aboutsummaryrefslogtreecommitdiff
path: root/src/GPU.h
blob: 780d5e011a0884f7919475af679c05b0650a88e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/*
    Copyright 2016-2023 melonDS team

    This file is part of melonDS.

    melonDS is free software: you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free
    Software Foundation, either version 3 of the License, or (at your option)
    any later version.

    melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with melonDS. If not, see http://www.gnu.org/licenses/.
*/

#ifndef GPU_H
#define GPU_H

#include <memory>

#include "GPU2D.h"
#include "GPU3D.h"
#include "NonStupidBitfield.h"

namespace melonDS
{
class GPU3D;
class ARMJIT;

static constexpr u32 VRAMDirtyGranularity = 512;
class GPU;

template <u32 Size, u32 MappingGranularity>
struct VRAMTrackingSet
{
    u16 Mapping[Size / MappingGranularity];

    const u32 VRAMBitsPerMapping = MappingGranularity / VRAMDirtyGranularity;

    void Reset()
    {
        for (u32 i = 0; i < Size / MappingGranularity; i++)
        {
            // this is not a real VRAM bank
            // so it will always be a mismatch => the bank will be completely invalidated
            Mapping[i] = 0x8000;
        }
    }
    NonStupidBitField<Size/VRAMDirtyGranularity> DeriveState(const u32* currentMappings, GPU& gpu);
};

class GPU
{
public:
    explicit GPU(melonDS::NDS& nds, std::unique_ptr<Renderer3D>&& renderer3d = nullptr, std::unique_ptr<GPU2D::Renderer2D>&& renderer2d = nullptr) noexcept;
    ~GPU() noexcept;
    void Reset() noexcept;
    void Stop() noexcept;

    void DoSavestate(Savestate* file) noexcept;

    /// Sets the active renderer to the renderer given in the provided pointer.
    /// The pointer is moved-from, so it will be \c nullptr after this method is called.
    /// If the pointer is \c nullptr, the renderer is reset to the default renderer.
    void SetRenderer3D(std::unique_ptr<Renderer3D>&& renderer) noexcept;
    [[nodiscard]] const Renderer3D& GetRenderer3D() const noexcept { return GPU3D.GetCurrentRenderer(); }
    [[nodiscard]] Renderer3D& GetRenderer3D() noexcept { return GPU3D.GetCurrentRenderer(); }

    u8* GetUniqueBankPtr(u32 mask, u32 offset) noexcept;
    const u8* GetUniqueBankPtr(u32 mask, u32 offset) const noexcept;

    void SetRenderer2D(std::unique_ptr<GPU2D::Renderer2D>&& renderer) noexcept { GPU2D_Renderer = std::move(renderer); }
    [[nodiscard]] const GPU2D::Renderer2D& GetRenderer2D() const noexcept { return *GPU2D_Renderer; }
    [[nodiscard]] GPU2D::Renderer2D& GetRenderer2D() noexcept { return *GPU2D_Renderer; }

    void MapVRAM_AB(u32 bank, u8 cnt) noexcept;
    void MapVRAM_CD(u32 bank, u8 cnt) noexcept;
    void MapVRAM_E(u32 bank, u8 cnt) noexcept;
    void MapVRAM_FG(u32 bank, u8 cnt) noexcept;
    void MapVRAM_H(u32 bank, u8 cnt) noexcept;
    void MapVRAM_I(u32 bank, u8 cnt) noexcept;

    template<typename T>
    T ReadVRAM_LCDC(u32 addr) const noexcept
    {
        int bank;

        switch (addr & 0xFF8FC000)
        {
        case 0x06800000: case 0x06804000: case 0x06808000: case 0x0680C000:
        case 0x06810000: case 0x06814000: case 0x06818000: case 0x0681C000:
            bank = 0;
            addr &= 0x1FFFF;
            break;

        case 0x06820000: case 0x06824000: case 0x06828000: case 0x0682C000:
        case 0x06830000: case 0x06834000: case 0x06838000: case 0x0683C000:
            bank = 1;
            addr &= 0x1FFFF;
            break;

        case 0x06840000: case 0x06844000: case 0x06848000: case 0x0684C000:
        case 0x06850000: case 0x06854000: case 0x06858000: case 0x0685C000:
            bank = 2;
            addr &= 0x1FFFF;
            break;

        case 0x06860000: case 0x06864000: case 0x06868000: case 0x0686C000:
        case 0x06870000: case 0x06874000: case 0x06878000: case 0x0687C000:
            bank = 3;
            addr &= 0x1FFFF;
            break;

        case 0x06880000: case 0x06884000: case 0x06888000: case 0x0688C000:
            bank = 4;
            addr &= 0xFFFF;
            break;

        case 0x06890000:
            bank = 5;
            addr &= 0x3FFF;
            break;

        case 0x06894000:
            bank = 6;
            addr &= 0x3FFF;
            break;

        case 0x06898000:
        case 0x0689C000:
            bank = 7;
            addr &= 0x7FFF;
            break;

        case 0x068A0000:
            bank = 8;
            addr &= 0x3FFF;
            break;

        default: return 0;
        }

        if (VRAMMap_LCDC & (1<<bank)) return *(T*)&VRAM[bank][addr];

        return 0;
    }

    template<typename T>
    void WriteVRAM_LCDC(u32 addr, T val)
    {
        int bank;

        switch (addr & 0xFF8FC000)
        {
        case 0x06800000: case 0x06804000: case 0x06808000: case 0x0680C000:
        case 0x06810000: case 0x06814000: case 0x06818000: case 0x0681C000:
            bank = 0;
            addr &= 0x1FFFF;
            break;

        case 0x06820000: case 0x06824000: case 0x06828000: case 0x0682C000:
        case 0x06830000: case 0x06834000: case 0x06838000: case 0x0683C000:
            bank = 1;
            addr &= 0x1FFFF;
            break;

        case 0x06840000: case 0x06844000: case 0x06848000: case 0x0684C000:
        case 0x06850000: case 0x06854000: case 0x06858000: case 0x0685C000:
            bank = 2;
            addr &= 0x1FFFF;
            break;

        case 0x06860000: case 0x06864000: case 0x06868000: case 0x0686C000:
        case 0x06870000: case 0x06874000: case 0x06878000: case 0x0687C000:
            bank = 3;
            addr &= 0x1FFFF;
            break;

        case 0x06880000: case 0x06884000: case 0x06888000: case 0x0688C000:
            bank = 4;
            addr &= 0xFFFF;
            break;

        case 0x06890000:
            bank = 5;
            addr &= 0x3FFF;
            break;

        case 0x06894000:
            bank = 6;
            addr &= 0x3FFF;
            break;

        case 0x06898000:
        case 0x0689C000:
            bank = 7;
            addr &= 0x7FFF;
            break;

        case 0x068A0000:
            bank = 8;
            addr &= 0x3FFF;
            break;

        default: return;
        }

        if (VRAMMap_LCDC & (1<<bank))
        {
            *(T*)&VRAM[bank][addr] = val;
            VRAMDirty[bank][addr / VRAMDirtyGranularity] = true;
        }
    }


    template<typename T>
    T ReadVRAM_ABG(u32 addr) const noexcept
    {
        u8* ptr = VRAMPtr_ABG[(addr >> 14) & 0x1F];
        if (ptr) return *(T*)&ptr[addr & 0x3FFF];

        T ret = 0;
        u32 mask = VRAMMap_ABG[(addr >> 14) & 0x1F];

        if (mask & (1<<0)) ret |= *(T*)&VRAM_A[addr & 0x1FFFF];
        if (mask & (1<<1)) ret |= *(T*)&VRAM_B[addr & 0x1FFFF];
        if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
        if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];
        if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0xFFFF];
        if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
        if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];

        return ret;
    }

    template<typename T>
    void WriteVRAM_ABG(u32 addr, T val)
    {
        u32 mask = VRAMMap_ABG[(addr >> 14) & 0x1F];

        if (mask & (1<<0))
        {
            VRAMDirty[0][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_A[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<1))
        {
            VRAMDirty[1][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_B[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<2))
        {
            VRAMDirty[2][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_C[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<3))
        {
            VRAMDirty[3][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_D[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<4))
        {
            VRAMDirty[4][(addr & 0xFFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_E[addr & 0xFFFF] = val;
        }
        if (mask & (1<<5))
        {
            VRAMDirty[5][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_F[addr & 0x3FFF] = val;
        }
        if (mask & (1<<6))
        {
            VRAMDirty[6][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_G[addr & 0x3FFF] = val;
        }
    }


    template<typename T>
    T ReadVRAM_AOBJ(u32 addr) const noexcept
    {
        u8* ptr = VRAMPtr_AOBJ[(addr >> 14) & 0xF];
        if (ptr) return *(T*)&ptr[addr & 0x3FFF];

        T ret = 0;
        u32 mask = VRAMMap_AOBJ[(addr >> 14) & 0xF];

        if (mask & (1<<0)) ret |= *(T*)&VRAM_A[addr & 0x1FFFF];
        if (mask & (1<<1)) ret |= *(T*)&VRAM_B[addr & 0x1FFFF];
        if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0xFFFF];
        if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
        if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];

        return ret;
    }

    template<typename T>
    void WriteVRAM_AOBJ(u32 addr, T val)
    {
        u32 mask = VRAMMap_AOBJ[(addr >> 14) & 0xF];

        if (mask & (1<<0))
        {
            VRAMDirty[0][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_A[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<1))
        {
            VRAMDirty[1][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_B[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<4))
        {
            VRAMDirty[4][(addr & 0xFFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_E[addr & 0xFFFF] = val;
        }
        if (mask & (1<<5))
        {
            VRAMDirty[5][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_F[addr & 0x3FFF] = val;
        }
        if (mask & (1<<6))
        {
            VRAMDirty[6][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_G[addr & 0x3FFF] = val;
        }
    }


    template<typename T>
    T ReadVRAM_BBG(u32 addr) const noexcept
    {
        u8* ptr = VRAMPtr_BBG[(addr >> 14) & 0x7];
        if (ptr) return *(T*)&ptr[addr & 0x3FFF];

        T ret = 0;
        u32 mask = VRAMMap_BBG[(addr >> 14) & 0x7];

        if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
        if (mask & (1<<7)) ret |= *(T*)&VRAM_H[addr & 0x7FFF];
        if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x3FFF];

        return ret;
    }

    template<typename T>
    void WriteVRAM_BBG(u32 addr, T val)
    {
        u32 mask = VRAMMap_BBG[(addr >> 14) & 0x7];

        if (mask & (1<<2))
        {
            VRAMDirty[2][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_C[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<7))
        {
            VRAMDirty[7][(addr & 0x7FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_H[addr & 0x7FFF] = val;
        }
        if (mask & (1<<8))
        {
            VRAMDirty[8][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_I[addr & 0x3FFF] = val;
        }
    }


    template<typename T>
    T ReadVRAM_BOBJ(u32 addr) const noexcept
    {
        u8* ptr = VRAMPtr_BOBJ[(addr >> 14) & 0x7];
        if (ptr) return *(T*)&ptr[addr & 0x3FFF];

        T ret = 0;
        u32 mask = VRAMMap_BOBJ[(addr >> 14) & 0x7];

        if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];
        if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x3FFF];

        return ret;
    }

    template<typename T>
    void WriteVRAM_BOBJ(u32 addr, T val)
    {
        u32 mask = VRAMMap_BOBJ[(addr >> 14) & 0x7];

        if (mask & (1<<3))
        {
            VRAMDirty[3][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_D[addr & 0x1FFFF] = val;
        }
        if (mask & (1<<8))
        {
            VRAMDirty[8][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
            *(T*)&VRAM_I[addr & 0x3FFF] = val;
        }
    }

    template<typename T>
    T ReadVRAM_ARM7(u32 addr) const noexcept
    {
        T ret = 0;
        u32 mask = VRAMMap_ARM7[(addr >> 17) & 0x1];

        if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
        if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];

        return ret;
    }

    template<typename T>
    void WriteVRAM_ARM7(u32 addr, T val)
    {
        u32 mask = VRAMMap_ARM7[(addr >> 17) & 0x1];

        if (mask & (1<<2)) *(T*)&VRAM_C[addr & 0x1FFFF] = val;
        if (mask & (1<<3)) *(T*)&VRAM_D[addr & 0x1FFFF] = val;
    }


    template<typename T>
    T ReadVRAM_BG(u32 addr) const noexcept
    {
        if ((addr & 0xFFE00000) == 0x06000000)
            return ReadVRAM_ABG<T>(addr);
        else
            return ReadVRAM_BBG<T>(addr);
    }

    template<typename T>
    T ReadVRAM_OBJ(u32 addr) const noexcept
    {
        if ((addr & 0xFFE00000) == 0x06400000)
            return ReadVRAM_AOBJ<T>(addr);
        else
            return ReadVRAM_BOBJ<T>(addr);
    }


    template<typename T>
    T ReadVRAM_Texture(u32 addr) const noexcept
    {
        T ret = 0;
        u32 mask = VRAMMap_Texture[(addr >> 17) & 0x3];

        if (mask & (1<<0)) ret |= *(T*)&VRAM_A[addr & 0x1FFFF];
        if (mask & (1<<1)) ret |= *(T*)&VRAM_B[addr & 0x1FFFF];
        if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
        if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];

        return ret;
    }

    template<typename T>
    T ReadVRAM_TexPal(u32 addr) const noexcept
    {
        T ret = 0;
        u32 mask = VRAMMap_TexPal[(addr >> 14) & 0x7];

        if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0xFFFF];
        if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
        if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];

        return ret;
    }

    template<typename T>
    T ReadPalette(u32 addr) const noexcept
    {
        return *(T*)&Palette[addr & 0x7FF];
    }

    template<typename T>
    void WritePalette(u32 addr, T val)
    {
        addr &= 0x7FF;

        *(T*)&Palette[addr] = val;
        PaletteDirty |= 1 << (addr / VRAMDirtyGranularity);
    }

    template<typename T>
    T ReadOAM(u32 addr) const noexcept
    {
        return *(T*)&OAM[addr & 0x7FF];
    }

    template<typename T>
    void WriteOAM(u32 addr, T val)
    {
        addr &= 0x7FF;

        *(T*)&OAM[addr] = val;
        OAMDirty |= 1 << (addr / 1024);
    }

    void SetPowerCnt(u32 val) noexcept;

    void StartFrame() noexcept;
    void FinishFrame(u32 lines) noexcept;
    void BlankFrame() noexcept;
    void StartScanline(u32 line) noexcept;
    void StartHBlank(u32 line) noexcept;

    void DisplayFIFO(u32 x) noexcept;

    void SetDispStat(u32 cpu, u16 val) noexcept;

    void SetVCount(u16 val) noexcept;
    bool MakeVRAMFlat_ABGCoherent(NonStupidBitField<512*1024/VRAMDirtyGranularity>& dirty) noexcept;
    bool MakeVRAMFlat_BBGCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) noexcept;

    bool MakeVRAMFlat_AOBJCoherent(NonStupidBitField<256*1024/VRAMDirtyGranularity>& dirty) noexcept;
    bool MakeVRAMFlat_BOBJCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) noexcept;

    bool MakeVRAMFlat_ABGExtPalCoherent(NonStupidBitField<32*1024/VRAMDirtyGranularity>& dirty) noexcept;
    bool MakeVRAMFlat_BBGExtPalCoherent(NonStupidBitField<32*1024/VRAMDirtyGranularity>& dirty) noexcept;

    bool MakeVRAMFlat_AOBJExtPalCoherent(NonStupidBitField<8*1024/VRAMDirtyGranularity>& dirty) noexcept;
    bool MakeVRAMFlat_BOBJExtPalCoherent(NonStupidBitField<8*1024/VRAMDirtyGranularity>& dirty) noexcept;

    bool MakeVRAMFlat_TextureCoherent(NonStupidBitField<512*1024/VRAMDirtyGranularity>& dirty) noexcept;
    bool MakeVRAMFlat_TexPalCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) noexcept;

    void SyncDirtyFlags() noexcept;

    melonDS::NDS& NDS;
    u16 VCount = 0;
    u16 TotalScanlines = 0;
    u16 DispStat[2] {};
    u8 VRAMCNT[9] {};
    u8 VRAMSTAT = 0;

    alignas(u64) u8 Palette[2*1024] {};
    alignas(u64) u8 OAM[2*1024] {};

    alignas(u64) u8 VRAM_A[128*1024] {};
    alignas(u64) u8 VRAM_B[128*1024] {};
    alignas(u64) u8 VRAM_C[128*1024] {};
    alignas(u64) u8 VRAM_D[128*1024] {};
    alignas(u64) u8 VRAM_E[ 64*1024] {};
    alignas(u64) u8 VRAM_F[ 16*1024] {};
    alignas(u64) u8 VRAM_G[ 16*1024] {};
    alignas(u64) u8 VRAM_H[ 32*1024] {};
    alignas(u64) u8 VRAM_I[ 16*1024] {};

    u8* const VRAM[9]     = {VRAM_A,  VRAM_B,  VRAM_C,  VRAM_D,  VRAM_E, VRAM_F, VRAM_G, VRAM_H, VRAM_I};
    u32 const VRAMMask[9] = {0x1FFFF, 0x1FFFF, 0x1FFFF, 0x1FFFF, 0xFFFF, 0x3FFF, 0x3FFF, 0x7FFF, 0x3FFF};

    u32 VRAMMap_LCDC = 0;
    u32 VRAMMap_ABG[0x20] {};
    u32 VRAMMap_AOBJ[0x10] {};
    u32 VRAMMap_BBG[0x8] {};
    u32 VRAMMap_BOBJ[0x8] {};
    u32 VRAMMap_ABGExtPal[4] {};
    u32 VRAMMap_AOBJExtPal {};
    u32 VRAMMap_BBGExtPal[4] {};
    u32 VRAMMap_BOBJExtPal {};
    u32 VRAMMap_Texture[4] {};
    u32 VRAMMap_TexPal[8] {};
    u32 VRAMMap_ARM7[2] {};

    u8* VRAMPtr_ABG[0x20] {};
    u8* VRAMPtr_AOBJ[0x10] {};
    u8* VRAMPtr_BBG[0x8] {};
    u8* VRAMPtr_BOBJ[0x8] {};

    int FrontBuffer = 0;
    std::unique_ptr<u32[]> Framebuffer[2][2] {};

    GPU2D::Unit GPU2D_A;
    GPU2D::Unit GPU2D_B;
    melonDS::GPU3D GPU3D;

    NonStupidBitField<128*1024/VRAMDirtyGranularity> VRAMDirty[9] {};
    VRAMTrackingSet<512*1024, 16*1024> VRAMDirty_ABG {};
    VRAMTrackingSet<256*1024, 16*1024> VRAMDirty_AOBJ {};
    VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_BBG {};
    VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_BOBJ {};

    VRAMTrackingSet<32*1024, 8*1024> VRAMDirty_ABGExtPal {};
    VRAMTrackingSet<32*1024, 8*1024> VRAMDirty_BBGExtPal {};
    VRAMTrackingSet<8*1024, 8*1024> VRAMDirty_AOBJExtPal {};
    VRAMTrackingSet<8*1024, 8*1024> VRAMDirty_BOBJExtPal {};

    VRAMTrackingSet<512*1024, 128*1024> VRAMDirty_Texture {};
    VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_TexPal {};

    u8 VRAMFlat_ABG[512*1024] {};
    u8 VRAMFlat_BBG[128*1024] {};
    u8 VRAMFlat_AOBJ[256*1024] {};
    u8 VRAMFlat_BOBJ[128*1024] {};

    alignas(u16) u8 VRAMFlat_ABGExtPal[32*1024] {};
    alignas(u16) u8 VRAMFlat_BBGExtPal[32*1024] {};

    alignas(u16) u8 VRAMFlat_AOBJExtPal[8*1024] {};
    alignas(u16) u8 VRAMFlat_BOBJExtPal[8*1024] {};

    alignas(u64) u8 VRAMFlat_Texture[512*1024] {};
    alignas(u64) u8 VRAMFlat_TexPal[128*1024] {};
private:
    void ResetVRAMCache() noexcept;
    void AssignFramebuffers() noexcept;
    void InitFramebuffers() noexcept;
    template<typename T>
    T ReadVRAM_ABGExtPal(u32 addr) const noexcept
    {
        u32 mask = VRAMMap_ABGExtPal[(addr >> 13) & 0x3];

        T ret = 0;
        if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0x7FFF];
        if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
        if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];

        return ret;
    }

    template<typename T>
    T ReadVRAM_BBGExtPal(u32 addr) const noexcept
    {
        u32 mask = VRAMMap_BBGExtPal[(addr >> 13) & 0x3];

        T ret = 0;
        if (mask & (1<<7)) ret |= *(T*)&VRAM_H[addr & 0x7FFF];

        return ret;
    }

    template<typename T>
    T ReadVRAM_AOBJExtPal(u32 addr) const noexcept
    {
        u32 mask = VRAMMap_AOBJExtPal;

        T ret = 0;
        if (mask & (1<<4)) ret |= *(T*)&VRAM_F[addr & 0x1FFF];
        if (mask & (1<<5)) ret |= *(T*)&VRAM_G[addr & 0x1FFF];

        return ret;
    }

    template<typename T>
    T ReadVRAM_BOBJExtPal(u32 addr) const noexcept
    {
        u32 mask = VRAMMap_BOBJExtPal;

        T ret = 0;
        if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x1FFF];

        return ret;
    }

    template <u32 MappingGranularity, u32 Size>
    constexpr bool CopyLinearVRAM(u8* flat, const u32* mappings, NonStupidBitField<Size>& dirty, u64 (GPU::* const slowAccess)(u32) const noexcept) noexcept
    {
        const u32 VRAMBitsPerMapping = MappingGranularity / VRAMDirtyGranularity;

        bool change = false;

        typename NonStupidBitField<Size>::Iterator it = dirty.Begin();
        while (it != dirty.End())
        {
            u32 offset = *it * VRAMDirtyGranularity;
            u8* dst = flat + offset;
            u8* fastAccess = GetUniqueBankPtr(mappings[*it / VRAMBitsPerMapping], offset);
            if (fastAccess)
            {
                memcpy(dst, fastAccess, VRAMDirtyGranularity);
            }
            else
            {
                for (u32 i = 0; i < VRAMDirtyGranularity; i += 8)
                    *(u64*)&dst[i] = (this->*slowAccess)(offset + i);
            }
            change = true;
            it++;
        }
        return change;
    }

    u32 NextVCount = 0;

    bool RunFIFO = false;

    u16 VMatch[2] {};

    std::unique_ptr<GPU2D::Renderer2D> GPU2D_Renderer = nullptr;

    u32 OAMDirty = 0;
    u32 PaletteDirty = 0;
};
}

#endif