aboutsummaryrefslogtreecommitdiff
path: root/src/GPU3D_Soft.h
blob: 8fb4201328227a16a5abc82ee54c9f3a44d27eda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
    Copyright 2016-2023 melonDS team

    This file is part of melonDS.

    melonDS is free software: you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free
    Software Foundation, either version 3 of the License, or (at your option)
    any later version.

    melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with melonDS. If not, see http://www.gnu.org/licenses/.
*/

#pragma once

#include "GPU.h"
#include "GPU3D.h"
#include "Platform.h"
#include <thread>
#include <atomic>

namespace melonDS
{
class SoftRenderer : public Renderer3D
{
public:
    SoftRenderer(bool threaded = false) noexcept;
    ~SoftRenderer() override;
    void Reset(GPU& gpu) override;

    void SetThreaded(bool threaded, GPU& gpu) noexcept;
    [[nodiscard]] bool IsThreaded() const noexcept { return Threaded; }

    void VCount144(GPU& gpu) override;
    void RenderFrame(GPU& gpu) override;
    void RestartFrame(GPU& gpu) override;
    u32* GetLine(int line) override;

    void SetupRenderThread(GPU& gpu);
    void StopRenderThread();
private:
    // Notes on the interpolator:
    //
    // This is a theory on how the DS hardware interpolates values. It matches hardware output
    // in the tests I did, but the hardware may be doing it differently. You never know.
    //
    // Assuming you want to perspective-correctly interpolate a variable named A across two points
    // in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly,
    // then divide A/W by 1/W to recover the correct A value.
    //
    // The DS GPU approximates interpolation by calculating a perspective-correct interpolation
    // between 0 and 1, then using the result as a factor to linearly interpolate the actual
    // vertex attributes. The factor has 9 bits of precision when interpolating along Y and
    // 8 bits along X.
    //
    // There's a special path for when the two W values are equal: it directly does linear
    // interpolation, avoiding precision loss from the aforementioned approximation.
    // Which is desirable when using the GPU to draw 2D graphics.

    template<int dir>
    class Interpolator
    {
    public:
        constexpr Interpolator() {}
        constexpr Interpolator(s32 x0, s32 x1, s32 w0, s32 w1)
        {
            Setup(x0, x1, w0, w1);
        }

        constexpr void Setup(s32 x0, s32 x1, s32 w0, s32 w1)
        {
            this->x0 = x0;
            this->x1 = x1;
            this->xdiff = x1 - x0;

            // calculate reciprocal for Z interpolation
            // TODO eventually: use a faster reciprocal function?
            if (this->xdiff != 0)
                this->xrecip_z = (1<<22) / this->xdiff;
            else
                this->xrecip_z = 0;

            // linear mode is used if both W values are equal and have
            // low-order bits cleared (0-6 along X, 1-6 along Y)
            u32 mask = dir ? 0x7E : 0x7F;
            if ((w0 == w1) && !(w0 & mask) && !(w1 & mask))
                this->linear = true;
            else
                this->linear = false;

            if (dir)
            {
                // along Y

                if ((w0 & 0x1) && !(w1 & 0x1))
                {
                    this->w0n = w0 - 1;
                    this->w0d = w0 + 1;
                    this->w1d = w1;
                }
                else
                {
                    this->w0n = w0 & 0xFFFE;
                    this->w0d = w0 & 0xFFFE;
                    this->w1d = w1 & 0xFFFE;
                }

                this->shift = 9;
            }
            else
            {
                // along X

                this->w0n = w0;
                this->w0d = w0;
                this->w1d = w1;

                this->shift = 8;
            }
        }

        constexpr void SetX(s32 x)
        {
            x -= x0;
            this->x = x;
            if (xdiff != 0 && !linear)
            {
                s64 num = ((s64)x * w0n) << shift;
                s32 den = (x * w0d) + ((xdiff-x) * w1d);

                // this seems to be a proper division on hardware :/
                // I haven't been able to find cases that produce imperfect output
                if (den == 0) yfactor = 0;
                else          yfactor = (s32)(num / den);
            }
        }

        constexpr s32 Interpolate(s32 y0, s32 y1) const
        {
            if (xdiff == 0 || y0 == y1) return y0;

            if (!linear)
            {
                // perspective-correct approx. interpolation
                if (y0 < y1)
                    return y0 + (((y1-y0) * yfactor) >> shift);
                else
                    return y1 + (((y0-y1) * ((1<<shift)-yfactor)) >> shift);
            }
            else
            {
                // linear interpolation
                if (y0 < y1)
                    return y0 + (s64)(y1-y0) * x / xdiff;
                else
                    return y1 + (s64)(y0-y1) * (xdiff - x) / xdiff;
            }
        }

        constexpr s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer) const
        {
            if (xdiff == 0 || z0 == z1) return z0;

            if (wbuffer)
            {
                // W-buffering: perspective-correct approx. interpolation
                if (z0 < z1)
                    return z0 + (((s64)(z1-z0) * yfactor) >> shift);
                else
                    return z1 + (((s64)(z0-z1) * ((1<<shift)-yfactor)) >> shift);
            }
            else
            {
                // Z-buffering: linear interpolation
                // still doesn't quite match hardware...
                s32 base, disp, factor;

                if (z0 < z1)
                {
                    base = z0;
                    disp = z1 - z0;
                    factor = x;
                }
                else
                {
                    base = z1;
                    disp = z0 - z1,
                    factor = xdiff - x;
                }

                if (dir)
                {
                    int shift = 0;
                    while (disp > 0x3FF)
                    {
                        disp >>= 1;
                        shift++;
                    }

                    return base + ((((s64)disp * factor * xrecip_z) >> 22) << shift);
                }
                else
                {
                    disp >>= 9;
                    return base + (((s64)disp * factor * xrecip_z) >> 13);
                }
            }
        }

    private:
        s32 x0, x1, xdiff, x;

        int shift;
        bool linear;

        s32 xrecip_z;
        s32 w0n, w0d, w1d;

        u32 yfactor;
    };


    template<int side>
    class Slope
    {
    public:
        constexpr Slope() {}

        constexpr s32 SetupDummy(s32 x0)
        {
            dx = 0;

            this->x0 = x0;
            this->xmin = x0;
            this->xmax = x0;

            Increment = 0;
            XMajor = false;

            Interp.Setup(0, 0, 0, 0);
            Interp.SetX(0);

            xcov_incr = 0;

            return x0;
        }

        constexpr s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, s32 y)
        {
            this->x0 = x0;
            this->y = y;

            if (x1 > x0)
            {
                this->xmin = x0;
                this->xmax = x1-1;
                this->Negative = false;
            }
            else if (x1 < x0)
            {
                this->xmin = x1;
                this->xmax = x0-1;
                this->Negative = true;
            }
            else
            {
                this->xmin = x0;
                this->xmax = this->xmin;
                this->Negative = false;
            }

            xlen = xmax+1 - xmin;
            ylen = y1 - y0;

            // slope increment has a 18-bit fractional part
            // note: for some reason, x/y isn't calculated directly,
            // instead, 1/y is calculated and then multiplied by x
            // TODO: this is still not perfect (see for example x=169 y=33)
            if (ylen == 0)
                Increment = 0;
            else if (ylen == xlen && xlen != 1)
                Increment = 0x40000;
            else
            {
                s32 yrecip = (1<<18) / ylen;
                Increment = (x1-x0) * yrecip;
                if (Increment < 0) Increment = -Increment;
            }

            XMajor = (Increment > 0x40000);

            if constexpr (side)
            {
                // right

                if (XMajor)              dx = Negative ? (0x20000 + 0x40000) : (Increment - 0x20000);
                else if (Increment != 0) dx = Negative ? 0x40000 : 0;
                else                     dx = 0;
            }
            else
            {
                // left

                if (XMajor)              dx = Negative ? ((Increment - 0x20000) + 0x40000) : 0x20000;
                else if (Increment != 0) dx = Negative ? 0x40000 : 0;
                else                     dx = 0;
            }

            dx += (y - y0) * Increment;

            s32 x = XVal();

            int interpoffset = (Increment >= 0x40000) && (side ^ Negative);
            Interp.Setup(y0-interpoffset, y1-interpoffset, w0, w1);
            Interp.SetX(y);

            // used for calculating AA coverage
            if (XMajor) xcov_incr = (ylen << 10) / xlen;

            return x;
        }

        constexpr s32 Step()
        {
            dx += Increment;
            y++;

            s32 x = XVal();
            Interp.SetX(y);
            return x;
        }

        constexpr s32 XVal() const
        {
            s32 ret;
            if (Negative) ret = x0 - (dx >> 18);
            else          ret = x0 + (dx >> 18);

            if (ret < xmin) ret = xmin;
            else if (ret > xmax) ret = xmax;
            return ret;
        }

        template<bool swapped>
        constexpr void EdgeParams_XMajor(s32* length, s32* coverage) const
        {
            // only do length calc for right side when swapped as it's
            // only needed for aa calcs, as actual line spans are broken
            if constexpr (!swapped || side)
            {
                if (side ^ Negative)
                    *length = (dx >> 18) - ((dx-Increment) >> 18);
                else
                    *length = ((dx+Increment) >> 18) - (dx >> 18);
            }

            // for X-major edges, we return the coverage
            // for the first pixel, and the increment for
            // further pixels on the same scanline
            s32 startx = dx >> 18;
            if (Negative) startx = xlen - startx;
            if (side)     startx = startx - *length + 1;

            s32 startcov = (((startx << 10) + 0x1FF) * ylen) / xlen;
            *coverage = (1<<31) | ((startcov & 0x3FF) << 12) | (xcov_incr & 0x3FF);

            if constexpr (swapped) *length = 1;
        }

        template<bool swapped>
        constexpr void EdgeParams_YMajor(s32* length, s32* coverage) const
        {
            *length = 1;

            if (Increment == 0)
            {
                // for some reason vertical edges' aa values
                // are inverted too when the edges are swapped
                if constexpr (swapped)
                    *coverage = 0;
                else
                    *coverage = 31;
            }
            else
            {
                s32 cov = ((dx >> 9) + (Increment >> 10)) >> 4;
                if ((cov >> 5) != (dx >> 18)) cov = 31;
                cov &= 0x1F;
                if constexpr (swapped)
                {
                    if (side ^ Negative) cov = 0x1F - cov;
                }
                else
                {
                    if (!(side ^ Negative)) cov = 0x1F - cov;
                }

                *coverage = cov;
            }
        }

        template<bool swapped>
        constexpr void EdgeParams(s32* length, s32* coverage) const
        {
            if (XMajor)
                return EdgeParams_XMajor<swapped>(length, coverage);
            else
                return EdgeParams_YMajor<swapped>(length, coverage);
        }

        s32 Increment;
        bool Negative;
        bool XMajor;
        Interpolator<1> Interp;

    private:
        s32 x0, xmin, xmax;
        s32 xlen, ylen;
        s32 dx;
        s32 y;

        s32 xcov_incr;
        s32 ycoverage, ycov_incr;
    };

    template <typename T>
    inline T ReadVRAM_Texture(u32 addr, const GPU& gpu) const
    {
        return *(T*)&gpu.VRAMFlat_Texture[addr & 0x7FFFF];
    }
    template <typename T>
    inline T ReadVRAM_TexPal(u32 addr, const GPU& gpu) const
    {
        return *(T*)&gpu.VRAMFlat_TexPal[addr & 0x1FFFF];
    }
    u32 AlphaBlend(const GPU3D& gpu3d, u32 srccolor, u32 dstcolor, u32 alpha) const noexcept;

    struct RendererPolygon
    {
        Polygon* PolyData;

        Slope<0> SlopeL;
        Slope<1> SlopeR;
        s32 XL, XR;
        u32 CurVL, CurVR;
        u32 NextVL, NextVR;

    };

    RendererPolygon PolygonList[2048];
    void TextureLookup(const GPU& gpu, u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha) const;
    u32 RenderPixel(const GPU& gpu, const Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t) const;
    void PlotTranslucentPixel(const GPU3D& gpu3d, u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow);
    void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y) const;
    void SetupPolygonRightEdge(RendererPolygon* rp, s32 y) const;
    void SetupPolygon(RendererPolygon* rp, Polygon* polygon) const;
    void RenderShadowMaskScanline(const GPU3D& gpu3d, RendererPolygon* rp, s32 y);
    void RenderPolygonScanline(const GPU& gpu, RendererPolygon* rp, s32 y);
    void RenderScanline(const GPU& gpu, s32 y, int npolys);
    u32 CalculateFogDensity(const GPU3D& gpu3d, u32 pixeladdr) const;
    void ScanlineFinalPass(const GPU3D& gpu3d, s32 y);
    void ClearBuffers(const GPU& gpu);
    void RenderPolygons(const GPU& gpu, bool threaded, Polygon** polygons, int npolys);

    void RenderThreadFunc(GPU& gpu);

    // buffer dimensions are 258x194 to add a offscreen 1px border
    // which simplifies edge marking tests
    // buffer is duplicated to keep track of the two topmost pixels
    // TODO: check if the hardware can accidentally plot pixels
    // offscreen in that border

    static constexpr int ScanlineWidth = 258;
    static constexpr int NumScanlines = 194;
    static constexpr int BufferSize = ScanlineWidth * NumScanlines;
    static constexpr int FirstPixelOffset = ScanlineWidth + 1;

    u32 ColorBuffer[BufferSize * 2];
    u32 DepthBuffer[BufferSize * 2];
    u32 AttrBuffer[BufferSize * 2];

    // attribute buffer:
    // bit0-3: edge flags (left/right/top/bottom)
    // bit4: backfacing flag
    // bit8-12: antialiasing alpha
    // bit15: fog enable
    // bit16-21: polygon ID for translucent pixels
    // bit22: translucent flag
    // bit24-29: polygon ID for opaque pixels

    u8 StencilBuffer[256*2];
    bool PrevIsShadowMask;

    bool Enabled;

    bool FrameIdentical;

    // threading

    bool Threaded;
    Platform::Thread* RenderThread;
    std::atomic_bool RenderThreadRunning;
    std::atomic_bool RenderThreadRendering;
    Platform::Semaphore* Sema_RenderStart;
    Platform::Semaphore* Sema_RenderDone;
    Platform::Semaphore* Sema_ScanlineCount;
};
}