aboutsummaryrefslogtreecommitdiff
path: root/src/ARMJIT_Memory.cpp
blob: d72a63c891db407d46747216a1a8e1b014bee223 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
/*
    Copyright 2016-2021 Arisotura, RSDuck

    This file is part of melonDS.

    melonDS is free software: you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free
    Software Foundation, either version 3 of the License, or (at your option)
    any later version.

    melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with melonDS. If not, see http://www.gnu.org/licenses/.
*/

#if defined(__SWITCH__)
#include <switch.h>
#elif defined(_WIN32)
#include <windows.h>
#else
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <signal.h>
#endif

#if defined(__ANDROID__)
#include <dlfcn.h>
#include <linux/ashmem.h>
#include <sys/ioctl.h>
#endif

#include "ARMJIT_Memory.h"

#include "ARMJIT_Internal.h"
#include "ARMJIT_Compiler.h"

#include "DSi.h"
#include "GPU.h"
#include "GPU3D.h"
#include "Wifi.h"
#include "NDSCart.h"
#include "SPU.h"

#include <stdlib.h>

/*
    We're handling fastmem here.

    Basically we're repurposing a big piece of virtual memory
    and map the memory regions as they're structured on the DS
    in it.

    On most systems you have a single piece of main ram, 
    maybe some video ram and faster cache RAM and that's about it.
    Here we have not only a lot more different memory regions,
    but also two address spaces. Not only that but they all have
    mirrors (the worst case is 16kb SWRAM which is mirrored 1024x).

    We handle this by only mapping those regions which are actually
    used and by praying the games don't go wild.

    Beware, this file is full of platform specific code and copied
    from Dolphin, so enjoy the copied comments!

*/

namespace ARMJIT_Memory
{
struct FaultDescription
{
    u32 EmulatedFaultAddr;
    u8* FaultPC;
};

bool FaultHandler(FaultDescription& faultDesc);
}

// Yes I know this looks messy, but better here than somewhere else in the code
#if defined(_WIN32)
    #define CONTEXT_PC Rip
#else
    #if defined(__x86_64__)
        #if defined(__linux__)
            #define CONTEXT_PC uc_mcontext.gregs[REG_RIP]
        #elif defined(__APPLE__)
            #define CONTEXT_PC uc_mcontext->__ss.__rip
        #elif defined(__FreeBSD__)
            #define CONTEXT_PC uc_mcontext.mc_rip
        #elif defined(__NetBSD__)
            #define CONTEXT_PC uc_mcontext.__gregs[_REG_RIP]
        #endif
    #elif defined(__aarch64__)
        #if defined(__linux__)
            #define CONTEXT_PC uc_mcontext.pc
        #elif defined(__APPLE__)
            #define CONTEXT_PC uc_mcontext->__ss.__pc
        #elif defined(__FreeBSD__)
            #define CONTEXT_PC uc_mcontext.mc_gpregs.gp_elr
        #elif defined(__NetBSD__)
            #define CONTEXT_PC uc_mcontext.__gregs[_REG_PC]
        #endif
    #endif
#endif

#if defined(__ANDROID__)
#define ASHMEM_DEVICE "/dev/ashmem"
#endif

#if defined(__SWITCH__)
// with LTO the symbols seem to be not properly overriden
// if they're somewhere else

void HandleFault(u64 pc, u64 lr, u64 fp, u64 faultAddr, u32 desc);

extern "C"
{
    
void ARM_RestoreContext(u64* registers) __attribute__((noreturn));

extern char __start__;
extern char __rodata_start;

alignas(16) u8 __nx_exception_stack[0x8000];
u64 __nx_exception_stack_size = 0x8000;

void __libnx_exception_handler(ThreadExceptionDump* ctx)
{
    ARMJIT_Memory::FaultDescription desc;
    u8* curArea = (u8*)(NDS::CurCPU == 0 ? ARMJIT_Memory::FastMem9Start : ARMJIT_Memory::FastMem7Start);
    desc.EmulatedFaultAddr = (u8*)ctx->far.x - curArea;
    desc.FaultPC = (u8*)ctx->pc.x;

    u64 integerRegisters[33];
    memcpy(integerRegisters, &ctx->cpu_gprs[0].x, 8*29);
    integerRegisters[29] = ctx->fp.x;
    integerRegisters[30] = ctx->lr.x;
    integerRegisters[31] = ctx->sp.x;
    integerRegisters[32] = ctx->pc.x;

    if (ARMJIT_Memory::FaultHandler(desc))
    {
        integerRegisters[32] = (u64)desc.FaultPC;

        ARM_RestoreContext(integerRegisters);	
    }

    HandleFault(ctx->pc.x, ctx->lr.x, ctx->fp.x, ctx->far.x, ctx->error_desc);
}

}

#elif defined(_WIN32)

static LONG ExceptionHandler(EXCEPTION_POINTERS* exceptionInfo)
{
    if (exceptionInfo->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
    {
        return EXCEPTION_CONTINUE_SEARCH;
    }

    ARMJIT_Memory::FaultDescription desc;
    u8* curArea = (u8*)(NDS::CurCPU == 0 ? ARMJIT_Memory::FastMem9Start : ARMJIT_Memory::FastMem7Start);
    desc.EmulatedFaultAddr = (u8*)exceptionInfo->ExceptionRecord->ExceptionInformation[1] - curArea;
    desc.FaultPC = (u8*)exceptionInfo->ContextRecord->CONTEXT_PC;

    if (ARMJIT_Memory::FaultHandler(desc))
    {
        exceptionInfo->ContextRecord->CONTEXT_PC = (u64)desc.FaultPC;
        return EXCEPTION_CONTINUE_EXECUTION;
    }

    return EXCEPTION_CONTINUE_SEARCH;
}

#else

static struct sigaction OldSaSegv;
static struct sigaction OldSaBus;

static void SigsegvHandler(int sig, siginfo_t* info, void* rawContext)
{
    if (sig != SIGSEGV && sig != SIGBUS)
    {
        // We are not interested in other signals - handle it as usual.
        return;
    }
    if (info->si_code != SEGV_MAPERR && info->si_code != SEGV_ACCERR)
    {
        // Huh? Return.
        return;
    }

    ucontext_t* context = (ucontext_t*)rawContext;

    ARMJIT_Memory::FaultDescription desc;
    u8* curArea = (u8*)(NDS::CurCPU == 0 ? ARMJIT_Memory::FastMem9Start : ARMJIT_Memory::FastMem7Start);

    desc.EmulatedFaultAddr = (u8*)info->si_addr - curArea;
    desc.FaultPC = (u8*)context->CONTEXT_PC;

    if (ARMJIT_Memory::FaultHandler(desc))
    {
        context->CONTEXT_PC = (u64)desc.FaultPC;
        return;
    }

    struct sigaction* oldSa;
    if (sig == SIGSEGV)
      oldSa = &OldSaSegv;
    else
      oldSa = &OldSaBus;

    if (oldSa->sa_flags & SA_SIGINFO)
    {
      oldSa->sa_sigaction(sig, info, rawContext);
      return;
    }
    if (oldSa->sa_handler == SIG_DFL)
    {
      signal(sig, SIG_DFL);
      return;
    }
    if (oldSa->sa_handler == SIG_IGN)
    {
      // Ignore signal
      return;
    }
    oldSa->sa_handler(sig);
}

#endif

namespace ARMJIT_Memory
{

void* FastMem9Start, *FastMem7Start;

#ifdef _WIN32
inline u32 RoundUp(u32 size)
{
    return (size + 0xFFFF) & ~0xFFFF;
}
#else
inline u32 RoundUp(u32 size)
{
    return size;
}
#endif

const u32 MemBlockMainRAMOffset = 0;
const u32 MemBlockSWRAMOffset = RoundUp(NDS::MainRAMMaxSize);
const u32 MemBlockARM7WRAMOffset = MemBlockSWRAMOffset + RoundUp(NDS::SharedWRAMSize);
const u32 MemBlockDTCMOffset = MemBlockARM7WRAMOffset + RoundUp(NDS::ARM7WRAMSize);
const u32 MemBlockNWRAM_AOffset = MemBlockDTCMOffset + RoundUp(DTCMPhysicalSize);
const u32 MemBlockNWRAM_BOffset = MemBlockNWRAM_AOffset + RoundUp(DSi::NWRAMSize);
const u32 MemBlockNWRAM_COffset = MemBlockNWRAM_BOffset + RoundUp(DSi::NWRAMSize);
const u32 MemoryTotalSize = MemBlockNWRAM_COffset + RoundUp(DSi::NWRAMSize);

const u32 OffsetsPerRegion[memregions_Count] =
{
    UINT32_MAX,
    UINT32_MAX,
    MemBlockDTCMOffset,
    UINT32_MAX,
    MemBlockMainRAMOffset,
    MemBlockSWRAMOffset,
    UINT32_MAX,
    UINT32_MAX,
    UINT32_MAX,
    MemBlockARM7WRAMOffset,
    UINT32_MAX,
    UINT32_MAX,
    UINT32_MAX,
    UINT32_MAX,
    UINT32_MAX,
    MemBlockNWRAM_AOffset,
    MemBlockNWRAM_BOffset,
    MemBlockNWRAM_COffset
};

enum
{
    memstate_Unmapped,
    memstate_MappedRW,
    // on Switch this is unmapped as well
    memstate_MappedProtected,
};

u8 MappingStatus9[1 << (32-12)];
u8 MappingStatus7[1 << (32-12)];

#if defined(__SWITCH__)
VirtmemReservation* FastMem9Reservation, *FastMem7Reservation;
u8* MemoryBase;
u8* MemoryBaseCodeMem;
#elif defined(_WIN32)
u8* MemoryBase;
HANDLE MemoryFile;
LPVOID ExceptionHandlerHandle;
#else
u8* MemoryBase;
int MemoryFile;
#endif

bool MapIntoRange(u32 addr, u32 num, u32 offset, u32 size)
{
    u8* dst = (u8*)(num == 0 ? FastMem9Start : FastMem7Start) + addr;
#ifdef __SWITCH__
    Result r = (svcMapProcessMemory(dst, envGetOwnProcessHandle(), 
        (u64)(MemoryBaseCodeMem + offset), size));
    return R_SUCCEEDED(r);
#elif defined(_WIN32)
    bool r = MapViewOfFileEx(MemoryFile, FILE_MAP_READ | FILE_MAP_WRITE, 0, offset, size, dst) == dst;
    return r;
#else
    return mmap(dst, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, MemoryFile, offset) != MAP_FAILED;
#endif
}

bool UnmapFromRange(u32 addr, u32 num, u32 offset, u32 size)
{
    u8* dst = (u8*)(num == 0 ? FastMem9Start : FastMem7Start) + addr;
#ifdef __SWITCH__
    Result r = svcUnmapProcessMemory(dst, envGetOwnProcessHandle(),
        (u64)(MemoryBaseCodeMem + offset), size);
    return R_SUCCEEDED(r);
#elif defined(_WIN32)
    return UnmapViewOfFile(dst);
#else
    return munmap(dst, size) == 0;
#endif
}

#ifndef __SWITCH__
void SetCodeProtectionRange(u32 addr, u32 size, u32 num, int protection)
{
    u8* dst = (u8*)(num == 0 ? FastMem9Start : FastMem7Start) + addr;
#if defined(_WIN32)
    DWORD winProtection, oldProtection;
    if (protection == 0)
        winProtection = PAGE_NOACCESS;
    else if (protection == 1)
        winProtection = PAGE_READONLY;
    else
        winProtection = PAGE_READWRITE;
    bool success = VirtualProtect(dst, size, winProtection, &oldProtection);
    assert(success);
#else
    int posixProt;
    if (protection == 0)
        posixProt = PROT_NONE;
    else if (protection == 1)
        posixProt = PROT_READ;
    else
        posixProt = PROT_READ | PROT_WRITE;
    mprotect(dst, size, posixProt);
#endif
}
#endif

struct Mapping
{
    u32 Addr;
    u32 Size, LocalOffset;
    u32 Num;

    void Unmap(int region)
    {
        u32 dtcmStart = NDS::ARM9->DTCMBase;
        u32 dtcmSize = ~NDS::ARM9->DTCMMask + 1;
        bool skipDTCM = Num == 0 && region != memregion_DTCM;
        u8* statuses = Num == 0 ? MappingStatus9 : MappingStatus7;
        u32 offset = 0;
        while (offset < Size)
        {
            if (skipDTCM && Addr + offset == dtcmStart)
            {
                offset += dtcmSize;
            }
            else
            {
                u32 segmentOffset = offset;
                u8 status = statuses[(Addr + offset) >> 12];
                while (statuses[(Addr + offset) >> 12] == status
                    && offset < Size
                    && (!skipDTCM || Addr + offset != dtcmStart))
                {
                    assert(statuses[(Addr + offset) >> 12] != memstate_Unmapped);
                    statuses[(Addr + offset) >> 12] = memstate_Unmapped;
                    offset += 0x1000;
                }

#ifdef __SWITCH__
                if (status == memstate_MappedRW)
                {
                    u32 segmentSize = offset - segmentOffset;
                    printf("unmapping %x %x %x %x\n", Addr + segmentOffset, Num, segmentOffset + LocalOffset + OffsetsPerRegion[region], segmentSize);
                    bool success = UnmapFromRange(Addr + segmentOffset, Num, segmentOffset + LocalOffset + OffsetsPerRegion[region], segmentSize);
                    assert(success);
                }
#endif
            }
        }

#ifndef __SWITCH__
#ifndef _WIN32
        u32 dtcmEnd = dtcmStart + dtcmSize;
        if (Num == 0
            && dtcmEnd >= Addr
            && dtcmStart < Addr + Size)
        {
            bool success;
            if (dtcmStart > Addr)
            {
                success = UnmapFromRange(Addr, 0, OffsetsPerRegion[region] + LocalOffset, dtcmStart - Addr);
                assert(success);
            }
            if (dtcmEnd < Addr + Size)
            {
                u32 offset = dtcmStart - Addr + dtcmSize;
                success = UnmapFromRange(dtcmEnd, 0, OffsetsPerRegion[region] + LocalOffset + offset, Size - offset);
                assert(success);
            }
        }
        else
#endif
        {
            bool succeded = UnmapFromRange(Addr, Num, OffsetsPerRegion[region] + LocalOffset, Size);
            assert(succeded);
        }
#endif
    }
};
ARMJIT::TinyVector<Mapping> Mappings[memregions_Count];

void SetCodeProtection(int region, u32 offset, bool protect)
{
    offset &= ~0xFFF;
    //printf("set code protection %d %x %d\n", region, offset, protect);

    for (int i = 0; i < Mappings[region].Length; i++)
    {
        Mapping& mapping = Mappings[region][i];

        if (offset < mapping.LocalOffset || offset >= mapping.LocalOffset + mapping.Size)
            continue;

        u32 effectiveAddr = mapping.Addr + (offset - mapping.LocalOffset);
        if (mapping.Num == 0
            && region != memregion_DTCM 
            && (effectiveAddr & NDS::ARM9->DTCMMask) == NDS::ARM9->DTCMBase)
            continue;

        u8* states = (u8*)(mapping.Num == 0 ? MappingStatus9 : MappingStatus7);

        //printf("%x %d %x %x %x %d\n", effectiveAddr, mapping.Num, mapping.Addr, mapping.LocalOffset, mapping.Size, states[effectiveAddr >> 12]);
        assert(states[effectiveAddr >> 12] == (protect ? memstate_MappedRW : memstate_MappedProtected));
        states[effectiveAddr >> 12] = protect ? memstate_MappedProtected : memstate_MappedRW;

#if defined(__SWITCH__)
        bool success;
        if (protect)
            success = UnmapFromRange(effectiveAddr, mapping.Num, OffsetsPerRegion[region] + offset, 0x1000);
        else
            success = MapIntoRange(effectiveAddr, mapping.Num, OffsetsPerRegion[region] + offset, 0x1000);
        assert(success);
#else
        SetCodeProtectionRange(effectiveAddr, 0x1000, mapping.Num, protect ? 1 : 2);
#endif
    }
}

void RemapDTCM(u32 newBase, u32 newSize)
{
    // this first part could be made more efficient
    // by unmapping DTCM first and then map the holes
    u32 oldDTCMBase = NDS::ARM9->DTCMBase;
    u32 oldDTCMSize = ~NDS::ARM9->DTCMMask + 1;
    u32 oldDTCBEnd = oldDTCMBase + NDS::ARM9->DTCMMask;

    u32 newEnd = newBase + newSize;

    printf("remapping DTCM %x %x %x %x\n", newBase, newEnd, oldDTCMBase, oldDTCBEnd);
    // unmap all regions containing the old or the current DTCM mapping
    for (int region = 0; region < memregions_Count; region++)
    {
        if (region == memregion_DTCM)
            continue;

        for (int i = 0; i < Mappings[region].Length;)
        {
            Mapping& mapping = Mappings[region][i];

            u32 start = mapping.Addr;
            u32 end = mapping.Addr + mapping.Size;

            printf("unmapping %d %x %x %x %x\n", region, mapping.Addr, mapping.Size, mapping.Num, mapping.LocalOffset);

            bool overlap = (oldDTCMSize > 0 && oldDTCMBase < end && oldDTCBEnd > start)
                || (newSize > 0 && newBase < end && newEnd > start);

            if (mapping.Num == 0 && overlap)
            {
                mapping.Unmap(region);
                Mappings[region].Remove(i);
            }
            else
            {
                i++;
            }
        }
    }

    for (int i = 0; i < Mappings[memregion_DTCM].Length; i++)
    {
        Mappings[memregion_DTCM][i].Unmap(memregion_DTCM);
    }
    Mappings[memregion_DTCM].Clear();
}

void RemapNWRAM(int num)
{
    for (int i = 0; i < Mappings[memregion_SharedWRAM].Length;)
    {
        Mapping& mapping = Mappings[memregion_SharedWRAM][i];
        if (DSi::NWRAMStart[mapping.Num][num] < mapping.Addr + mapping.Size
            && DSi::NWRAMEnd[mapping.Num][num] > mapping.Addr)
        {
            mapping.Unmap(memregion_SharedWRAM);
            Mappings[memregion_SharedWRAM].Remove(i);
        }
        else
        {
            i++;
        }
    }
    for (int i = 0; i < Mappings[memregion_NewSharedWRAM_A + num].Length; i++)
    {
        Mappings[memregion_NewSharedWRAM_A + num][i].Unmap(memregion_NewSharedWRAM_A + num);
    }
    Mappings[memregion_NewSharedWRAM_A + num].Clear();
}

void RemapSWRAM()
{
    printf("remapping SWRAM\n");
    for (int i = 0; i < Mappings[memregion_WRAM7].Length;)
    {
        Mapping& mapping = Mappings[memregion_WRAM7][i];
        if (mapping.Addr + mapping.Size <= 0x03800000)
        {
            mapping.Unmap(memregion_WRAM7);
            Mappings[memregion_WRAM7].Remove(i);
        }
        else
            i++;
    }
    for (int i = 0; i < Mappings[memregion_SharedWRAM].Length; i++)
    {
        Mappings[memregion_SharedWRAM][i].Unmap(memregion_SharedWRAM);
    }
    Mappings[memregion_SharedWRAM].Clear();
}

bool MapAtAddress(u32 addr)
{
    u32 num = NDS::CurCPU;

    int region = num == 0
        ? ClassifyAddress9(addr)
        : ClassifyAddress7(addr);

    if (!IsFastmemCompatible(region))
        return false;

    u32 mirrorStart, mirrorSize, memoryOffset;
    bool isMapped = GetMirrorLocation(region, num, addr, memoryOffset, mirrorStart, mirrorSize);
    if (!isMapped)
        return false;

    u8* states = num == 0 ? MappingStatus9 : MappingStatus7;
    //printf("mapping mirror %x, %x %x %d %d\n", mirrorStart, mirrorSize, memoryOffset, region, num);
    bool isExecutable = ARMJIT::CodeMemRegions[region];

    u32 dtcmStart = NDS::ARM9->DTCMBase;
    u32 dtcmSize = ~NDS::ARM9->DTCMMask + 1;
    u32 dtcmEnd = dtcmStart + dtcmSize;
#ifndef __SWITCH__
#ifndef _WIN32
    if (num == 0
        && dtcmEnd >= mirrorStart
        && dtcmStart < mirrorStart + mirrorSize)
    {
        bool success;
        if (dtcmStart > mirrorStart)
        {
            success = MapIntoRange(mirrorStart, 0, OffsetsPerRegion[region] + memoryOffset, dtcmStart - mirrorStart);
            assert(success);
        }
        if (dtcmEnd < mirrorStart + mirrorSize)
        {
            u32 offset = dtcmStart - mirrorStart + dtcmSize;
            success = MapIntoRange(dtcmEnd, 0, OffsetsPerRegion[region] + memoryOffset + offset, mirrorSize - offset);
            assert(success);
        }
    }
    else
#endif
    {
        bool succeded = MapIntoRange(mirrorStart, num, OffsetsPerRegion[region] + memoryOffset, mirrorSize);
        assert(succeded);
    }
#endif

    ARMJIT::AddressRange* range = ARMJIT::CodeMemRegions[region] + memoryOffset / 512;

    // this overcomplicated piece of code basically just finds whole pieces of code memory
    // which can be mapped/protected
    u32 offset = 0;	
    bool skipDTCM = num == 0 && region != memregion_DTCM;
    while (offset < mirrorSize)
    {
        if (skipDTCM && mirrorStart + offset == dtcmStart)
        {
#ifdef _WIN32
            SetCodeProtectionRange(dtcmStart, dtcmSize, 0, 0);
#endif
            offset += dtcmSize;
        }
        else
        {
            u32 sectionOffset = offset;
            bool hasCode = isExecutable && ARMJIT::PageContainsCode(&range[offset / 512]);
            while (offset < mirrorSize
                && (!isExecutable || ARMJIT::PageContainsCode(&range[offset / 512]) == hasCode)
                && (!skipDTCM || mirrorStart + offset != NDS::ARM9->DTCMBase))
            {
                assert(states[(mirrorStart + offset) >> 12] == memstate_Unmapped);
                states[(mirrorStart + offset) >> 12] = hasCode ? memstate_MappedProtected : memstate_MappedRW;
                offset += 0x1000;
            }

            u32 sectionSize = offset - sectionOffset;

#if defined(__SWITCH__)
            if (!hasCode)
            {
                //printf("trying to map %x (size: %x) from %x\n", mirrorStart + sectionOffset, sectionSize, sectionOffset + memoryOffset + OffsetsPerRegion[region]);
                bool succeded = MapIntoRange(mirrorStart + sectionOffset, num, sectionOffset + memoryOffset + OffsetsPerRegion[region], sectionSize);
                assert(succeded);
            }
#else
            if (hasCode)
            {
                SetCodeProtectionRange(mirrorStart + sectionOffset, sectionSize, num, 1);
            }
#endif
        }
    }

    assert(num == 0 || num == 1);
    Mapping mapping{mirrorStart, mirrorSize, memoryOffset, num};
    Mappings[region].Add(mapping);

    //printf("mapped mirror at %08x-%08x\n", mirrorStart, mirrorStart + mirrorSize - 1);

    return true;
}

bool FaultHandler(FaultDescription& faultDesc)
{
    if (ARMJIT::JITCompiler->IsJITFault(faultDesc.FaultPC))
    {
        bool rewriteToSlowPath = true;

        u8* memStatus = NDS::CurCPU == 0 ? MappingStatus9 : MappingStatus7;

        if (memStatus[faultDesc.EmulatedFaultAddr >> 12] == memstate_Unmapped)
            rewriteToSlowPath = !MapAtAddress(faultDesc.EmulatedFaultAddr);

        if (rewriteToSlowPath)
            faultDesc.FaultPC = ARMJIT::JITCompiler->RewriteMemAccess(faultDesc.FaultPC);

        return true;
    }
    return false;
}

const u64 AddrSpaceSize = 0x100000000;

void Init()
{
#if defined(__SWITCH__)
    MemoryBase = (u8*)aligned_alloc(0x1000, MemoryTotalSize);
    virtmemLock();
    MemoryBaseCodeMem = (u8*)virtmemFindCodeMemory(MemoryTotalSize, 0x1000);

    bool succeded = R_SUCCEEDED(svcMapProcessCodeMemory(envGetOwnProcessHandle(), (u64)MemoryBaseCodeMem, 
        (u64)MemoryBase, MemoryTotalSize));
    assert(succeded);
    succeded = R_SUCCEEDED(svcSetProcessMemoryPermission(envGetOwnProcessHandle(), (u64)MemoryBaseCodeMem, 
        MemoryTotalSize, Perm_Rw));
    assert(succeded);

    // 8 GB of address space, just don't ask...
    FastMem9Start = virtmemFindAslr(AddrSpaceSize, 0x1000);
    assert(FastMem9Start);
    FastMem7Start = virtmemFindAslr(AddrSpaceSize, 0x1000);
    assert(FastMem7Start);

    FastMem9Reservation = virtmemAddReservation(FastMem9Start, AddrSpaceSize);
    FastMem7Reservation = virtmemAddReservation(FastMem7Start, AddrSpaceSize);
    virtmemUnlock();

    u8* basePtr = MemoryBaseCodeMem;
#elif defined(_WIN32)
    ExceptionHandlerHandle = AddVectoredExceptionHandler(1, ExceptionHandler);

    MemoryFile = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, MemoryTotalSize, NULL);

    MemoryBase = (u8*)VirtualAlloc(NULL, AddrSpaceSize*4, MEM_RESERVE, PAGE_READWRITE);
    VirtualFree(MemoryBase, 0, MEM_RELEASE);
    // this is incredible hacky
    // but someone else is trying to go into our address space!
    // Windows will very likely give them virtual memory starting at the same address
    // as it is giving us now.
    // That's why we don't use this address, but instead 4gb inwards
    // I know this is terrible
    FastMem9Start = MemoryBase + AddrSpaceSize;
    FastMem7Start = MemoryBase + AddrSpaceSize*2;
    MemoryBase = MemoryBase + AddrSpaceSize*3;

    MapViewOfFileEx(MemoryFile, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, MemoryTotalSize, MemoryBase);

    u8* basePtr = MemoryBase;
#else
    // this used to be allocated with three different mmaps
    // The idea was to give the OS more freedom where to position the buffers, 
    // but something was bad about this so instead we take this vmem eating monster
    // which seems to work better.
    MemoryBase = (u8*)mmap(NULL, AddrSpaceSize*4, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0);
    munmap(MemoryBase, AddrSpaceSize*4);
    FastMem9Start = MemoryBase;
    FastMem7Start = MemoryBase + AddrSpaceSize;
    MemoryBase = MemoryBase + AddrSpaceSize*2;

#if defined(__ANDROID__)
    static void* libandroid = dlopen("libandroid.so", RTLD_LAZY | RTLD_LOCAL);
    using type_ASharedMemory_create = int(*)(const char* name, size_t size);
    static void* symbol = dlsym(libandroid, "ASharedMemory_create");
    static auto shared_memory_create = reinterpret_cast<type_ASharedMemory_create>(symbol);

    if (shared_memory_create)
    {
        MemoryFile = shared_memory_create("melondsfastmem", MemoryTotalSize);
    }
    else
    {
        int fd = open(ASHMEM_DEVICE, O_RDWR);
        ioctl(fd, ASHMEM_SET_NAME, "melondsfastmem");
        ioctl(fd, ASHMEM_SET_SIZE, MemoryTotalSize);
        MemoryFile = fd;
    }
#else
    char fastmemPidName[snprintf(NULL, 0, "/melondsfastmem%d", getpid()) + 1];
    sprintf(fastmemPidName, "/melondsfastmem%d", getpid());
    MemoryFile = shm_open(fastmemPidName, O_RDWR | O_CREAT | O_EXCL, 0600);
    if (MemoryFile == -1)
    {
        printf("Failed to open memory using shm_open!");
    }
    shm_unlink(fastmemPidName);
#endif
    if (ftruncate(MemoryFile, MemoryTotalSize) < 0)
    {
        printf("Failed to allocate memory using ftruncate!");
    }

    struct sigaction sa;
    sa.sa_handler = nullptr;
    sa.sa_sigaction = &SigsegvHandler;
    sa.sa_flags = SA_SIGINFO;
    sigemptyset(&sa.sa_mask);
    sigaction(SIGSEGV, &sa, &OldSaSegv);
#ifdef __APPLE__
    sigaction(SIGBUS, &sa, &OldSaBus);
#endif

    mmap(MemoryBase, MemoryTotalSize, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, MemoryFile, 0);

    u8* basePtr = MemoryBase;
#endif
    NDS::MainRAM = basePtr + MemBlockMainRAMOffset;
    NDS::SharedWRAM = basePtr + MemBlockSWRAMOffset;
    NDS::ARM7WRAM = basePtr + MemBlockARM7WRAMOffset;
    NDS::ARM9->DTCM = basePtr + MemBlockDTCMOffset;
    DSi::NWRAM_A = basePtr + MemBlockNWRAM_AOffset;
    DSi::NWRAM_B = basePtr + MemBlockNWRAM_BOffset;
    DSi::NWRAM_C = basePtr + MemBlockNWRAM_COffset;
}

void DeInit()
{
#if defined(__SWITCH__)
    virtmemLock();
    virtmemRemoveReservation(FastMem9Reservation);
    virtmemRemoveReservation(FastMem7Reservation);
    virtmemUnlock();

    svcUnmapProcessCodeMemory(envGetOwnProcessHandle(), (u64)MemoryBaseCodeMem, (u64)MemoryBase, MemoryTotalSize);
    free(MemoryBase);
#elif defined(_WIN32)
    assert(UnmapViewOfFile(MemoryBase));
    CloseHandle(MemoryFile);

    RemoveVectoredExceptionHandler(ExceptionHandlerHandle);
#else
    sigaction(SIGSEGV, &OldSaSegv, nullptr);
#ifdef __APPLE__
    sigaction(SIGBUS, &OldSaBus, nullptr);
#endif

    munmap(MemoryBase, MemoryTotalSize);
    close(MemoryFile);
#endif
}

void Reset()
{
    for (int region = 0; region < memregions_Count; region++)
    {
        for (int i = 0; i < Mappings[region].Length; i++)
            Mappings[region][i].Unmap(region);
        Mappings[region].Clear();
    }

    for (size_t i = 0; i < sizeof(MappingStatus9); i++)
    {
        assert(MappingStatus9[i] == memstate_Unmapped);
        assert(MappingStatus7[i] == memstate_Unmapped);
    }

    printf("done resetting jit mem\n");
}

bool IsFastmemCompatible(int region)
{
#ifdef _WIN32
    /*
        TODO: with some hacks, the smaller shared WRAM regions
        could be mapped in some occaisons as well
    */
    if (region == memregion_DTCM 
        || region == memregion_SharedWRAM
        || region == memregion_NewSharedWRAM_B
        || region == memregion_NewSharedWRAM_C)
        return false;
#endif
    return OffsetsPerRegion[region] != UINT32_MAX;
}

bool GetMirrorLocation(int region, u32 num, u32 addr, u32& memoryOffset, u32& mirrorStart, u32& mirrorSize)
{
    memoryOffset = 0;
    switch (region)
    {
    case memregion_ITCM:
        if (num == 0)
        {
            mirrorStart = addr & ~(ITCMPhysicalSize - 1);
            mirrorSize = ITCMPhysicalSize;
            return true;
        }
        return false;
    case memregion_DTCM:
        if (num == 0)
        {
            mirrorStart = addr & ~(DTCMPhysicalSize - 1);
            mirrorSize = DTCMPhysicalSize;
            return true;
        }
        return false;
    case memregion_MainRAM:
        mirrorStart = addr & ~NDS::MainRAMMask;
        mirrorSize = NDS::MainRAMMask + 1;
        return true;
    case memregion_BIOS9:
        if (num == 0)
        {
            mirrorStart = addr & ~0xFFF;
            mirrorSize = 0x1000;
            return true;
        }
        return false;
    case memregion_BIOS7:
        if (num == 1)
        {
            mirrorStart = 0;
            mirrorSize = 0x4000;
            return true;
        }
        return false;
    case memregion_SharedWRAM:
        if (num == 0 && NDS::SWRAM_ARM9.Mem)
        {
            mirrorStart = addr & ~NDS::SWRAM_ARM9.Mask;
            mirrorSize = NDS::SWRAM_ARM9.Mask + 1;
            memoryOffset = NDS::SWRAM_ARM9.Mem - NDS::SharedWRAM;
            return true;
        }
        else if (num == 1 && NDS::SWRAM_ARM7.Mem)
        {
            mirrorStart = addr & ~NDS::SWRAM_ARM7.Mask;
            mirrorSize = NDS::SWRAM_ARM7.Mask + 1;
            memoryOffset = NDS::SWRAM_ARM7.Mem - NDS::SharedWRAM;
            return true;
        }
        return false;
    case memregion_WRAM7:
        if (num == 1)
        {
            mirrorStart = addr & ~(NDS::ARM7WRAMSize - 1);
            mirrorSize = NDS::ARM7WRAMSize;
            return true;
        }
        return false;
    case memregion_VRAM:
        if (num == 0)
        {
            mirrorStart = addr & ~0xFFFFF;
            mirrorSize = 0x100000;
            return true;
        }
        return false;
    case memregion_VWRAM:
        if (num == 1)
        {
            mirrorStart = addr & ~0x3FFFF;
            mirrorSize = 0x40000;
            return true;
        }
        return false;
    case memregion_NewSharedWRAM_A:
        {
            u8* ptr = DSi::NWRAMMap_A[num][(addr >> 16) & DSi::NWRAMMask[num][0]];
            if (ptr)
            {
                memoryOffset = ptr - DSi::NWRAM_A;
                mirrorStart = addr & ~0xFFFF;
                mirrorSize = 0x10000;
                return true;
            }
            return false; // zero filled memory
        }
    case memregion_NewSharedWRAM_B:
        {
            u8* ptr = DSi::NWRAMMap_B[num][(addr >> 15) & DSi::NWRAMMask[num][1]];
            if (ptr)
            {
                memoryOffset = ptr - DSi::NWRAM_B;
                mirrorStart = addr & ~0x7FFF;
                mirrorSize = 0x8000;
                return true;
            }
            return false; // zero filled memory
        }
    case memregion_NewSharedWRAM_C:
        {
            u8* ptr = DSi::NWRAMMap_C[num][(addr >> 15) & DSi::NWRAMMask[num][2]];
            if (ptr)
            {
                memoryOffset = ptr - DSi::NWRAM_C;
                mirrorStart = addr & ~0x7FFF;
                mirrorSize = 0x8000;
                return true;
            }
            return false; // zero filled memory
        }
    case memregion_BIOS9DSi:
        if (num == 0)
        {
            mirrorStart = addr & ~0xFFFF;
            mirrorSize = DSi::SCFG_BIOS & (1<<0) ? 0x8000 : 0x10000;
            return true;
        }
        return false;
    case memregion_BIOS7DSi:
        if (num == 1)
        {
            mirrorStart = addr & ~0xFFFF;
            mirrorSize = DSi::SCFG_BIOS & (1<<8) ? 0x8000 : 0x10000;
            return true;
        }
        return false;
    default:
        assert(false && "For the time being this should only be used for code");
        return false;
    }
}

u32 LocaliseAddress(int region, u32 num, u32 addr)
{
    switch (region)
    {
    case memregion_ITCM:
        return (addr & (ITCMPhysicalSize - 1)) | (memregion_ITCM << 27);
    case memregion_MainRAM:
        return (addr & NDS::MainRAMMask) | (memregion_MainRAM << 27);
    case memregion_BIOS9:
        return (addr & 0xFFF) | (memregion_BIOS9 << 27);
    case memregion_BIOS7:
        return (addr & 0x3FFF) | (memregion_BIOS7 << 27);
    case memregion_SharedWRAM:
        if (num == 0)
            return ((addr & NDS::SWRAM_ARM9.Mask) + (NDS::SWRAM_ARM9.Mem - NDS::SharedWRAM)) | (memregion_SharedWRAM << 27);
        else
            return ((addr & NDS::SWRAM_ARM7.Mask) + (NDS::SWRAM_ARM7.Mem - NDS::SharedWRAM)) | (memregion_SharedWRAM << 27);
    case memregion_WRAM7:
        return (addr & (NDS::ARM7WRAMSize - 1)) | (memregion_WRAM7 << 27);
    case memregion_VRAM:
        // TODO: take mapping properly into account
        return (addr & 0xFFFFF) | (memregion_VRAM << 27);
    case memregion_VWRAM:
        // same here
        return (addr & 0x3FFFF) | (memregion_VWRAM << 27);
    case memregion_NewSharedWRAM_A:
        {
            u8* ptr = DSi::NWRAMMap_A[num][(addr >> 16) & DSi::NWRAMMask[num][0]];
            if (ptr)
                return (ptr - DSi::NWRAM_A + (addr & 0xFFFF)) | (memregion_NewSharedWRAM_A << 27);
            else
                return memregion_Other << 27; // zero filled memory
        }
    case memregion_NewSharedWRAM_B:
        {
            u8* ptr = DSi::NWRAMMap_B[num][(addr >> 15) & DSi::NWRAMMask[num][1]];
            if (ptr)
                return (ptr - DSi::NWRAM_B + (addr & 0x7FFF)) | (memregion_NewSharedWRAM_B << 27);
            else
                return memregion_Other << 27;
        }
    case memregion_NewSharedWRAM_C:
        {
            u8* ptr = DSi::NWRAMMap_C[num][(addr >> 15) & DSi::NWRAMMask[num][2]];
            if (ptr)
                return (ptr - DSi::NWRAM_C + (addr & 0x7FFF)) | (memregion_NewSharedWRAM_C << 27);
            else
                return memregion_Other << 27;
        }
    case memregion_BIOS9DSi:
    case memregion_BIOS7DSi:
        return (addr & 0xFFFF) | (region << 27);
    default:
        assert(false && "This should only be needed for regions which can contain code");
        return memregion_Other << 27;
    }
}

int ClassifyAddress9(u32 addr)
{
    if (addr < NDS::ARM9->ITCMSize)
    {
        return memregion_ITCM;
    }
    else if ((addr & NDS::ARM9->DTCMMask) == NDS::ARM9->DTCMBase)
    {
        return memregion_DTCM;
    }
    else 
    {
        if (NDS::ConsoleType == 1 && addr >= 0xFFFF0000 && !(DSi::SCFG_BIOS & (1<<1)))
        {
            if ((addr >= 0xFFFF8000) && (DSi::SCFG_BIOS & (1<<0)))
                return memregion_Other;

            return memregion_BIOS9DSi;
        }
        else if ((addr & 0xFFFFF000) == 0xFFFF0000)
        {
            return memregion_BIOS9;
        }

        switch (addr & 0xFF000000)
        {
        case 0x02000000:
            return memregion_MainRAM;
        case 0x03000000:
            if (NDS::ConsoleType == 1)
            {
                if (addr >= DSi::NWRAMStart[0][0] && addr < DSi::NWRAMEnd[0][0])
                    return memregion_NewSharedWRAM_A;
                if (addr >= DSi::NWRAMStart[0][1] && addr < DSi::NWRAMEnd[0][1])
                    return memregion_NewSharedWRAM_B;
                if (addr >= DSi::NWRAMStart[0][2] && addr < DSi::NWRAMEnd[0][2])
                    return memregion_NewSharedWRAM_C;
            }

            if (NDS::SWRAM_ARM9.Mem)
                return memregion_SharedWRAM;
            return memregion_Other;
        case 0x04000000:
            return memregion_IO9;
        case 0x06000000:
            return memregion_VRAM;
        default:
            return memregion_Other;
        }
    }
}

int ClassifyAddress7(u32 addr)
{
    if (NDS::ConsoleType == 1 && addr < 0x00010000 && !(DSi::SCFG_BIOS & (1<<9)))
    {
        if (addr >= 0x00008000 && DSi::SCFG_BIOS & (1<<8))
            return memregion_Other;

        return memregion_BIOS7DSi;
    }
    else if (addr < 0x00004000)
    {
        return memregion_BIOS7;
    }
    else
    {
        switch (addr & 0xFF800000)
        {
        case 0x02000000:
        case 0x02800000:
            return memregion_MainRAM;
        case 0x03000000:
            if (NDS::ConsoleType == 1)
            {
                if (addr >= DSi::NWRAMStart[1][0] && addr < DSi::NWRAMEnd[1][0])
                    return memregion_NewSharedWRAM_A;
                if (addr >= DSi::NWRAMStart[1][1] && addr < DSi::NWRAMEnd[1][1])
                    return memregion_NewSharedWRAM_B;
                if (addr >= DSi::NWRAMStart[1][2] && addr < DSi::NWRAMEnd[1][2])
                    return memregion_NewSharedWRAM_C;
            }

            if (NDS::SWRAM_ARM7.Mem)
                return memregion_SharedWRAM;
            return memregion_WRAM7;
        case 0x03800000:
            return memregion_WRAM7;
        case 0x04000000:
            return memregion_IO7;
        case 0x04800000:
            return memregion_Wifi;
        case 0x06000000:
        case 0x06800000:
            return memregion_VWRAM;

        default:
            return memregion_Other;
        }
    }
}

void WifiWrite32(u32 addr, u32 val)
{
    Wifi::Write(addr, val & 0xFFFF);
    Wifi::Write(addr + 2, val >> 16);
}

u32 WifiRead32(u32 addr)
{
    return (u32)Wifi::Read(addr) | ((u32)Wifi::Read(addr + 2) << 16);
}

template <typename T>
void VRAMWrite(u32 addr, T val)
{
    switch (addr & 0x00E00000)
    {
    case 0x00000000: GPU::WriteVRAM_ABG<T>(addr, val); return;
    case 0x00200000: GPU::WriteVRAM_BBG<T>(addr, val); return;
    case 0x00400000: GPU::WriteVRAM_AOBJ<T>(addr, val); return;
    case 0x00600000: GPU::WriteVRAM_BOBJ<T>(addr, val); return;
    default: GPU::WriteVRAM_LCDC<T>(addr, val); return;
    }
}
template <typename T>
T VRAMRead(u32 addr)
{
    switch (addr & 0x00E00000)
    {
    case 0x00000000: return GPU::ReadVRAM_ABG<T>(addr);
    case 0x00200000: return GPU::ReadVRAM_BBG<T>(addr);
    case 0x00400000: return GPU::ReadVRAM_AOBJ<T>(addr);
    case 0x00600000: return GPU::ReadVRAM_BOBJ<T>(addr);
    default: return GPU::ReadVRAM_LCDC<T>(addr);
    }
}

void* GetFuncForAddr(ARM* cpu, u32 addr, bool store, int size)
{
    if (cpu->Num == 0)
    {
        switch (addr & 0xFF000000)
        {
        case 0x04000000:
            if (!store && size == 32 && addr == 0x04100010 && NDS::ExMemCnt[0] & (1<<11))
                return (void*)NDSCart::ReadROMData;

            /*
                unfortunately we can't map GPU2D this way
                since it's hidden inside an object

                though GPU3D registers are accessed much more intensive
            */
            if (addr >= 0x04000320 && addr < 0x040006A4)
            {
                switch (size | store)
                {
                case 8: return (void*)GPU3D::Read8;		
                case 9: return (void*)GPU3D::Write8;		
                case 16: return (void*)GPU3D::Read16;
                case 17: return (void*)GPU3D::Write16;
                case 32: return (void*)GPU3D::Read32;
                case 33: return (void*)GPU3D::Write32;
                }
            }

            if (NDS::ConsoleType == 0)
            {
                switch (size | store)
                {
                case 8: return (void*)NDS::ARM9IORead8;
                case 9: return (void*)NDS::ARM9IOWrite8;
                case 16: return (void*)NDS::ARM9IORead16;
                case 17: return (void*)NDS::ARM9IOWrite16;
                case 32: return (void*)NDS::ARM9IORead32;
                case 33: return (void*)NDS::ARM9IOWrite32;
                }
            }
            else
            {
                switch (size | store)
                {
                case 8: return (void*)DSi::ARM9IORead8;
                case 9: return (void*)DSi::ARM9IOWrite8;
                case 16: return (void*)DSi::ARM9IORead16;
                case 17: return (void*)DSi::ARM9IOWrite16;
                case 32: return (void*)DSi::ARM9IORead32;
                case 33: return (void*)DSi::ARM9IOWrite32;
                }
            }
            break;
        case 0x06000000:
            switch (size | store)
            {
            case 8: return (void*)VRAMRead<u8>;		
            case 9: return NULL;
            case 16: return (void*)VRAMRead<u16>;
            case 17: return (void*)VRAMWrite<u16>;
            case 32: return (void*)VRAMRead<u32>;
            case 33: return (void*)VRAMWrite<u32>;
            }
            break;
        }
    }
    else
    {
        switch (addr & 0xFF800000)
        {
        case 0x04000000:
            if (addr >= 0x04000400 && addr < 0x04000520)
            {
                switch (size | store)
                {
                case 8: return (void*)SPU::Read8;		
                case 9: return (void*)SPU::Write8;		
                case 16: return (void*)SPU::Read16;
                case 17: return (void*)SPU::Write16;
                case 32: return (void*)SPU::Read32;
                case 33: return (void*)SPU::Write32;
                }
            }

            if (NDS::ConsoleType == 0)
            {
                switch (size | store)
                {
                case 8: return (void*)NDS::ARM7IORead8;
                case 9: return (void*)NDS::ARM7IOWrite8;		
                case 16: return (void*)NDS::ARM7IORead16;
                case 17: return (void*)NDS::ARM7IOWrite16;
                case 32: return (void*)NDS::ARM7IORead32;
                case 33: return (void*)NDS::ARM7IOWrite32;
                }
            }
            else
            {
                switch (size | store)
                {
                case 8: return (void*)DSi::ARM7IORead8;
                case 9: return (void*)DSi::ARM7IOWrite8;		
                case 16: return (void*)DSi::ARM7IORead16;
                case 17: return (void*)DSi::ARM7IOWrite16;
                case 32: return (void*)DSi::ARM7IORead32;
                case 33: return (void*)DSi::ARM7IOWrite32;
                }
            }
            break;
        case 0x04800000:
            if (addr < 0x04810000 && size >= 16)
            {
                switch (size | store)
                {
                case 16: return (void*)Wifi::Read;
                case 17: return (void*)Wifi::Write;
                case 32: return (void*)WifiRead32;
                case 33: return (void*)WifiWrite32;
                }
            }
            break;
        case 0x06000000:
        case 0x06800000:
            switch (size | store)
            {
            case 8: return (void*)GPU::ReadVRAM_ARM7<u8>;
            case 9: return (void*)GPU::WriteVRAM_ARM7<u8>;
            case 16: return (void*)GPU::ReadVRAM_ARM7<u16>;
            case 17: return (void*)GPU::WriteVRAM_ARM7<u16>;
            case 32: return (void*)GPU::ReadVRAM_ARM7<u32>;
            case 33: return (void*)GPU::WriteVRAM_ARM7<u32>;
            }
        }
    }
    return NULL;
}

}