLoopPos(val >> 16);
return;
case 0xC: chan->SetLength(val); return;
}
}
else
{
switch (addr)
{
case 0x04000500:
Cnt = val & 0xBF7F;
MasterVolume = Cnt & 0x7F;
if (MasterVolume == 127) MasterVolume++;
return;
case 0x04000504:
Bias = val & 0x3FF;
return;
}
}
printf("unknown SPU write32 %08X %08X\n", addr, val);
}
}
|