diff options
Diffstat (limited to 'src/dolphin/Arm64Emitter.cpp')
-rw-r--r-- | src/dolphin/Arm64Emitter.cpp | 4466 |
1 files changed, 4466 insertions, 0 deletions
diff --git a/src/dolphin/Arm64Emitter.cpp b/src/dolphin/Arm64Emitter.cpp new file mode 100644 index 0000000..dd2416b --- /dev/null +++ b/src/dolphin/Arm64Emitter.cpp @@ -0,0 +1,4466 @@ +// Copyright 2015 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license.txt file included. + +#include <algorithm> +#include <array> +#include <cinttypes> +#include <cstring> +#include <vector> + +#include "Compat.h" +#include "Align.h" +#include "Arm64Emitter.h" +#include "BitUtils.h" +#include "../types.h" +#include "MathUtil.h" + +namespace Arm64Gen +{ +namespace +{ +const int kWRegSizeInBits = 32; +const int kXRegSizeInBits = 64; + +// The below few functions are taken from V8. +int CountLeadingZeros(uint64_t value, int width) +{ + // TODO(jbramley): Optimize this for ARM64 hosts. + int count = 0; + uint64_t bit_test = 1ULL << (width - 1); + while ((count < width) && ((bit_test & value) == 0)) + { + count++; + bit_test >>= 1; + } + return count; +} + +uint64_t LargestPowerOf2Divisor(uint64_t value) +{ + return value & -(int64_t)value; +} + +// For ADD/SUB +bool IsImmArithmetic(uint64_t input, u32* val, bool* shift) +{ + if (input < 4096) + { + *val = input; + *shift = false; + return true; + } + else if ((input & 0xFFF000) == input) + { + *val = input >> 12; + *shift = true; + return true; + } + return false; +} + +// For AND/TST/ORR/EOR etc +bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s, + unsigned int* imm_r) +{ + // DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); + // DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); + + bool negate = false; + + // Logical immediates are encoded using parameters n, imm_s and imm_r using + // the following table: + // + // N imms immr size S R + // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) + // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) + // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) + // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) + // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) + // 0 11110s xxxxxr 2 UInt(s) UInt(r) + // (s bits must not be all set) + // + // A pattern is constructed of size bits, where the least significant S+1 bits + // are set. The pattern is rotated right by R, and repeated across a 32 or + // 64-bit value, depending on destination register width. + // + // Put another way: the basic format of a logical immediate is a single + // contiguous stretch of 1 bits, repeated across the whole word at intervals + // given by a power of 2. To identify them quickly, we first locate the + // lowest stretch of 1 bits, then the next 1 bit above that; that combination + // is different for every logical immediate, so it gives us all the + // information we need to identify the only logical immediate that our input + // could be, and then we simply check if that's the value we actually have. + // + // (The rotation parameter does give the possibility of the stretch of 1 bits + // going 'round the end' of the word. To deal with that, we observe that in + // any situation where that happens the bitwise NOT of the value is also a + // valid logical immediate. So we simply invert the input whenever its low bit + // is set, and then we know that the rotated case can't arise.) + + if (value & 1) + { + // If the low bit is 1, negate the value, and set a flag to remember that we + // did (so that we can adjust the return values appropriately). + negate = true; + value = ~value; + } + + if (width == kWRegSizeInBits) + { + // To handle 32-bit logical immediates, the very easiest thing is to repeat + // the input value twice to make a 64-bit word. The correct encoding of that + // as a logical immediate will also be the correct encoding of the 32-bit + // value. + + // The most-significant 32 bits may not be zero (ie. negate is true) so + // shift the value left before duplicating it. + value <<= kWRegSizeInBits; + value |= value >> kWRegSizeInBits; + } + + // The basic analysis idea: imagine our input word looks like this. + // + // 0011111000111110001111100011111000111110001111100011111000111110 + // c b a + // |<--d-->| + // + // We find the lowest set bit (as an actual power-of-2 value, not its index) + // and call it a. Then we add a to our original number, which wipes out the + // bottommost stretch of set bits and replaces it with a 1 carried into the + // next zero bit. Then we look for the new lowest set bit, which is in + // position b, and subtract it, so now our number is just like the original + // but with the lowest stretch of set bits completely gone. Now we find the + // lowest set bit again, which is position c in the diagram above. Then we'll + // measure the distance d between bit positions a and c (using CLZ), and that + // tells us that the only valid logical immediate that could possibly be equal + // to this number is the one in which a stretch of bits running from a to just + // below b is replicated every d bits. + uint64_t a = LargestPowerOf2Divisor(value); + uint64_t value_plus_a = value + a; + uint64_t b = LargestPowerOf2Divisor(value_plus_a); + uint64_t value_plus_a_minus_b = value_plus_a - b; + uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b); + + int d, clz_a, out_n; + uint64_t mask; + + if (c != 0) + { + // The general case, in which there is more than one stretch of set bits. + // Compute the repeat distance d, and set up a bitmask covering the basic + // unit of repetition (i.e. a word with the bottom d bits set). Also, in all + // of these cases the N bit of the output will be zero. + clz_a = CountLeadingZeros(a, kXRegSizeInBits); + int clz_c = CountLeadingZeros(c, kXRegSizeInBits); + d = clz_a - clz_c; + mask = ((UINT64_C(1) << d) - 1); + out_n = 0; + } + else + { + // Handle degenerate cases. + // + // If any of those 'find lowest set bit' operations didn't find a set bit at + // all, then the word will have been zero thereafter, so in particular the + // last lowest_set_bit operation will have returned zero. So we can test for + // all the special case conditions in one go by seeing if c is zero. + if (a == 0) + { + // The input was zero (or all 1 bits, which will come to here too after we + // inverted it at the start of the function), for which we just return + // false. + return false; + } + else + { + // Otherwise, if c was zero but a was not, then there's just one stretch + // of set bits in our word, meaning that we have the trivial case of + // d == 64 and only one 'repetition'. Set up all the same variables as in + // the general case above, and set the N bit in the output. + clz_a = CountLeadingZeros(a, kXRegSizeInBits); + d = 64; + mask = ~UINT64_C(0); + out_n = 1; + } + } + + // If the repeat period d is not a power of two, it can't be encoded. + if (!MathUtil::IsPow2<u64>(d)) + return false; + + // If the bit stretch (b - a) does not fit within the mask derived from the + // repeat period, then fail. + if (((b - a) & ~mask) != 0) + return false; + + // The only possible option is b - a repeated every d bits. Now we're going to + // actually construct the valid logical immediate derived from that + // specification, and see if it equals our original input. + // + // To repeat a value every d bits, we multiply it by a number of the form + // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can + // be derived using a table lookup on CLZ(d). + static const std::array<uint64_t, 6> multipliers = {{ + 0x0000000000000001UL, + 0x0000000100000001UL, + 0x0001000100010001UL, + 0x0101010101010101UL, + 0x1111111111111111UL, + 0x5555555555555555UL, + }}; + + int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57; + + // Ensure that the index to the multipliers array is within bounds. + DEBUG_ASSERT((multiplier_idx >= 0) && (static_cast<size_t>(multiplier_idx) < multipliers.size())); + + uint64_t multiplier = multipliers[multiplier_idx]; + uint64_t candidate = (b - a) * multiplier; + + // The candidate pattern doesn't match our input value, so fail. + if (value != candidate) + return false; + + // We have a match! This is a valid logical immediate, so now we have to + // construct the bits and pieces of the instruction encoding that generates + // it. + + // Count the set bits in our basic stretch. The special case of clz(0) == -1 + // makes the answer come out right for stretches that reach the very top of + // the word (e.g. numbers like 0xffffc00000000000). + int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits); + int s = clz_a - clz_b; + + // Decide how many bits to rotate right by, to put the low bit of that basic + // stretch in position a. + int r; + if (negate) + { + // If we inverted the input right at the start of this function, here's + // where we compensate: the number of set bits becomes the number of clear + // bits, and the rotation count is based on position b rather than position + // a (since b is the location of the 'lowest' 1 bit after inversion). + s = d - s; + r = (clz_b + 1) & (d - 1); + } + else + { + r = (clz_a + 1) & (d - 1); + } + + // Now we're done, except for having to encode the S output in such a way that + // it gives both the number of set bits and the length of the repeated + // segment. The s field is encoded like this: + // + // imms size S + // ssssss 64 UInt(ssssss) + // 0sssss 32 UInt(sssss) + // 10ssss 16 UInt(ssss) + // 110sss 8 UInt(sss) + // 1110ss 4 UInt(ss) + // 11110s 2 UInt(s) + // + // So we 'or' (-d << 1) with our computed s to form imms. + *n = out_n; + *imm_s = ((-d << 1) | (s - 1)) & 0x3f; + *imm_r = r; + + return true; +} + +float FPImm8ToFloat(u8 bits) +{ + const u32 sign = bits >> 7; + const u32 bit6 = (bits >> 6) & 1; + const u32 exp = ((!bit6) << 7) | (0x7C * bit6) | ((bits >> 4) & 3); + const u32 mantissa = (bits & 0xF) << 19; + const u32 f = (sign << 31) | (exp << 23) | mantissa; + + return Common::BitCast<float>(f); +} + +bool FPImm8FromFloat(float value, u8* imm_out) +{ + const u32 f = Common::BitCast<u32>(value); + const u32 mantissa4 = (f & 0x7FFFFF) >> 19; + const u32 exponent = (f >> 23) & 0xFF; + const u32 sign = f >> 31; + + if ((exponent >> 7) == ((exponent >> 6) & 1)) + return false; + + const u8 imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4; + const float new_float = FPImm8ToFloat(imm8); + if (new_float == value) + *imm_out = imm8; + else + return false; + + return true; +} +} // Anonymous namespace + +void ARM64XEmitter::SetCodePtrUnsafe(ptrdiff_t ptr) +{ + m_code = ptr; +} + +void ARM64XEmitter::SetCodePtr(ptrdiff_t ptr) +{ + SetCodePtrUnsafe(ptr); + m_lastCacheFlushEnd = ptr; +} + +void ARM64XEmitter::SetCodeBase(u8* rwbase, u8* rxbase) +{ + m_code = 0; + m_lastCacheFlushEnd = 0; + m_rwbase = rwbase; + m_rxbase = rxbase; +} + +ptrdiff_t ARM64XEmitter::GetCodeOffset() +{ + return m_code; +} + +const u8* ARM64XEmitter::GetRWPtr() +{ + return m_rwbase + m_code; +} + +u8* ARM64XEmitter::GetWriteableRWPtr() +{ + return m_rwbase + m_code; +} + +void* ARM64XEmitter::GetRXPtr() +{ + return m_rxbase + m_code; +} + +void ARM64XEmitter::ReserveCodeSpace(u32 bytes) +{ + for (u32 i = 0; i < bytes / 4; i++) + BRK(0); +} + +ptrdiff_t ARM64XEmitter::AlignCode16() +{ + int c = int((u64)m_code & 15); + if (c) + ReserveCodeSpace(16 - c); + return m_code; +} + +ptrdiff_t ARM64XEmitter::AlignCodePage() +{ + int c = int((u64)m_code & 4095); + if (c) + ReserveCodeSpace(4096 - c); + return m_code; +} + +void ARM64XEmitter::Write32(u32 value) +{ + std::memcpy(m_rwbase + m_code, &value, sizeof(u32)); + m_code += sizeof(u32); +} + +void ARM64XEmitter::FlushIcache() +{ + FlushIcacheSection(m_rxbase + m_lastCacheFlushEnd, m_rxbase + m_code); + m_lastCacheFlushEnd = m_code; +} + +void ARM64XEmitter::FlushIcacheSection(u8* start, u8* end) +{ + if (start == end) + return; + +#if defined(IOS) + // Header file says this is equivalent to: sys_icache_invalidate(start, end - start); + sys_cache_control(kCacheFunctionPrepareForExecution, start, end - start); +#else + // Don't rely on GCC's __clear_cache implementation, as it caches + // icache/dcache cache line sizes, that can vary between cores on + // big.LITTLE architectures. + u64 addr, ctr_el0; + static size_t icache_line_size = 0xffff, dcache_line_size = 0xffff; + size_t isize, dsize; + + __asm__ volatile("mrs %0, ctr_el0" : "=r"(ctr_el0)); + isize = 4 << ((ctr_el0 >> 0) & 0xf); + dsize = 4 << ((ctr_el0 >> 16) & 0xf); + + // use the global minimum cache line size + icache_line_size = isize = icache_line_size < isize ? icache_line_size : isize; + dcache_line_size = dsize = dcache_line_size < dsize ? dcache_line_size : dsize; + + addr = (u64)start & ~(u64)(dsize - 1); + for (; addr < (u64)end; addr += dsize) + // use "civac" instead of "cvau", as this is the suggested workaround for + // Cortex-A53 errata 819472, 826319, 827319 and 824069. + __asm__ volatile("dc civac, %0" : : "r"(addr) : "memory"); + __asm__ volatile("dsb ish" : : : "memory"); + + addr = (u64)start & ~(u64)(isize - 1); + for (; addr < (u64)end; addr += isize) + __asm__ volatile("ic ivau, %0" : : "r"(addr) : "memory"); + + __asm__ volatile("dsb ish" : : : "memory"); + __asm__ volatile("isb" : : : "memory"); +#endif +} + +// Exception generation +static const u32 ExcEnc[][3] = { + {0, 0, 1}, // SVC + {0, 0, 2}, // HVC + {0, 0, 3}, // SMC + {1, 0, 0}, // BRK + {2, 0, 0}, // HLT + {5, 0, 1}, // DCPS1 + {5, 0, 2}, // DCPS2 + {5, 0, 3}, // DCPS3 +}; + +// Arithmetic generation +static const u32 ArithEnc[] = { + 0x058, // ADD + 0x258, // SUB +}; + +// Conditional Select +static const u32 CondSelectEnc[][2] = { + {0, 0}, // CSEL + {0, 1}, // CSINC + {1, 0}, // CSINV + {1, 1}, // CSNEG +}; + +// Data-Processing (1 source) +static const u32 Data1SrcEnc[][2] = { + {0, 0}, // RBIT + {0, 1}, // REV16 + {0, 2}, // REV32 + {0, 3}, // REV64 + {0, 4}, // CLZ + {0, 5}, // CLS +}; + +// Data-Processing (2 source) +static const u32 Data2SrcEnc[] = { + 0x02, // UDIV + 0x03, // SDIV + 0x08, // LSLV + 0x09, // LSRV + 0x0A, // ASRV + 0x0B, // RORV + 0x10, // CRC32B + 0x11, // CRC32H + 0x12, // CRC32W + 0x14, // CRC32CB + 0x15, // CRC32CH + 0x16, // CRC32CW + 0x13, // CRC32X (64bit Only) + 0x17, // XRC32CX (64bit Only) +}; + +// Data-Processing (3 source) +static const u32 Data3SrcEnc[][2] = { + {0, 0}, // MADD + {0, 1}, // MSUB + {1, 0}, // SMADDL (64Bit Only) + {1, 1}, // SMSUBL (64Bit Only) + {2, 0}, // SMULH (64Bit Only) + {5, 0}, // UMADDL (64Bit Only) + {5, 1}, // UMSUBL (64Bit Only) + {6, 0}, // UMULH (64Bit Only) +}; + +// Logical (shifted register) +static const u32 LogicalEnc[][2] = { + {0, 0}, // AND + {0, 1}, // BIC + {1, 0}, // OOR + {1, 1}, // ORN + {2, 0}, // EOR + {2, 1}, // EON + {3, 0}, // ANDS + {3, 1}, // BICS +}; + +// Load/Store Exclusive +static const u32 LoadStoreExcEnc[][5] = { + {0, 0, 0, 0, 0}, // STXRB + {0, 0, 0, 0, 1}, // STLXRB + {0, 0, 1, 0, 0}, // LDXRB + {0, 0, 1, 0, 1}, // LDAXRB + {0, 1, 0, 0, 1}, // STLRB + {0, 1, 1, 0, 1}, // LDARB + {1, 0, 0, 0, 0}, // STXRH + {1, 0, 0, 0, 1}, // STLXRH + {1, 0, 1, 0, 0}, // LDXRH + {1, 0, 1, 0, 1}, // LDAXRH + {1, 1, 0, 0, 1}, // STLRH + {1, 1, 1, 0, 1}, // LDARH + {2, 0, 0, 0, 0}, // STXR + {3, 0, 0, 0, 0}, // (64bit) STXR + {2, 0, 0, 0, 1}, // STLXR + {3, 0, 0, 0, 1}, // (64bit) STLXR + {2, 0, 0, 1, 0}, // STXP + {3, 0, 0, 1, 0}, // (64bit) STXP + {2, 0, 0, 1, 1}, // STLXP + {3, 0, 0, 1, 1}, // (64bit) STLXP + {2, 0, 1, 0, 0}, // LDXR + {3, 0, 1, 0, 0}, // (64bit) LDXR + {2, 0, 1, 0, 1}, // LDAXR + {3, 0, 1, 0, 1}, // (64bit) LDAXR + {2, 0, 1, 1, 0}, // LDXP + {3, 0, 1, 1, 0}, // (64bit) LDXP + {2, 0, 1, 1, 1}, // LDAXP + {3, 0, 1, 1, 1}, // (64bit) LDAXP + {2, 1, 0, 0, 1}, // STLR + {3, 1, 0, 0, 1}, // (64bit) STLR + {2, 1, 1, 0, 1}, // LDAR + {3, 1, 1, 0, 1}, // (64bit) LDAR +}; + +void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr) +{ + bool b64Bit = Is64Bit(Rt); + s64 distance = (s64)ptr - (s64)(m_rxbase + m_code); + + ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64, + __func__, distance); + + distance >>= 2; + + ASSERT_MSG(DYNA_REC, distance >= -0x40000 && distance <= 0x3FFFF, + "%s: Received too large distance: %" PRIx64, __func__, distance); + + Rt = DecodeReg(Rt); + Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | (((u32)distance << 5) & 0xFFFFE0) | Rt); +} + +void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr) +{ + bool b64Bit = Is64Bit(Rt); + s64 distance = (s64)ptr - (s64)(m_rxbase + m_code); + + ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64, + __func__, distance); + + distance >>= 2; + + ASSERT_MSG(DYNA_REC, distance >= -0x3FFF && distance < 0x3FFF, + "%s: Received too large distance: %" PRIx64, __func__, distance); + + Rt = DecodeReg(Rt); + Write32((b64Bit << 31) | (0x36 << 24) | (op << 24) | (bits << 19) | + (((u32)distance << 5) & 0x7FFE0) | Rt); +} + +void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 op, const void* ptr) +{ + s64 distance = (s64)ptr - s64(m_rxbase + m_code); + + ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64, + __func__, distance); + + distance >>= 2; + + ASSERT_MSG(DYNA_REC, distance >= -0x2000000LL && distance <= 0x1FFFFFFLL, + "%s: Received too large distance: %" PRIx64, __func__, distance); + + Write32((op << 31) | (0x5 << 26) | (distance & 0x3FFFFFF)); +} + +void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn) +{ + Rn = DecodeReg(Rn); + Write32((0x6B << 25) | (opc << 21) | (op2 << 16) | (op3 << 10) | (Rn << 5) | op4); +} + +void ARM64XEmitter::EncodeExceptionInst(u32 instenc, u32 imm) +{ + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFFF), "%s: Exception instruction too large immediate: %d", + __func__, imm); + + Write32((0xD4 << 24) | (ExcEnc[instenc][0] << 21) | (imm << 5) | (ExcEnc[instenc][1] << 2) | + ExcEnc[instenc][2]); +} + +void ARM64XEmitter::EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt) +{ + Write32((0x354 << 22) | (op0 << 19) | (op1 << 16) | (CRn << 12) | (CRm << 8) | (op2 << 5) | Rt); +} + +void ARM64XEmitter::EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, + ARM64Reg Rm, ArithOption Option) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + Write32((b64Bit << 31) | (flags << 29) | (ArithEnc[instenc] << 21) | + (Option.GetType() == ArithOption::TYPE_EXTENDEDREG ? (1 << 21) : 0) | (Rm << 16) | + Option.GetData() | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, + ARM64Reg Rm) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rm = DecodeReg(Rm); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0xD0 << 21) | (Rm << 16) | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) +{ + bool b64Bit = Is64Bit(Rn); + + ASSERT_MSG(DYNA_REC, !(imm & ~0x1F), "%s: too large immediate: %d", __func__, imm); + ASSERT_MSG(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __func__, nzcv); + + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | (imm << 16) | (cond << 12) | + (1 << 11) | (Rn << 5) | nzcv); +} + +void ARM64XEmitter::EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, + CCFlags cond) +{ + bool b64Bit = Is64Bit(Rm); + + ASSERT_MSG(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __func__, nzcv); + + Rm = DecodeReg(Rm); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | (Rm << 16) | (cond << 12) | + (Rn << 5) | nzcv); +} + +void ARM64XEmitter::EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, + CCFlags cond) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rm = DecodeReg(Rm); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (CondSelectEnc[instenc][0] << 30) | (0xD4 << 21) | (Rm << 16) | + (cond << 12) | (CondSelectEnc[instenc][1] << 10) | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (0x2D6 << 21) | (Data1SrcEnc[instenc][0] << 16) | + (Data1SrcEnc[instenc][1] << 10) | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rm = DecodeReg(Rm); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (0x0D6 << 21) | (Rm << 16) | (Data2SrcEnc[instenc] << 10) | (Rn << 5) | + Rd); +} + +void ARM64XEmitter::EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, + ARM64Reg Ra) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rm = DecodeReg(Rm); + Rn = DecodeReg(Rn); + Ra = DecodeReg(Ra); + Write32((b64Bit << 31) | (0xD8 << 21) | (Data3SrcEnc[instenc][0] << 21) | (Rm << 16) | + (Data3SrcEnc[instenc][1] << 15) | (Ra << 10) | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, + ArithOption Shift) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rm = DecodeReg(Rm); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (LogicalEnc[instenc][0] << 29) | (0x5 << 25) | + (LogicalEnc[instenc][1] << 21) | Shift.GetData() | (Rm << 16) | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm) +{ + bool b64Bit = Is64Bit(Rt); + bool bVec = IsVector(Rt); + + ASSERT_MSG(DYNA_REC, !(imm & 0xFFFFF), "%s: offset too large %d", __func__, imm); + + Rt = DecodeReg(Rt); + if (b64Bit && bitop != 0x2) // LDRSW(0x2) uses 64bit reg, doesn't have 64bit bit set + bitop |= 0x1; + Write32((bitop << 30) | (bVec << 26) | (0x18 << 24) | (imm << 5) | Rt); +} + +void ARM64XEmitter::EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, + ARM64Reg Rt) +{ + Rs = DecodeReg(Rs); + Rt2 = DecodeReg(Rt2); + Rn = DecodeReg(Rn); + Rt = DecodeReg(Rt); + Write32((LoadStoreExcEnc[instenc][0] << 30) | (0x8 << 24) | (LoadStoreExcEnc[instenc][1] << 23) | + (LoadStoreExcEnc[instenc][2] << 22) | (LoadStoreExcEnc[instenc][3] << 21) | (Rs << 16) | + (LoadStoreExcEnc[instenc][4] << 15) | (Rt2 << 10) | (Rn << 5) | Rt); +} + +void ARM64XEmitter::EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, + u32 imm) +{ + bool b64Bit = Is64Bit(Rt); + bool b128Bit = IsQuad(Rt); + bool bVec = IsVector(Rt); + + if (b128Bit) + imm >>= 4; + else if (b64Bit) + imm >>= 3; + else + imm >>= 2; + + ASSERT_MSG(DYNA_REC, !(imm & ~0xF), "%s: offset too large %d", __func__, imm); + + u32 opc = 0; + if (b128Bit) + opc = 2; + else if (b64Bit && bVec) + opc = 1; + else if (b64Bit && !bVec) + opc = 2; + + Rt = DecodeReg(Rt); + Rt2 = DecodeReg(Rt2); + Rn = DecodeReg(Rn); + Write32((opc << 30) | (bVec << 26) | (op << 22) | (imm << 15) | (Rt2 << 10) | (Rn << 5) | Rt); +} + +void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + bool b64Bit = Is64Bit(Rt); + bool bVec = IsVector(Rt); + + u32 offset = imm & 0x1FF; + + ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s: offset too large %d", __func__, imm); + + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (offset << 12) | (op2 << 10) | (Rn << 5) | + Rt); +} + +void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size) +{ + bool b64Bit = Is64Bit(Rt); + bool bVec = IsVector(Rt); + + if (size == 64) + imm >>= 3; + else if (size == 32) + imm >>= 2; + else if (size == 16) + imm >>= 1; + + ASSERT_MSG(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED): offset must be positive %d", __func__, imm); + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFF), "%s(INDEX_UNSIGNED): offset too large %d", __func__, imm); + + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (imm << 10) | (Rn << 5) | Rt); +} + +void ARM64XEmitter::EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos) +{ + bool b64Bit = Is64Bit(Rd); + + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFFF), "%s: immediate out of range: %d", __func__, imm); + + Rd = DecodeReg(Rd); + Write32((b64Bit << 31) | (op << 29) | (0x25 << 23) | (pos << 21) | (imm << 5) | Rd); +} + +void ARM64XEmitter::EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) +{ + bool b64Bit = Is64Bit(Rd); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (op << 29) | (0x26 << 23) | (b64Bit << 22) | (immr << 16) | + (imms << 10) | (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, + ArithOption Rm) +{ + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + ARM64Reg decoded_Rm = DecodeReg(Rm.GetReg()); + + Write32((size << 30) | (opc << 22) | (0x1C1 << 21) | (decoded_Rm << 16) | Rm.GetData() | + (1 << 11) | (Rn << 5) | Rt); +} + +void ARM64XEmitter::EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, + ARM64Reg Rd) +{ + bool b64Bit = Is64Bit(Rd); + + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFF), "%s: immediate too large: %x", __func__, imm); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0x11 << 24) | (shift << 22) | (imm << 10) | + (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, + int n) +{ + // Sometimes Rd is fixed to SP, but can still be 32bit or 64bit. + // Use Rn to determine bitness here. + bool b64Bit = Is64Bit(Rn); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (n << 22) | (immr << 16) | (imms << 10) | + (Rn << 5) | Rd); +} + +void ARM64XEmitter::EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, + ARM64Reg Rn, s32 imm) +{ + bool b64Bit = Is64Bit(Rt); + u32 type_encode = 0; + + switch (type) + { + case INDEX_SIGNED: + type_encode = 0b010; + break; + case INDEX_POST: + type_encode = 0b001; + break; + case INDEX_PRE: + type_encode = 0b011; + break; + case INDEX_UNSIGNED: + ASSERT_MSG(DYNA_REC, false, "%s doesn't support INDEX_UNSIGNED!", __func__); + break; + } + + if (b64Bit) + { + op |= 0b10; + imm >>= 3; + } + else + { + imm >>= 2; + } + + Rt = DecodeReg(Rt); + Rt2 = DecodeReg(Rt2); + Rn = DecodeReg(Rn); + + Write32((op << 30) | (0b101 << 27) | (type_encode << 23) | (load << 22) | ((imm & 0x7F) << 15) | + (Rt2 << 10) | (Rn << 5) | Rt); +} +void ARM64XEmitter::EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm) +{ + Rd = DecodeReg(Rd); + + Write32((op << 31) | ((imm & 0x3) << 29) | (0x10 << 24) | ((imm & 0x1FFFFC) << 3) | Rd); +} + +void ARM64XEmitter::EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __func__, + imm); + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + + Write32((size << 30) | (0b111 << 27) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt); +} + +static constexpr bool IsInRangeImm19(s64 distance) +{ + return (distance >= -0x40000 && distance <= 0x3FFFF); +} + +static constexpr bool IsInRangeImm14(s64 distance) +{ + return (distance >= -0x2000 && distance <= 0x1FFF); +} + +static constexpr bool IsInRangeImm26(s64 distance) +{ + return (distance >= -0x2000000 && distance <= 0x1FFFFFF); +} + +static constexpr u32 MaskImm19(s64 distance) +{ + return distance & 0x7FFFF; +} + +static constexpr u32 MaskImm14(s64 distance) +{ + return distance & 0x3FFF; +} + +static constexpr u32 MaskImm26(s64 distance) +{ + return distance & 0x3FFFFFF; +} + +// FixupBranch branching +void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch) +{ + bool Not = false; + u32 inst = 0; + s64 distance = (s64)(m_code - branch.ptr); + distance >>= 2; + + switch (branch.type) + { + case 1: // CBNZ + Not = true; + case 0: // CBZ + { + ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %" PRIx64, + __func__, branch.type, distance); + bool b64Bit = Is64Bit(branch.reg); + ARM64Reg reg = DecodeReg(branch.reg); + inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | (MaskImm19(distance) << 5) | reg; + } + break; + case 2: // B (conditional) + ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %" PRIx64, + __func__, branch.type, distance); + inst = (0x2A << 25) | (MaskImm19(distance) << 5) | branch.cond; + break; + case 4: // TBNZ + Not = true; + case 3: // TBZ + { + ASSERT_MSG(DYNA_REC, IsInRangeImm14(distance), "%s(%d): Received too large distance: %" PRIx64, + __func__, branch.type, distance); + ARM64Reg reg = DecodeReg(branch.reg); + inst = ((branch.bit & 0x20) << 26) | (0x1B << 25) | (Not << 24) | ((branch.bit & 0x1F) << 19) | + (MaskImm14(distance) << 5) | reg; + } + break; + case 5: // B (uncoditional) + ASSERT_MSG(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %" PRIx64, + __func__, branch.type, distance); + inst = (0x5 << 26) | MaskImm26(distance); + break; + case 6: // BL (unconditional) + ASSERT_MSG(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %" PRIx64, + __func__, branch.type, distance); + inst = (0x25 << 26) | MaskImm26(distance); + break; + } + + std::memcpy(m_rwbase + branch.ptr, &inst, sizeof(inst)); +} + +FixupBranch ARM64XEmitter::CBZ(ARM64Reg Rt) +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 0; + branch.reg = Rt; + HINT(HINT_NOP); + return branch; +} +FixupBranch ARM64XEmitter::CBNZ(ARM64Reg Rt) +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 1; + branch.reg = Rt; + HINT(HINT_NOP); + return branch; +} +FixupBranch ARM64XEmitter::B(CCFlags cond) +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 2; + branch.cond = cond; + HINT(HINT_NOP); + return branch; +} +FixupBranch ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bit) +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 3; + branch.reg = Rt; + branch.bit = bit; + HINT(HINT_NOP); + return branch; +} +FixupBranch ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bit) +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 4; + branch.reg = Rt; + branch.bit = bit; + HINT(HINT_NOP); + return branch; +} +FixupBranch ARM64XEmitter::B() +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 5; + HINT(HINT_NOP); + return branch; +} +FixupBranch ARM64XEmitter::BL() +{ + FixupBranch branch; + branch.ptr = m_code; + branch.type = 6; + HINT(HINT_NOP); + return branch; +} + +// Compare and Branch +void ARM64XEmitter::CBZ(ARM64Reg Rt, const void* ptr) +{ + EncodeCompareBranchInst(0, Rt, ptr); +} +void ARM64XEmitter::CBNZ(ARM64Reg Rt, const void* ptr) +{ + EncodeCompareBranchInst(1, Rt, ptr); +} + +// Conditional Branch +void ARM64XEmitter::B(CCFlags cond, const void* ptr) +{ + s64 distance = (s64)ptr - (s64)(m_rxbase + m_code); + + distance >>= 2; + + ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), + "%s: Received too large distance: %p->%p %" PRIi64 " %" PRIx64, __func__, m_execcode, ptr, + distance, distance); + Write32((0x54 << 24) | (MaskImm19(distance) << 5) | cond); +} + +// Test and Branch +void ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bits, const void* ptr) +{ + EncodeTestBranchInst(0, Rt, bits, ptr); +} +void ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bits, const void* ptr) +{ + EncodeTestBranchInst(1, Rt, bits, ptr); +} + +// Unconditional Branch +void ARM64XEmitter::B(const void* ptr) +{ + EncodeUnconditionalBranchInst(0, ptr); +} +void ARM64XEmitter::BL(const void* ptr) +{ + EncodeUnconditionalBranchInst(1, ptr); +} + +void ARM64XEmitter::QuickCallFunction(ARM64Reg scratchreg, const void* func) +{ + s64 distance = (s64)func - (s64)(m_rxbase + m_code); + distance >>= 2; // Can only branch to opcode-aligned (4) addresses + if (!IsInRangeImm26(distance)) + { + // WARN_LOG(DYNA_REC, "Distance too far in function call (%p to %p)! Using scratch.", m_code, + // func); + MOVI2R(scratchreg, (uintptr_t)func); + BLR(scratchreg); + } + else + { + BL(func); + } +} + +void ARM64XEmitter::QuickTailCall(ARM64Reg scratchreg, const void* func) +{ + s64 distance = (s64)func - (s64)(m_rxbase + m_code); + distance >>= 2; // Can only branch to opcode-aligned (4) addresses + if (!IsInRangeImm26(distance)) + { + // WARN_LOG(DYNA_REC, "Distance too far in function call (%p to %p)! Using scratch.", m_code, + // func); + MOVI2R(scratchreg, (uintptr_t)func); + BR(scratchreg); + } + else + { + B(func); + } +} + +// Unconditional Branch (register) +void ARM64XEmitter::BR(ARM64Reg Rn) +{ + EncodeUnconditionalBranchInst(0, 0x1F, 0, 0, Rn); +} +void ARM64XEmitter::BLR(ARM64Reg Rn) +{ + EncodeUnconditionalBranchInst(1, 0x1F, 0, 0, Rn); +} +void ARM64XEmitter::RET(ARM64Reg Rn) +{ + EncodeUnconditionalBranchInst(2, 0x1F, 0, 0, Rn); +} +void ARM64XEmitter::ERET() +{ + EncodeUnconditionalBranchInst(4, 0x1F, 0, 0, SP); +} +void ARM64XEmitter::DRPS() +{ + EncodeUnconditionalBranchInst(5, 0x1F, 0, 0, SP); +} + +// Exception generation +void ARM64XEmitter::SVC(u32 imm) +{ + EncodeExceptionInst(0, imm); +} + +void ARM64XEmitter::HVC(u32 imm) +{ + EncodeExceptionInst(1, imm); +} + +void ARM64XEmitter::SMC(u32 imm) +{ + EncodeExceptionInst(2, imm); +} + +void ARM64XEmitter::BRK(u32 imm) +{ + EncodeExceptionInst(3, imm); +} + +void ARM64XEmitter::HLT(u32 imm) +{ + EncodeExceptionInst(4, imm); +} + +void ARM64XEmitter::DCPS1(u32 imm) +{ + EncodeExceptionInst(5, imm); +} + +void ARM64XEmitter::DCPS2(u32 imm) +{ + EncodeExceptionInst(6, imm); +} + +void ARM64XEmitter::DCPS3(u32 imm) +{ + EncodeExceptionInst(7, imm); +} + +// System +void ARM64XEmitter::_MSR(PStateField field, u8 imm) +{ + u32 op1 = 0, op2 = 0; + switch (field) + { + case FIELD_SPSel: + op1 = 0; + op2 = 5; + break; + case FIELD_DAIFSet: + op1 = 3; + op2 = 6; + break; + case FIELD_DAIFClr: + op1 = 3; + op2 = 7; + break; + default: + ASSERT_MSG(DYNA_REC, false, "Invalid PStateField to do a imm move to"); + break; + } + EncodeSystemInst(0, op1, 4, imm, op2, WSP); +} + +static void GetSystemReg(PStateField field, int& o0, int& op1, int& CRn, int& CRm, int& op2) +{ + switch (field) + { + case FIELD_NZCV: + o0 = 3; + op1 = 3; + CRn = 4; + CRm = 2; + op2 = 0; + break; + case FIELD_FPCR: + o0 = 3; + op1 = 3; + CRn = 4; + CRm = 4; + op2 = 0; + break; + case FIELD_FPSR: + o0 = 3; + op1 = 3; + CRn = 4; + CRm = 4; + op2 = 1; + break; + case FIELD_PMCR_EL0: + o0 = 3; + op1 = 3; + CRn = 9; + CRm = 6; + op2 = 0; + break; + case FIELD_PMCCNTR_EL0: + o0 = 3; + op1 = 3; + CRn = 9; + CRm = 7; + op2 = 0; + break; + default: + ASSERT_MSG(DYNA_REC, false, "Invalid PStateField to do a register move from/to"); + break; + } +} + +void ARM64XEmitter::_MSR(PStateField field, ARM64Reg Rt) +{ + int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0; + ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "MSR: Rt must be 64-bit"); + GetSystemReg(field, o0, op1, CRn, CRm, op2); + EncodeSystemInst(o0, op1, CRn, CRm, op2, DecodeReg(Rt)); +} + +void ARM64XEmitter::MRS(ARM64Reg Rt, PStateField field) +{ + int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0; + ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "MRS: Rt must be 64-bit"); + GetSystemReg(field, o0, op1, CRn, CRm, op2); + EncodeSystemInst(o0 | 4, op1, CRn, CRm, op2, DecodeReg(Rt)); +} + +void ARM64XEmitter::CNTVCT(Arm64Gen::ARM64Reg Rt) +{ + ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "CNTVCT: Rt must be 64-bit"); + + // MRS <Xt>, CNTVCT_EL0 ; Read CNTVCT_EL0 into Xt + EncodeSystemInst(3 | 4, 3, 0xe, 0, 2, DecodeReg(Rt)); +} + +void ARM64XEmitter::HINT(SystemHint op) +{ + EncodeSystemInst(0, 3, 2, 0, op, WSP); +} +void ARM64XEmitter::CLREX() +{ + EncodeSystemInst(0, 3, 3, 0, 2, WSP); +} +void ARM64XEmitter::DSB(BarrierType type) +{ + EncodeSystemInst(0, 3, 3, type, 4, WSP); +} +void ARM64XEmitter::DMB(BarrierType type) +{ + EncodeSystemInst(0, 3, 3, type, 5, WSP); +} +void ARM64XEmitter::ISB(BarrierType type) +{ + EncodeSystemInst(0, 3, 3, type, 6, WSP); +} + +// Add/Subtract (extended register) +void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + ADD(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); +} + +void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) +{ + EncodeArithmeticInst(0, false, Rd, Rn, Rm, Option); +} + +void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeArithmeticInst(0, true, Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); +} + +void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) +{ + EncodeArithmeticInst(0, true, Rd, Rn, Rm, Option); +} + +void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + SUB(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); +} + +void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) +{ + EncodeArithmeticInst(1, false, Rd, Rn, Rm, Option); +} + +void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeArithmeticInst(1, true, Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); +} + +void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) +{ + EncodeArithmeticInst(1, true, Rd, Rn, Rm, Option); +} + +void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm) +{ + CMN(Rn, Rm, ArithOption(Rn, ST_LSL, 0)); +} + +void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) +{ + EncodeArithmeticInst(0, true, Is64Bit(Rn) ? ZR : WZR, Rn, Rm, Option); +} + +void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm) +{ + CMP(Rn, Rm, ArithOption(Rn, ST_LSL, 0)); +} + +void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) +{ + EncodeArithmeticInst(1, true, Is64Bit(Rn) ? ZR : WZR, Rn, Rm, Option); +} + +// Add/Subtract (with carry) +void ARM64XEmitter::ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeArithmeticCarryInst(0, false, Rd, Rn, Rm); +} +void ARM64XEmitter::ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeArithmeticCarryInst(0, true, Rd, Rn, Rm); +} +void ARM64XEmitter::SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeArithmeticCarryInst(1, false, Rd, Rn, Rm); +} +void ARM64XEmitter::SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeArithmeticCarryInst(1, true, Rd, Rn, Rm); +} + +// Conditional Compare (immediate) +void ARM64XEmitter::CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) +{ + EncodeCondCompareImmInst(0, Rn, imm, nzcv, cond); +} +void ARM64XEmitter::CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) +{ + EncodeCondCompareImmInst(1, Rn, imm, nzcv, cond); +} + +// Conditiona Compare (register) +void ARM64XEmitter::CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) +{ + EncodeCondCompareRegInst(0, Rn, Rm, nzcv, cond); +} +void ARM64XEmitter::CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) +{ + EncodeCondCompareRegInst(1, Rn, Rm, nzcv, cond); +} + +// Conditional Select +void ARM64XEmitter::CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) +{ + EncodeCondSelectInst(0, Rd, Rn, Rm, cond); +} +void ARM64XEmitter::CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) +{ + EncodeCondSelectInst(1, Rd, Rn, Rm, cond); +} +void ARM64XEmitter::CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) +{ + EncodeCondSelectInst(2, Rd, Rn, Rm, cond); +} +void ARM64XEmitter::CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) +{ + EncodeCondSelectInst(3, Rd, Rn, Rm, cond); +} + +// Data-Processing 1 source +void ARM64XEmitter::RBIT(ARM64Reg Rd, ARM64Reg Rn) +{ + EncodeData1SrcInst(0, Rd, Rn); +} +void ARM64XEmitter::REV16(ARM64Reg Rd, ARM64Reg Rn) +{ + EncodeData1SrcInst(1, Rd, Rn); +} +void ARM64XEmitter::REV32(ARM64Reg Rd, ARM64Reg Rn) +{ + EncodeData1SrcInst(2, Rd, Rn); +} +void ARM64XEmitter::REV64(ARM64Reg Rd, ARM64Reg Rn) +{ + EncodeData1SrcInst(3, Rd, Rn); +} +void ARM64XEmitter::CLZ(ARM64Reg Rd, ARM64Reg Rn) +{ + EncodeData1SrcInst(4, Rd, Rn); +} +void ARM64XEmitter::CLS(ARM64Reg Rd, ARM64Reg Rn) +{ + EncodeData1SrcInst(5, Rd, Rn); +} + +// Data-Processing 2 source +void ARM64XEmitter::UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(0, Rd, Rn, Rm); +} +void ARM64XEmitter::SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(1, Rd, Rn, Rm); +} +void ARM64XEmitter::LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(2, Rd, Rn, Rm); +} +void ARM64XEmitter::LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(3, Rd, Rn, Rm); +} +void ARM64XEmitter::ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(4, Rd, Rn, Rm); +} +void ARM64XEmitter::RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(5, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(6, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(7, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(8, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(9, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(10, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(11, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(12, Rd, Rn, Rm); +} +void ARM64XEmitter::CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData2SrcInst(13, Rd, Rn, Rm); +} + +// Data-Processing 3 source +void ARM64XEmitter::MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EncodeData3SrcInst(0, Rd, Rn, Rm, Ra); +} +void ARM64XEmitter::MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EncodeData3SrcInst(1, Rd, Rn, Rm, Ra); +} +void ARM64XEmitter::SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EncodeData3SrcInst(2, Rd, Rn, Rm, Ra); +} +void ARM64XEmitter::SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + SMADDL(Rd, Rn, Rm, SP); +} +void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EncodeData3SrcInst(3, Rd, Rn, Rm, Ra); +} +void ARM64XEmitter::SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData3SrcInst(4, Rd, Rn, Rm, SP); +} +void ARM64XEmitter::UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EncodeData3SrcInst(5, Rd, Rn, Rm, Ra); +} +void ARM64XEmitter::UMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + UMADDL(Rd, Rn, Rm, SP); +} +void ARM64XEmitter::UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EncodeData3SrcInst(6, Rd, Rn, Rm, Ra); +} +void ARM64XEmitter::UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData3SrcInst(7, Rd, Rn, Rm, SP); +} +void ARM64XEmitter::MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData3SrcInst(0, Rd, Rn, Rm, SP); +} +void ARM64XEmitter::MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EncodeData3SrcInst(1, Rd, Rn, Rm, SP); +} + +// Logical (shifted register) +void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(0, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(1, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(2, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(3, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(4, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(5, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(6, Rd, Rn, Rm, Shift); +} +void ARM64XEmitter::BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) +{ + EncodeLogicalInst(7, Rd, Rn, Rm, Shift); +} + +void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift) +{ + ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, Shift); +} + +void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm) +{ + if (IsGPR(Rd) && IsGPR(Rm)) + ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, 0)); + else + ASSERT_MSG(DYNA_REC, false, "Non-GPRs not supported in MOV"); +} +void ARM64XEmitter::MVN(ARM64Reg Rd, ARM64Reg Rm) +{ + ORN(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, 0)); +} +void ARM64XEmitter::LSL(ARM64Reg Rd, ARM64Reg Rm, int shift) +{ + int bits = Is64Bit(Rd) ? 64 : 32; + UBFM(Rd, Rm, (bits - shift) & (bits - 1), bits - shift - 1); +} +void ARM64XEmitter::LSR(ARM64Reg Rd, ARM64Reg Rm, int shift) +{ + int bits = Is64Bit(Rd) ? 64 : 32; + UBFM(Rd, Rm, shift, bits - 1); +} +void ARM64XEmitter::ASR(ARM64Reg Rd, ARM64Reg Rm, int shift) +{ + int bits = Is64Bit(Rd) ? 64 : 32; + SBFM(Rd, Rm, shift, bits - 1); +} +void ARM64XEmitter::ROR_(ARM64Reg Rd, ARM64Reg Rm, int shift) +{ + EXTR(Rd, Rm, Rm, shift); +} + +// Logical (immediate) +void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) +{ + EncodeLogicalImmInst(0, Rd, Rn, immr, imms, invert); +} +void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) +{ + EncodeLogicalImmInst(3, Rd, Rn, immr, imms, invert); +} +void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) +{ + EncodeLogicalImmInst(2, Rd, Rn, immr, imms, invert); +} +void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) +{ + EncodeLogicalImmInst(1, Rd, Rn, immr, imms, invert); +} +void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert) +{ + EncodeLogicalImmInst(3, Is64Bit(Rn) ? ZR : WZR, Rn, immr, imms, invert); +} + +// Add/subtract (immediate) +void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) +{ + EncodeAddSubImmInst(0, false, shift, imm, Rn, Rd); +} +void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) +{ + EncodeAddSubImmInst(0, true, shift, imm, Rn, Rd); +} +void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) +{ + EncodeAddSubImmInst(1, false, shift, imm, Rn, Rd); +} +void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) +{ + EncodeAddSubImmInst(1, true, shift, imm, Rn, Rd); +} +void ARM64XEmitter::CMP(ARM64Reg Rn, u32 imm, bool shift) +{ + EncodeAddSubImmInst(1, true, shift, imm, Rn, Is64Bit(Rn) ? SP : WSP); +} + +// Data Processing (Immediate) +void ARM64XEmitter::MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos) +{ + EncodeMOVWideInst(2, Rd, imm, pos); +} +void ARM64XEmitter::MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos) +{ + EncodeMOVWideInst(0, Rd, imm, pos); +} +void ARM64XEmitter::MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos) +{ + EncodeMOVWideInst(3, Rd, imm, pos); +} + +// Bitfield move +void ARM64XEmitter::BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) +{ + EncodeBitfieldMOVInst(1, Rd, Rn, immr, imms); +} +void ARM64XEmitter::SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) +{ + EncodeBitfieldMOVInst(0, Rd, Rn, immr, imms); +} +void ARM64XEmitter::UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) +{ + EncodeBitfieldMOVInst(2, Rd, Rn, immr, imms); +} + +void ARM64XEmitter::BFI(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width) +{ + u32 size = Is64Bit(Rn) ? 64 : 32; + ASSERT_MSG(DYNA_REC, (lsb + width) <= size, + "%s passed lsb %d and width %d which is greater than the register size!", __func__, + lsb, width); + EncodeBitfieldMOVInst(1, Rd, Rn, (size - lsb) % size, width - 1); +} +void ARM64XEmitter::UBFIZ(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width) +{ + u32 size = Is64Bit(Rn) ? 64 : 32; + ASSERT_MSG(DYNA_REC, (lsb + width) <= size, + "%s passed lsb %d and width %d which is greater than the register size!", __func__, + lsb, width); + EncodeBitfieldMOVInst(2, Rd, Rn, (size - lsb) % size, width - 1); +} +void ARM64XEmitter::EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift) +{ + bool sf = Is64Bit(Rd); + bool N = sf; + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + Write32((sf << 31) | (0x27 << 23) | (N << 22) | (Rm << 16) | (shift << 10) | (Rm << 5) | Rd); +} +void ARM64XEmitter::SXTB(ARM64Reg Rd, ARM64Reg Rn) +{ + SBFM(Rd, Rn, 0, 7); +} +void ARM64XEmitter::SXTH(ARM64Reg Rd, ARM64Reg Rn) +{ + SBFM(Rd, Rn, 0, 15); +} +void ARM64XEmitter::SXTW(ARM64Reg Rd, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, Is64Bit(Rd), "%s requires 64bit register as destination", __func__); + SBFM(Rd, Rn, 0, 31); +} +void ARM64XEmitter::UXTB(ARM64Reg Rd, ARM64Reg Rn) +{ + UBFM(Rd, Rn, 0, 7); +} +void ARM64XEmitter::UXTH(ARM64Reg Rd, ARM64Reg Rn) +{ + UBFM(Rd, Rn, 0, 15); +} + +// Load Register (Literal) +void ARM64XEmitter::LDR(ARM64Reg Rt, u32 imm) +{ + EncodeLoadRegisterInst(0, Rt, imm); +} +void ARM64XEmitter::LDRSW(ARM64Reg Rt, u32 imm) +{ + EncodeLoadRegisterInst(2, Rt, imm); +} +void ARM64XEmitter::PRFM(ARM64Reg Rt, u32 imm) +{ + EncodeLoadRegisterInst(3, Rt, imm); +} + +// Load/Store pair +void ARM64XEmitter::LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStorePair(0, 1, type, Rt, Rt2, Rn, imm); +} +void ARM64XEmitter::LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStorePair(1, 1, type, Rt, Rt2, Rn, imm); +} +void ARM64XEmitter::STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStorePair(0, 0, type, Rt, Rt2, Rn, imm); +} + +// Load/Store Exclusive +void ARM64XEmitter::STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(0, Rs, SP, Rt, Rn); +} +void ARM64XEmitter::STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(1, Rs, SP, Rt, Rn); +} +void ARM64XEmitter::LDXRB(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(2, SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDAXRB(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(3, SP, SP, Rt, Rn); +} +void ARM64XEmitter::STLRB(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(4, SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDARB(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(5, SP, SP, Rt, Rn); +} +void ARM64XEmitter::STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(6, Rs, SP, Rt, Rn); +} +void ARM64XEmitter::STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(7, Rs, SP, Rt, Rn); +} +void ARM64XEmitter::LDXRH(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(8, SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDAXRH(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(9, SP, SP, Rt, Rn); +} +void ARM64XEmitter::STLRH(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(10, SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDARH(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(11, SP, SP, Rt, Rn); +} +void ARM64XEmitter::STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(12 + Is64Bit(Rt), Rs, SP, Rt, Rn); +} +void ARM64XEmitter::STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(14 + Is64Bit(Rt), Rs, SP, Rt, Rn); +} +void ARM64XEmitter::STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(16 + Is64Bit(Rt), Rs, Rt2, Rt, Rn); +} +void ARM64XEmitter::STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(18 + Is64Bit(Rt), Rs, Rt2, Rt, Rn); +} +void ARM64XEmitter::LDXR(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(20 + Is64Bit(Rt), SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDAXR(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(22 + Is64Bit(Rt), SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(24 + Is64Bit(Rt), SP, Rt2, Rt, Rn); +} +void ARM64XEmitter::LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(26 + Is64Bit(Rt), SP, Rt2, Rt, Rn); +} +void ARM64XEmitter::STLR(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(28 + Is64Bit(Rt), SP, SP, Rt, Rn); +} +void ARM64XEmitter::LDAR(ARM64Reg Rt, ARM64Reg Rn) +{ + EncodeLoadStoreExcInst(30 + Is64Bit(Rt), SP, SP, Rt, Rn); +} + +// Load/Store no-allocate pair (offset) +void ARM64XEmitter::STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) +{ + EncodeLoadStorePairedInst(0xA0, Rt, Rt2, Rn, imm); +} +void ARM64XEmitter::LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) +{ + EncodeLoadStorePairedInst(0xA1, Rt, Rt2, Rn, imm); +} + +// Load/Store register (immediate post-indexed) +// XXX: Most of these support vectors +void ARM64XEmitter::STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(0x0E4, Rt, Rn, imm, 8); + else + EncodeLoadStoreIndexedInst(0x0E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); +} +void ARM64XEmitter::LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(0x0E5, Rt, Rn, imm, 8); + else + EncodeLoadStoreIndexedInst(0x0E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); +} +void ARM64XEmitter::LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E6 : 0x0E7, Rt, Rn, imm, 8); + else + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E2 : 0x0E3, type == INDEX_POST ? 1 : 3, Rt, Rn, + imm); +} +void ARM64XEmitter::STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(0x1E4, Rt, Rn, imm, 16); + else + EncodeLoadStoreIndexedInst(0x1E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); +} +void ARM64XEmitter::LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(0x1E5, Rt, Rn, imm, 16); + else + EncodeLoadStoreIndexedInst(0x1E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); +} +void ARM64XEmitter::LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E6 : 0x1E7, Rt, Rn, imm, 16); + else + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E2 : 0x1E3, type == INDEX_POST ? 1 : 3, Rt, Rn, + imm); +} +void ARM64XEmitter::STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E4 : 0x2E4, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32); + else + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E0 : 0x2E0, type == INDEX_POST ? 1 : 3, Rt, Rn, + imm); +} +void ARM64XEmitter::LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E5 : 0x2E5, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32); + else + EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E1 : 0x2E1, type == INDEX_POST ? 1 : 3, Rt, Rn, + imm); +} +void ARM64XEmitter::LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + if (type == INDEX_UNSIGNED) + EncodeLoadStoreIndexedInst(0x2E6, Rt, Rn, imm, 32); + else + EncodeLoadStoreIndexedInst(0x2E2, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); +} + +// Load/Store register (register offset) +void ARM64XEmitter::STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(0, 0, Rt, Rn, Rm); +} +void ARM64XEmitter::LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(0, 1, Rt, Rn, Rm); +} +void ARM64XEmitter::LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + bool b64Bit = Is64Bit(Rt); + EncodeLoadStoreRegisterOffset(0, 3 - b64Bit, Rt, Rn, Rm); +} +void ARM64XEmitter::STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(1, 0, Rt, Rn, Rm); +} +void ARM64XEmitter::LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(1, 1, Rt, Rn, Rm); +} +void ARM64XEmitter::LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + bool b64Bit = Is64Bit(Rt); + EncodeLoadStoreRegisterOffset(1, 3 - b64Bit, Rt, Rn, Rm); +} +void ARM64XEmitter::STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + bool b64Bit = Is64Bit(Rt); + EncodeLoadStoreRegisterOffset(2 + b64Bit, 0, Rt, Rn, Rm); +} +void ARM64XEmitter::LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + bool b64Bit = Is64Bit(Rt); + EncodeLoadStoreRegisterOffset(2 + b64Bit, 1, Rt, Rn, Rm); +} +void ARM64XEmitter::LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(2, 2, Rt, Rn, Rm); +} +void ARM64XEmitter::PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm); +} + +// Load/Store register (unscaled offset) +void ARM64XEmitter::STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(0, 0, Rt, Rn, imm); +} +void ARM64XEmitter::LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(0, 1, Rt, Rn, imm); +} +void ARM64XEmitter::LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(0, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm); +} +void ARM64XEmitter::STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(1, 0, Rt, Rn, imm); +} +void ARM64XEmitter::LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(1, 1, Rt, Rn, imm); +} +void ARM64XEmitter::LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(1, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm); +} +void ARM64XEmitter::STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 0, Rt, Rn, imm); +} +void ARM64XEmitter::LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 1, Rt, Rn, imm); +} +void ARM64XEmitter::LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + ASSERT_MSG(DYNA_REC, !Is64Bit(Rt), "%s must have a 64bit destination register!", __func__); + EncodeLoadStoreUnscaled(2, 2, Rt, Rn, imm); +} + +void ARM64XEmitter::LDRGeneric(int size, bool signExtend, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + switch (size | signExtend) + { + case 32: LDR (Rt, Rn, Rm); break; + case 33: LDRSW(Rt, Rn, Rm); break; + case 16: LDRH (Rt, Rn, Rm); break; + case 17: LDRSH(Rt, Rn, Rm); break; + case 8: LDRB (Rt, Rn, Rm); break; + case 9: LDRSB(Rt, Rn, Rm); break; + default: PanicAlert("LDRGeneric(reg): invalid size %d", size); break; + } +} +void ARM64XEmitter::STRGeneric(int size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + switch (size) + { + case 32: STR (Rt, Rn, Rm); break; + case 16: STRH (Rt, Rn, Rm); break; + case 8: STRB (Rt, Rn, Rm); break; + default: PanicAlert("STRGeneric(reg): invalid size %d", size); break; + } +} + +void ARM64XEmitter::LDRGeneric(int size, bool signExtend, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + switch (size | signExtend) + { + case 32: LDR (type, Rt, Rn, imm); break; + case 33: LDRSW(type, Rt, Rn, imm); break; + case 16: LDRH (type, Rt, Rn, imm); break; + case 17: LDRSH(type, Rt, Rn, imm); break; + case 8: LDRB (type, Rt, Rn, imm); break; + case 9: LDRSB(type, Rt, Rn, imm); break; + default: PanicAlert("LDRGeneric(imm): invalid size %d", size); break; + } +} +void ARM64XEmitter::STRGeneric(int size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + switch (size) + { + case 32: STR (type, Rt, Rn, imm); break; + case 16: STRH (type, Rt, Rn, imm); break; + case 8: STRB (type, Rt, Rn, imm); break; + default: PanicAlert("STRGeneric(imm): invalid size %d", size); break; + } +} + +// Address of label/page PC-relative +void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm) +{ + EncodeAddressInst(0, Rd, imm); +} +void ARM64XEmitter::ADRP(ARM64Reg Rd, s32 imm) +{ + EncodeAddressInst(1, Rd, imm >> 12); +} + +// Wrapper around MOVZ+MOVK (and later MOVN) +void ARM64XEmitter::MOVI2R(ARM64Reg Rd, u64 imm, bool optimize) +{ + unsigned int parts = Is64Bit(Rd) ? 4 : 2; + BitSet32 upload_part(0); + + // Always start with a movz! Kills the dependency on the register. + bool use_movz = true; + + if (!imm) + { + // Zero immediate, just clear the register. EOR is pointless when we have MOVZ, which looks + // clearer in disasm too. + MOVZ(Rd, 0, SHIFT_0); + return; + } + + if ((Is64Bit(Rd) && imm == std::numeric_limits<u64>::max()) || + (!Is64Bit(Rd) && imm == std::numeric_limits<u32>::max())) + { + // Max unsigned value (or if signed, -1) + // Set to ~ZR + ARM64Reg ZR = Is64Bit(Rd) ? SP : WSP; + ORN(Rd, ZR, ZR, ArithOption(ZR, ST_LSL, 0)); + return; + } + + // TODO: Make some more systemic use of MOVN, but this will take care of most cases. + // Small negative integer. Use MOVN + if (!Is64Bit(Rd) && (imm | 0xFFFF0000) == imm) + { + MOVN(Rd, ~imm, SHIFT_0); + return; + } + + // XXX: Use MOVN when possible. + // XXX: Optimize more + // XXX: Support rotating immediates to save instructions + if (optimize) + { + for (unsigned int i = 0; i < parts; ++i) + { + if ((imm >> (i * 16)) & 0xFFFF) + upload_part[i] = 1; + } + } + + u64 aligned_pc = (u64)(m_rxbase + m_code) & ~0xFFF; +s64 aligned_offset = (s64)imm - (s64)aligned_pc; + // The offset for ADR/ADRP is an s32, so make sure it can be represented in that + if (upload_part.Count() > 1 && std::abs(aligned_offset) < 0x7FFFFFFFLL) + { + // Immediate we are loading is within 4GB of our aligned range + // Most likely a address that we can load in one or two instructions + if (!(std::abs(aligned_offset) & 0xFFF)) + { + // Aligned ADR + ADRP(Rd, (s32)aligned_offset); + return; + } + else + { + // If the address is within 1MB of PC we can load it in a single instruction still + s64 offset = (s64)imm - (s64)(m_rxbase + m_code); + if (offset >= -0xFFFFF && offset <= 0xFFFFF) + { + ADR(Rd, (s32)offset); + return; + } + else + { + ADRP(Rd, (s32)(aligned_offset & ~0xFFF)); + ADD(Rd, Rd, imm & 0xFFF); + return; + } + } + } + + for (unsigned i = 0; i < parts; ++i) + { + if (use_movz && upload_part[i]) + { + MOVZ(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i); + use_movz = false; + } + else + { + if (upload_part[i] || !optimize) + MOVK(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i); + } + } +} + +bool ARM64XEmitter::MOVI2R2(ARM64Reg Rd, u64 imm1, u64 imm2) +{ + // TODO: Also optimize for performance, not just for code size. + ptrdiff_t start_offset = GetCodeOffset(); + + MOVI2R(Rd, imm1); + int size1 = GetCodeOffset() - start_offset; + + SetCodePtrUnsafe(start_offset); + + MOVI2R(Rd, imm2); + int size2 = GetCodeOffset() - start_offset; + + SetCodePtrUnsafe(start_offset); + + bool element = size1 > size2; + + MOVI2R(Rd, element ? imm2 : imm1); + + return element; +} + +void ARM64XEmitter::ABI_PushRegisters(BitSet32 registers) +{ + int num_regs = registers.Count(); + int stack_size = (num_regs + (num_regs & 1)) * 8; + auto it = registers.begin(); + + if (!num_regs) + return; + + // 8 byte per register, but 16 byte alignment, so we may have to padd one register. + // Only update the SP on the last write to avoid the dependency between those stores. + + // The first push must adjust the SP, else a context switch may invalidate everything below SP. + if (num_regs & 1) + { + STR(INDEX_PRE, (ARM64Reg)(X0 + *it++), SP, -stack_size); + } + else + { + ARM64Reg first_reg = (ARM64Reg)(X0 + *it++); + ARM64Reg second_reg = (ARM64Reg)(X0 + *it++); + STP(INDEX_PRE, first_reg, second_reg, SP, -stack_size); + } + + // Fast store for all other registers, this is always an even number. + for (int i = 0; i < (num_regs - 1) / 2; i++) + { + ARM64Reg odd_reg = (ARM64Reg)(X0 + *it++); + ARM64Reg even_reg = (ARM64Reg)(X0 + *it++); + STP(INDEX_SIGNED, odd_reg, even_reg, SP, 16 * (i + 1)); + } + + ASSERT_MSG(DYNA_REC, it == registers.end(), "%s registers don't match.", __func__); +} + +void ARM64XEmitter::ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask) +{ + int num_regs = registers.Count(); + int stack_size = (num_regs + (num_regs & 1)) * 8; + auto it = registers.begin(); + + if (!num_regs) + return; + + // We must adjust the SP in the end, so load the first (two) registers at least. + ARM64Reg first = (ARM64Reg)(X0 + *it++); + ARM64Reg second; + if (!(num_regs & 1)) + second = (ARM64Reg)(X0 + *it++); + + // 8 byte per register, but 16 byte alignment, so we may have to padd one register. + // Only update the SP on the last load to avoid the dependency between those loads. + + // Fast load for all but the first (two) registers, this is always an even number. + for (int i = 0; i < (num_regs - 1) / 2; i++) + { + ARM64Reg odd_reg = (ARM64Reg)(X0 + *it++); + ARM64Reg even_reg = (ARM64Reg)(X0 + *it++); + LDP(INDEX_SIGNED, odd_reg, even_reg, SP, 16 * (i + 1)); + } + + // Post loading the first (two) registers. + if (num_regs & 1) + LDR(INDEX_POST, first, SP, stack_size); + else + LDP(INDEX_POST, first, second, SP, stack_size); + + ASSERT_MSG(DYNA_REC, it == registers.end(), "%s registers don't match.", __func__); +} + +// Float Emitter +void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, + ARM64Reg Rn, s32 imm) +{ + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + u32 encoded_size = 0; + u32 encoded_imm = 0; + + if (size == 8) + encoded_size = 0; + else if (size == 16) + encoded_size = 1; + else if (size == 32) + encoded_size = 2; + else if (size == 64) + encoded_size = 3; + else if (size == 128) + encoded_size = 0; + + if (type == INDEX_UNSIGNED) + { + ASSERT_MSG(DYNA_REC, !(imm & ((size - 1) >> 3)), + "%s(INDEX_UNSIGNED) immediate offset must be aligned to size! (%d) (%p)", __func__, + imm, m_emit->GetCodePtr()); + ASSERT_MSG(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED) immediate offset must be positive!", + __func__); + if (size == 16) + imm >>= 1; + else if (size == 32) + imm >>= 2; + else if (size == 64) + imm >>= 3; + else if (size == 128) + imm >>= 4; + encoded_imm = (imm & 0xFFF); + } + else + { + ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), + "%s immediate offset must be within range of -256 to 256!", __func__); + encoded_imm = (imm & 0x1FF) << 2; + if (type == INDEX_POST) + encoded_imm |= 1; + else + encoded_imm |= 3; + } + + Write32((encoded_size << 30) | (0xF << 26) | (type == INDEX_UNSIGNED ? (1 << 24) : 0) | + (size == 128 ? (1 << 23) : 0) | (opc << 22) | (encoded_imm << 10) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, + ARM64Reg Rn, ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s only supports double and single registers!", __func__); + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((M << 31) | (S << 29) | (0b11110001 << 21) | (type << 22) | (Rm << 16) | (opcode << 12) | + (1 << 11) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, + ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__); + bool quad = IsQuad(Rd); + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((quad << 30) | (U << 29) | (0b1110001 << 21) | (size << 22) | (Rm << 16) | + (opcode << 11) | (1 << 10) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn) +{ + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((Q << 30) | (op << 29) | (0b111 << 25) | (imm5 << 16) | (imm4 << 11) | (1 << 10) | + (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__); + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((Q << 30) | (U << 29) | (0b1110001 << 21) | (size << 22) | (opcode << 12) | (1 << 11) | + (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, + ARM64Reg Rt, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __func__); + bool quad = IsQuad(Rt); + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + + Write32((quad << 30) | (0b1101 << 24) | (L << 22) | (R << 21) | (opcode << 13) | (S << 12) | + (size << 10) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, + ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __func__); + bool quad = IsQuad(Rt); + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((quad << 30) | (0x1B << 23) | (L << 22) | (R << 21) | (Rm << 16) | (opcode << 13) | + (S << 12) | (size << 10) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | (1 << 14) | + (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, + ARM64Reg Rd, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, Rn <= SP, "%s only supports GPR as source!", __func__); + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((sf << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (rmode << 19) | (opcode << 16) | + (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, + bool sign) +{ + DEBUG_ASSERT_MSG(DYNA_REC, IsScalar(Rn), "fcvts: Rn must be floating point"); + if (IsGPR(Rd)) + { + // Use the encoding that transfers the result to a GPR. + bool sf = Is64Bit(Rd); + int type = IsDouble(Rn) ? 1 : 0; + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + int opcode = (sign ? 1 : 0); + int rmode = 0; + switch (round) + { + case ROUND_A: + rmode = 0; + opcode |= 4; + break; + case ROUND_P: + rmode = 1; + break; + case ROUND_M: + rmode = 2; + break; + case ROUND_Z: + rmode = 3; + break; + case ROUND_N: + rmode = 0; + break; + } + EmitConversion2(sf, 0, true, type, rmode, opcode, 0, Rd, Rn); + } + else + { + // Use the encoding (vector, single) that keeps the result in the fp register. + int sz = IsDouble(Rn); + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + int opcode = 0; + switch (round) + { + case ROUND_A: + opcode = 0x1C; + break; + case ROUND_N: + opcode = 0x1A; + break; + case ROUND_M: + opcode = 0x1B; + break; + case ROUND_P: + opcode = 0x1A; + sz |= 2; + break; + case ROUND_Z: + opcode = 0x1B; + sz |= 2; + break; + } + Write32((0x5E << 24) | (sign << 29) | (sz << 22) | (1 << 21) | (opcode << 12) | (2 << 10) | + (Rn << 5) | Rd); + } +} + +void ARM64FloatEmitter::FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round) +{ + EmitConvertScalarToInt(Rd, Rn, round, false); +} + +void ARM64FloatEmitter::FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round) +{ + EmitConvertScalarToInt(Rd, Rn, round, true); +} + +void ARM64FloatEmitter::EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, + u32 opcode, int scale, ARM64Reg Rd, ARM64Reg Rn) +{ + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((sf << 31) | (S << 29) | (0xF0 << 21) | (direction << 21) | (type << 22) | (rmode << 19) | + (opcode << 16) | (scale << 10) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !IsQuad(Rn), "%s doesn't support vector!", __func__); + bool is_double = IsDouble(Rn); + + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (Rm << 16) | (op << 14) | + (1 << 13) | (Rn << 5) | opcode2); +} + +void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, + ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); + bool is_double = IsDouble(Rd); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (Rm << 16) | (cond << 12) | + (3 << 10) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__); + + bool quad = IsQuad(Rd); + + u32 encoded_size = 0; + if (size == 16) + encoded_size = 1; + else if (size == 32) + encoded_size = 2; + else if (size == 64) + encoded_size = 3; + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((quad << 30) | (7 << 25) | (encoded_size << 22) | (Rm << 16) | (op << 12) | (1 << 11) | + (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8) +{ + ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); + + bool is_double = !IsSingle(Rd); + + Rd = DecodeReg(Rd); + + Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (type << 22) | (imm8 << 13) | + (1 << 12) | (imm5 << 5) | Rd); +} + +void ARM64FloatEmitter::EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, + ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, immh, "%s bad encoding! Can't have zero immh", __func__); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((Q << 30) | (U << 29) | (0xF << 24) | (immh << 19) | (immb << 16) | (opcode << 11) | + (1 << 10) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, + ARM64Reg Rn) +{ + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((2 << 30) | (U << 29) | (0x3E << 23) | (immh << 19) | (immb << 16) | (opcode << 11) | + (1 << 10) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, + ARM64Reg Rn) +{ + bool quad = IsQuad(Rt); + u32 encoded_size = 0; + + if (size == 16) + encoded_size = 1; + else if (size == 32) + encoded_size = 2; + else if (size == 64) + encoded_size = 3; + + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + + Write32((quad << 30) | (3 << 26) | (L << 22) | (opcode << 12) | (encoded_size << 10) | (Rn << 5) | + Rt); +} + +void ARM64FloatEmitter::EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode, + ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) +{ + bool quad = IsQuad(Rt); + u32 encoded_size = 0; + + if (size == 16) + encoded_size = 1; + else if (size == 32) + encoded_size = 2; + else if (size == 64) + encoded_size = 3; + + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((quad << 30) | (0b11001 << 23) | (L << 22) | (Rm << 16) | (opcode << 12) | + (encoded_size << 10) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, + ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + + Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | (1 << 14) | + (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, + ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + bool quad = IsQuad(Rd); + + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + + Write32((quad << 30) | (U << 29) | (0xF << 24) | (size << 22) | (L << 21) | (Rm << 16) | + (opcode << 12) | (H << 11) | (Rn << 5) | Rd); +} + +void ARM64FloatEmitter::EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __func__, + imm); + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + + Write32((size << 30) | (0xF << 26) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::EncodeLoadStorePair(u32 size, bool load, IndexType type, ARM64Reg Rt, + ARM64Reg Rt2, ARM64Reg Rn, s32 imm) +{ + u32 type_encode = 0; + u32 opc = 0; + + switch (type) + { + case INDEX_SIGNED: + type_encode = 0b010; + break; + case INDEX_POST: + type_encode = 0b001; + break; + case INDEX_PRE: + type_encode = 0b011; + break; + case INDEX_UNSIGNED: + ASSERT_MSG(DYNA_REC, false, "%s doesn't support INDEX_UNSIGNED!", __func__); + break; + } + + if (size == 128) + { + ASSERT_MSG(DYNA_REC, !(imm & 0xF), "%s received invalid offset 0x%x!", __func__, imm); + opc = 2; + imm >>= 4; + } + else if (size == 64) + { + ASSERT_MSG(DYNA_REC, !(imm & 0x7), "%s received invalid offset 0x%x!", __func__, imm); + opc = 1; + imm >>= 3; + } + else if (size == 32) + { + ASSERT_MSG(DYNA_REC, !(imm & 0x3), "%s received invalid offset 0x%x!", __func__, imm); + opc = 0; + imm >>= 2; + } + + Rt = DecodeReg(Rt); + Rt2 = DecodeReg(Rt2); + Rn = DecodeReg(Rn); + + Write32((opc << 30) | (0b1011 << 26) | (type_encode << 23) | (load << 22) | ((imm & 0x7F) << 15) | + (Rt2 << 10) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::EncodeLoadStoreRegisterOffset(u32 size, bool load, ARM64Reg Rt, ARM64Reg Rn, + ArithOption Rm) +{ + ASSERT_MSG(DYNA_REC, Rm.GetType() == ArithOption::TYPE_EXTENDEDREG, + "%s must contain an extended reg as Rm!", __func__); + + u32 encoded_size = 0; + u32 encoded_op = 0; + + if (size == 8) + { + encoded_size = 0; + encoded_op = 0; + } + else if (size == 16) + { + encoded_size = 1; + encoded_op = 0; + } + else if (size == 32) + { + encoded_size = 2; + encoded_op = 0; + } + else if (size == 64) + { + encoded_size = 3; + encoded_op = 0; + } + else if (size == 128) + { + encoded_size = 0; + encoded_op = 2; + } + + if (load) + encoded_op |= 1; + + Rt = DecodeReg(Rt); + Rn = DecodeReg(Rn); + ARM64Reg decoded_Rm = DecodeReg(Rm.GetReg()); + + Write32((encoded_size << 30) | (encoded_op << 22) | (0b111100001 << 21) | (decoded_Rm << 16) | + Rm.GetData() | (1 << 11) | (Rn << 5) | Rt); +} + +void ARM64FloatEmitter::EncodeModImm(bool Q, u8 op, u8 cmode, u8 o2, ARM64Reg Rd, u8 abcdefgh) +{ + union + { + u8 hex; + struct + { + unsigned defgh : 5; + unsigned abc : 3; + }; + } v; + v.hex = abcdefgh; + Rd = DecodeReg(Rd); + Write32((Q << 30) | (op << 29) | (0xF << 24) | (v.abc << 16) | (cmode << 12) | (o2 << 11) | + (1 << 10) | (v.defgh << 5) | Rd); +} + +void ARM64FloatEmitter::LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EmitLoadStoreImmediate(size, 1, type, Rt, Rn, imm); +} +void ARM64FloatEmitter::STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + EmitLoadStoreImmediate(size, 0, type, Rt, Rn, imm); +} + +// Loadstore unscaled +void ARM64FloatEmitter::LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + u32 encoded_size = 0; + u32 encoded_op = 0; + + if (size == 8) + { + encoded_size = 0; + encoded_op = 1; + } + else if (size == 16) + { + encoded_size = 1; + encoded_op = 1; + } + else if (size == 32) + { + encoded_size = 2; + encoded_op = 1; + } + else if (size == 64) + { + encoded_size = 3; + encoded_op = 1; + } + else if (size == 128) + { + encoded_size = 0; + encoded_op = 3; + } + + EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm); +} +void ARM64FloatEmitter::STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm) +{ + u32 encoded_size = 0; + u32 encoded_op = 0; + + if (size == 8) + { + encoded_size = 0; + encoded_op = 0; + } + else if (size == 16) + { + encoded_size = 1; + encoded_op = 0; + } + else if (size == 32) + { + encoded_size = 2; + encoded_op = 0; + } + else if (size == 64) + { + encoded_size = 3; + encoded_op = 0; + } + else if (size == 128) + { + encoded_size = 0; + encoded_op = 2; + } + + EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm); +} + +// Loadstore single structure +void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn) +{ + bool S = 0; + u32 opcode = 0; + u32 encoded_size = 0; + ARM64Reg encoded_reg = INVALID_REG; + + if (size == 8) + { + S = (index & 4) != 0; + opcode = 0; + encoded_size = index & 3; + if (index & 8) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 16) + { + S = (index & 2) != 0; + opcode = 2; + encoded_size = (index & 1) << 1; + if (index & 4) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 32) + { + S = (index & 1) != 0; + opcode = 4; + encoded_size = 0; + if (index & 2) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 64) + { + S = 0; + opcode = 4; + encoded_size = 1; + if (index == 1) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + + EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn); +} + +void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm) +{ + bool S = 0; + u32 opcode = 0; + u32 encoded_size = 0; + ARM64Reg encoded_reg = INVALID_REG; + + if (size == 8) + { + S = (index & 4) != 0; + opcode = 0; + encoded_size = index & 3; + if (index & 8) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 16) + { + S = (index & 2) != 0; + opcode = 2; + encoded_size = (index & 1) << 1; + if (index & 4) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 32) + { + S = (index & 1) != 0; + opcode = 4; + encoded_size = 0; + if (index & 2) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 64) + { + S = 0; + opcode = 4; + encoded_size = 1; + if (index == 1) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + + EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm); +} + +void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn) +{ + EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn); +} +void ARM64FloatEmitter::LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn) +{ + EmitLoadStoreSingleStructure(1, 1, 6, 0, size >> 4, Rt, Rn); +} +void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn, Rm); +} +void ARM64FloatEmitter::LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitLoadStoreSingleStructure(1, 1, 6, 0, size >> 4, Rt, Rn, Rm); +} + +void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn) +{ + bool S = 0; + u32 opcode = 0; + u32 encoded_size = 0; + ARM64Reg encoded_reg = INVALID_REG; + + if (size == 8) + { + S = (index & 4) != 0; + opcode = 0; + encoded_size = index & 3; + if (index & 8) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 16) + { + S = (index & 2) != 0; + opcode = 2; + encoded_size = (index & 1) << 1; + if (index & 4) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 32) + { + S = (index & 1) != 0; + opcode = 4; + encoded_size = 0; + if (index & 2) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 64) + { + S = 0; + opcode = 4; + encoded_size = 1; + if (index == 1) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + + EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn); +} + +void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm) +{ + bool S = 0; + u32 opcode = 0; + u32 encoded_size = 0; + ARM64Reg encoded_reg = INVALID_REG; + + if (size == 8) + { + S = (index & 4) != 0; + opcode = 0; + encoded_size = index & 3; + if (index & 8) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 16) + { + S = (index & 2) != 0; + opcode = 2; + encoded_size = (index & 1) << 1; + if (index & 4) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 32) + { + S = (index & 1) != 0; + opcode = 4; + encoded_size = 0; + if (index & 2) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + else if (size == 64) + { + S = 0; + opcode = 4; + encoded_size = 1; + if (index == 1) + encoded_reg = EncodeRegToQuad(Rt); + else + encoded_reg = EncodeRegToDouble(Rt); + } + + EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm); +} + +// Loadstore multiple structure +void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", + __func__); + u32 opcode = 0; + if (count == 1) + opcode = 0b111; + else if (count == 2) + opcode = 0b1010; + else if (count == 3) + opcode = 0b0110; + else if (count == 4) + opcode = 0b0010; + EmitLoadStoreMultipleStructure(size, 1, opcode, Rt, Rn); +} +void ARM64FloatEmitter::LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, + ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", + __func__); + ASSERT_MSG(DYNA_REC, type == INDEX_POST, "%s only supports post indexing!", __func__); + + u32 opcode = 0; + if (count == 1) + opcode = 0b111; + else if (count == 2) + opcode = 0b1010; + else if (count == 3) + opcode = 0b0110; + else if (count == 4) + opcode = 0b0010; + EmitLoadStoreMultipleStructurePost(size, 1, opcode, Rt, Rn, Rm); +} +void ARM64FloatEmitter::ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn) +{ + ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", + __func__); + u32 opcode = 0; + if (count == 1) + opcode = 0b111; + else if (count == 2) + opcode = 0b1010; + else if (count == 3) + opcode = 0b0110; + else if (count == 4) + opcode = 0b0010; + EmitLoadStoreMultipleStructure(size, 0, opcode, Rt, Rn); +} +void ARM64FloatEmitter::ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, + ARM64Reg Rm) +{ + ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", + __func__); + ASSERT_MSG(DYNA_REC, type == INDEX_POST, "%s only supports post indexing!", __func__); + + u32 opcode = 0; + if (count == 1) + opcode = 0b111; + else if (count == 2) + opcode = 0b1010; + else if (count == 3) + opcode = 0b0110; + else if (count == 4) + opcode = 0b0010; + EmitLoadStoreMultipleStructurePost(size, 0, opcode, Rt, Rn, Rm); +} + +// Scalar - 1 Source +void ARM64FloatEmitter::FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top) +{ + if (IsScalar(Rd) && IsScalar(Rn)) + { + EmitScalar1Source(0, 0, IsDouble(Rd), 0, Rd, Rn); + } + else + { + ASSERT_MSG(DYNA_REC, !IsQuad(Rd) && !IsQuad(Rn), "FMOV can't move to/from quads"); + int rmode = 0; + int opcode = 6; + int sf = 0; + if (IsSingle(Rd) && !Is64Bit(Rn) && !top) + { + // GPR to scalar single + opcode |= 1; + } + else if (!Is64Bit(Rd) && IsSingle(Rn) && !top) + { + // Scalar single to GPR - defaults are correct + } + else + { + // TODO + ASSERT_MSG(DYNA_REC, 0, "FMOV: Unhandled case"); + } + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Write32((sf << 31) | (0x1e2 << 20) | (rmode << 19) | (opcode << 16) | (Rn << 5) | Rd); + } +} + +// Loadstore paired +void ARM64FloatEmitter::LDP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, + s32 imm) +{ + EncodeLoadStorePair(size, true, type, Rt, Rt2, Rn, imm); +} +void ARM64FloatEmitter::STP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, + s32 imm) +{ + EncodeLoadStorePair(size, false, type, Rt, Rt2, Rn, imm); +} + +// Loadstore register offset +void ARM64FloatEmitter::STR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(size, false, Rt, Rn, Rm); +} +void ARM64FloatEmitter::LDR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) +{ + EncodeLoadStoreRegisterOffset(size, true, Rt, Rn, Rm); +} + +void ARM64FloatEmitter::FABS(ARM64Reg Rd, ARM64Reg Rn) +{ + EmitScalar1Source(0, 0, IsDouble(Rd), 1, Rd, Rn); +} +void ARM64FloatEmitter::FNEG(ARM64Reg Rd, ARM64Reg Rn) +{ + EmitScalar1Source(0, 0, IsDouble(Rd), 2, Rd, Rn); +} +void ARM64FloatEmitter::FSQRT(ARM64Reg Rd, ARM64Reg Rn) +{ + EmitScalar1Source(0, 0, IsDouble(Rd), 3, Rd, Rn); +} + +// Scalar - 2 Source +void ARM64FloatEmitter::FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 2, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 0, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 3, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 1, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 4, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 5, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 6, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 7, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitScalar2Source(0, 0, IsDouble(Rd), 8, Rd, Rn, Rm); +} + +void ARM64FloatEmitter::FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 0); +} +void ARM64FloatEmitter::FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 1); +} +void ARM64FloatEmitter::FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 2); +} +void ARM64FloatEmitter::FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) +{ + EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 3); +} + +void ARM64FloatEmitter::EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, + ARM64Reg Ra, int opcode) +{ + int type = isDouble ? 1 : 0; + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + Rm = DecodeReg(Rm); + Ra = DecodeReg(Ra); + int o1 = opcode >> 1; + int o0 = opcode & 1; + m_emit->Write32((0x1F << 24) | (type << 22) | (o1 << 21) | (Rm << 16) | (o0 << 15) | (Ra << 10) | + (Rn << 5) | Rd); +} + +// Scalar floating point immediate +void ARM64FloatEmitter::FMOV(ARM64Reg Rd, uint8_t imm8) +{ + EmitScalarImm(0, 0, 0, 0, Rd, imm8); +} + +// Vector +void ARM64FloatEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, 0, 3, Rd, Rn, Rm); +} +void ARM64FloatEmitter::BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(1, 1, 3, Rd, Rn, Rm); +} +void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) +{ + u32 imm5 = 0; + + if (size == 8) + { + imm5 = 1; + imm5 |= index << 1; + } + else if (size == 16) + { + imm5 = 2; + imm5 |= index << 2; + } + else if (size == 32) + { + imm5 = 4; + imm5 |= index << 3; + } + else if (size == 64) + { + imm5 = 8; + imm5 |= index << 4; + } + + EmitCopy(IsQuad(Rd), 0, imm5, 0, Rd, Rn); +} +void ARM64FloatEmitter::FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xF, Rd, Rn); +} +void ARM64FloatEmitter::FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, size >> 6, 0x1A, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMAX(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, size >> 6, 0b11110, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, size >> 6, 0x19, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMIN(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, 2 | size >> 6, 0b11110, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(false, 0, size >> 6, 0x17, Rd, Rn); +} +void ARM64FloatEmitter::FCVTL2(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(true, 0, size >> 6, 0x17, Rd, Rn); +} +void ARM64FloatEmitter::FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, dest_size >> 5, 0x16, Rd, Rn); +} +void ARM64FloatEmitter::FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1B, Rd, Rn); +} +void ARM64FloatEmitter::FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1B, Rd, Rn); +} +void ARM64FloatEmitter::FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(1, size >> 6, 0x1F, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(1, size >> 6, 0x1B, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xF, Rd, Rn); +} +void ARM64FloatEmitter::FRECPE(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1D, Rd, Rn); +} +void ARM64FloatEmitter::FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1D, Rd, Rn); +} +void ARM64FloatEmitter::FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, 2 | (size >> 6), 0x1A, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, 2 | (size >> 6), 0x19, Rd, Rn, Rm); +} +void ARM64FloatEmitter::NOT(ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, 0, 5, Rd, Rn); +} +void ARM64FloatEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, 2, 3, Rd, Rn, Rm); +} +void ARM64FloatEmitter::REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 1, Rd, Rn); +} +void ARM64FloatEmitter::REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, size >> 4, 0, Rd, Rn); +} +void ARM64FloatEmitter::REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 0, Rd, Rn); +} +void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, size >> 6, 0x1D, Rd, Rn); +} +void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, size >> 6, 0x1D, Rd, Rn); +} +void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale) +{ + int imm = size * 2 - scale; + EmitShiftImm(IsQuad(Rd), 0, imm >> 3, imm & 7, 0x1C, Rd, Rn); +} +void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale) +{ + int imm = size * 2 - scale; + EmitShiftImm(IsQuad(Rd), 1, imm >> 3, imm & 7, 0x1C, Rd, Rn); +} +void ARM64FloatEmitter::SQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(false, 0, dest_size >> 4, 0b10100, Rd, Rn); +} +void ARM64FloatEmitter::SQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(true, 0, dest_size >> 4, 0b10100, Rd, Rn); +} +void ARM64FloatEmitter::UQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(false, 1, dest_size >> 4, 0b10100, Rd, Rn); +} +void ARM64FloatEmitter::UQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(true, 1, dest_size >> 4, 0b10100, Rd, Rn); +} +void ARM64FloatEmitter::XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(false, 0, dest_size >> 4, 0b10010, Rd, Rn); +} +void ARM64FloatEmitter::XTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(true, 0, dest_size >> 4, 0b10010, Rd, Rn); +} + +// Move +void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + u32 imm5 = 0; + + if (size == 8) + imm5 = 1; + else if (size == 16) + imm5 = 2; + else if (size == 32) + imm5 = 4; + else if (size == 64) + imm5 = 8; + + EmitCopy(IsQuad(Rd), 0, imm5, 1, Rd, Rn); +} +void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn) +{ + u32 imm5 = 0; + + if (size == 8) + { + imm5 = 1; + imm5 |= index << 1; + } + else if (size == 16) + { + imm5 = 2; + imm5 |= index << 2; + } + else if (size == 32) + { + imm5 = 4; + imm5 |= index << 3; + } + else if (size == 64) + { + imm5 = 8; + imm5 |= index << 4; + } + + EmitCopy(1, 0, imm5, 3, Rd, Rn); +} +void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2) +{ + u32 imm5 = 0, imm4 = 0; + + if (size == 8) + { + imm5 = 1; + imm5 |= index1 << 1; + imm4 = index2; + } + else if (size == 16) + { + imm5 = 2; + imm5 |= index1 << 2; + imm4 = index2 << 1; + } + else if (size == 32) + { + imm5 = 4; + imm5 |= index1 << 3; + imm4 = index2 << 2; + } + else if (size == 64) + { + imm5 = 8; + imm5 |= index1 << 4; + imm4 = index2 << 3; + } + + EmitCopy(1, 1, imm5, imm4, Rd, Rn); +} + +void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) +{ + bool b64Bit = Is64Bit(Rd); + ASSERT_MSG(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __func__); + ASSERT_MSG(DYNA_REC, !(b64Bit && size != 64), + "%s must have a size of 64 when destination is 64bit!", __func__); + u32 imm5 = 0; + + if (size == 8) + { + imm5 = 1; + imm5 |= index << 1; + } + else if (size == 16) + { + imm5 = 2; + imm5 |= index << 2; + } + else if (size == 32) + { + imm5 = 4; + imm5 |= index << 3; + } + else if (size == 64) + { + imm5 = 8; + imm5 |= index << 4; + } + + EmitCopy(b64Bit, 0, imm5, 7, Rd, Rn); +} +void ARM64FloatEmitter::SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) +{ + bool b64Bit = Is64Bit(Rd); + ASSERT_MSG(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __func__); + ASSERT_MSG(DYNA_REC, size != 64, "%s doesn't support 64bit destination. Use UMOV!", __func__); + u32 imm5 = 0; + + if (size == 8) + { + imm5 = 1; + imm5 |= index << 1; + } + else if (size == 16) + { + imm5 = 2; + imm5 |= index << 2; + } + else if (size == 32) + { + imm5 = 4; + imm5 |= index << 3; + } + + EmitCopy(b64Bit, 0, imm5, 5, Rd, Rn); +} + +// One source +void ARM64FloatEmitter::FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn) +{ + u32 dst_encoding = 0; + u32 src_encoding = 0; + + if (size_to == 16) + dst_encoding = 3; + else if (size_to == 32) + dst_encoding = 0; + else if (size_to == 64) + dst_encoding = 1; + + if (size_from == 16) + src_encoding = 3; + else if (size_from == 32) + src_encoding = 0; + else if (size_from == 64) + src_encoding = 1; + + Emit1Source(0, 0, src_encoding, 4 | dst_encoding, Rd, Rn); +} + +void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn) +{ + if (IsScalar(Rn)) + { + // Source is in FP register (like destination!). We must use a vector encoding. + bool sign = false; + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + int sz = IsDouble(Rn); + Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (Rn << 5) | Rd); + } + else + { + bool sf = Is64Bit(Rn); + u32 type = 0; + if (IsDouble(Rd)) + type = 1; + EmitConversion(sf, 0, type, 0, 2, Rd, Rn); + } +} + +void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn) +{ + if (IsScalar(Rn)) + { + // Source is in FP register (like destination!). We must use a vector encoding. + bool sign = true; + Rd = DecodeReg(Rd); + Rn = DecodeReg(Rn); + int sz = IsDouble(Rn); + Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (Rn << 5) | Rd); + } + else + { + bool sf = Is64Bit(Rn); + u32 type = 0; + if (IsDouble(Rd)) + type = 1; + + EmitConversion(sf, 0, type, 0, 3, Rd, Rn); + } +} + +void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale) +{ + bool sf = Is64Bit(Rn); + u32 type = 0; + if (IsDouble(Rd)) + type = 1; + + EmitConversion2(sf, 0, false, type, 0, 2, 64 - scale, Rd, Rn); +} + +void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale) +{ + bool sf = Is64Bit(Rn); + u32 type = 0; + if (IsDouble(Rd)) + type = 1; + + EmitConversion2(sf, 0, false, type, 0, 3, 64 - scale, Rd, Rn); +} + +void ARM64FloatEmitter::FCMP(ARM64Reg Rn, ARM64Reg Rm) +{ + EmitCompare(0, 0, 0, 0, Rn, Rm); +} +void ARM64FloatEmitter::FCMP(ARM64Reg Rn) +{ + EmitCompare(0, 0, 0, 8, Rn, (ARM64Reg)0); +} +void ARM64FloatEmitter::FCMPE(ARM64Reg Rn, ARM64Reg Rm) +{ + EmitCompare(0, 0, 0, 0x10, Rn, Rm); +} +void ARM64FloatEmitter::FCMPE(ARM64Reg Rn) +{ + EmitCompare(0, 0, 0, 0x18, Rn, (ARM64Reg)0); +} +void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(0, size >> 6, 0x1C, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xD, Rd, Rn); +} +void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(1, size >> 6, 0x1C, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x0C, Rd, Rn); +} +void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitThreeSame(1, 2 | (size >> 6), 0x1C, Rd, Rn, Rm); +} +void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x0C, Rd, Rn); +} +void ARM64FloatEmitter::FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xD, Rd, Rn); +} +void ARM64FloatEmitter::FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn) +{ + Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xE, Rd, Rn); +} + +void ARM64FloatEmitter::FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) +{ + EmitCondSelect(0, 0, cond, Rd, Rn, Rm); +} + +// Permute +void ARM64FloatEmitter::UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitPermute(size, 0b001, Rd, Rn, Rm); +} +void ARM64FloatEmitter::TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitPermute(size, 0b010, Rd, Rn, Rm); +} +void ARM64FloatEmitter::ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitPermute(size, 0b011, Rd, Rn, Rm); +} +void ARM64FloatEmitter::UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitPermute(size, 0b101, Rd, Rn, Rm); +} +void ARM64FloatEmitter::TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitPermute(size, 0b110, Rd, Rn, Rm); +} +void ARM64FloatEmitter::ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) +{ + EmitPermute(size, 0b111, Rd, Rn, Rm); +} + +// Shift by immediate +void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) +{ + SSHLL(src_size, Rd, Rn, shift, false); +} +void ARM64FloatEmitter::SSHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) +{ + SSHLL(src_size, Rd, Rn, shift, true); +} +void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) +{ + SHRN(dest_size, Rd, Rn, shift, false); +} +void ARM64FloatEmitter::SHRN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) +{ + SHRN(dest_size, Rd, Rn, shift, true); +} +void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) +{ + USHLL(src_size, Rd, Rn, shift, false); +} +void ARM64FloatEmitter::USHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) +{ + USHLL(src_size, Rd, Rn, shift, true); +} +void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) +{ + SXTL(src_size, Rd, Rn, false); +} +void ARM64FloatEmitter::SXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) +{ + SXTL(src_size, Rd, Rn, true); +} +void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) +{ + UXTL(src_size, Rd, Rn, false); +} +void ARM64FloatEmitter::UXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) +{ + UXTL(src_size, Rd, Rn, true); +} + +void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper) +{ + ASSERT_MSG(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", + __func__); + u32 immh = 0; + u32 immb = shift & 0xFFF; + + if (src_size == 8) + { + immh = 1; + } + else if (src_size == 16) + { + immh = 2 | ((shift >> 3) & 1); + } + else if (src_size == 32) + { + immh = 4 | ((shift >> 3) & 3); + ; + } + EmitShiftImm(upper, 0, immh, immb, 0b10100, Rd, Rn); +} + +void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper) +{ + ASSERT_MSG(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", + __func__); + u32 immh = 0; + u32 immb = shift & 0xFFF; + + if (src_size == 8) + { + immh = 1; + } + else if (src_size == 16) + { + immh = 2 | ((shift >> 3) & 1); + } + else if (src_size == 32) + { + immh = 4 | ((shift >> 3) & 3); + ; + } + EmitShiftImm(upper, 1, immh, immb, 0b10100, Rd, Rn); +} + +void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper) +{ + ASSERT_MSG(DYNA_REC, shift < dest_size, "%s shift amount must less than the element size!", + __func__); + u32 immh = 0; + u32 immb = shift & 0xFFF; + + if (dest_size == 8) + { + immh = 1; + } + else if (dest_size == 16) + { + immh = 2 | ((shift >> 3) & 1); + } + else if (dest_size == 32) + { + immh = 4 | ((shift >> 3) & 3); + ; + } + EmitShiftImm(upper, 1, immh, immb, 0b10000, Rd, Rn); +} + +void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper) +{ + SSHLL(src_size, Rd, Rn, 0, upper); +} + +void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper) +{ + USHLL(src_size, Rd, Rn, 0, upper); +} + +// vector x indexed element +void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index) +{ + ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__); + + bool L = false; + bool H = false; + if (size == 32) + { + L = index & 1; + H = (index >> 1) & 1; + } + else if (size == 64) + { + H = index == 1; + } + + EmitVectorxElement(0, 2 | (size >> 6), L, 0x9, H, Rd, Rn, Rm); +} + +void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index) +{ + ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__); + + bool L = false; + bool H = false; + if (size == 32) + { + L = index & 1; + H = (index >> 1) & 1; + } + else if (size == 64) + { + H = index == 1; + } + + EmitVectorxElement(0, 2 | (size >> 6), L, 1, H, Rd, Rn, Rm); +} + +// Modified Immediate +void ARM64FloatEmitter::MOVI(u8 size, ARM64Reg Rd, u64 imm, u8 shift) +{ + bool Q = IsQuad(Rd); + u8 cmode = 0; + u8 op = 0; + u8 abcdefgh = imm & 0xFF; + if (size == 8) + { + ASSERT_MSG(DYNA_REC, shift == 0, "%s(size8) doesn't support shift!", __func__); + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size8) only supports 8bit values!", __func__); + } + else if (size == 16) + { + ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8, "%s(size16) only supports shift of {0, 8}!", + __func__); + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size16) only supports 8bit values!", __func__); + + if (shift == 8) + cmode |= 2; + } + else if (size == 32) + { + ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8 || shift == 16 || shift == 24, + "%s(size32) only supports shift of {0, 8, 16, 24}!", __func__); + // XXX: Implement support for MOVI - shifting ones variant + ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size32) only supports 8bit values!", __func__); + switch (shift) + { + case 8: + cmode |= 2; + break; + case 16: + cmode |= 4; + break; + case 24: + cmode |= 6; + break; + default: + break; + } + } + else // 64 + { + ASSERT_MSG(DYNA_REC, shift == 0, "%s(size64) doesn't support shift!", __func__); + + op = 1; + cmode = 0xE; + abcdefgh = 0; + for (int i = 0; i < 8; ++i) + { + u8 tmp = (imm >> (i << 3)) & 0xFF; + ASSERT_MSG(DYNA_REC, tmp == 0xFF || tmp == 0, "%s(size64) Invalid immediate!", __func__); + if (tmp == 0xFF) + abcdefgh |= (1 << i); + } + } + EncodeModImm(Q, op, cmode, 0, Rd, abcdefgh); +} + +void ARM64FloatEmitter::BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift) +{ + bool Q = IsQuad(Rd); + u8 cmode = 1; + u8 op = 1; + if (size == 16) + { + ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8, "%s(size16) only supports shift of {0, 8}!", + __func__); + + if (shift == 8) + cmode |= 2; + } + else if (size == 32) + { + ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8 || shift == 16 || shift == 24, + "%s(size32) only supports shift of {0, 8, 16, 24}!", __func__); + // XXX: Implement support for MOVI - shifting ones variant + switch (shift) + { + case 8: + cmode |= 2; + break; + case 16: + cmode |= 4; + break; + case 24: + cmode |= 6; + break; + default: + break; + } + } + else + { + ASSERT_MSG(DYNA_REC, false, "%s only supports size of {16, 32}!", __func__); + } + EncodeModImm(Q, op, cmode, 0, Rd, imm); +} + +void ARM64FloatEmitter::ABI_PushRegisters(BitSet32 registers, ARM64Reg tmp) +{ + bool bundled_loadstore = false; + + for (int i = 0; i < 32; ++i) + { + if (!registers[i]) + continue; + + int count = 0; + while (++count < 4 && (i + count) < 32 && registers[i + count]) + { + } + if (count > 1) + { + bundled_loadstore = true; + break; + } + } + + if (bundled_loadstore && tmp != INVALID_REG) + { + int num_regs = registers.Count(); + m_emit->SUB(SP, SP, num_regs * 16); + m_emit->ADD(tmp, SP, 0); + std::vector<ARM64Reg> island_regs; + for (int i = 0; i < 32; ++i) + { + if (!registers[i]) + continue; + + int count = 0; + + // 0 = true + // 1 < 4 && registers[i + 1] true! + // 2 < 4 && registers[i + 2] true! + // 3 < 4 && registers[i + 3] true! + // 4 < 4 && registers[i + 4] false! + while (++count < 4 && (i + count) < 32 && registers[i + count]) + { + } + + if (count == 1) + island_regs.push_back((ARM64Reg)(Q0 + i)); + else + ST1(64, count, INDEX_POST, (ARM64Reg)(Q0 + i), tmp); + + i += count - 1; + } + + // Handle island registers + std::vector<ARM64Reg> pair_regs; + for (auto& it : island_regs) + { + pair_regs.push_back(it); + if (pair_regs.size() == 2) + { + STP(128, INDEX_POST, pair_regs[0], pair_regs[1], tmp, 32); + pair_regs.clear(); + } + } + if (pair_regs.size()) + STR(128, INDEX_POST, pair_regs[0], tmp, 16); + } + else + { + std::vector<ARM64Reg> pair_regs; + for (auto it : registers) + { + pair_regs.push_back((ARM64Reg)(Q0 + it)); + if (pair_regs.size() == 2) + { + STP(128, INDEX_PRE, pair_regs[0], pair_regs[1], SP, -32); + pair_regs.clear(); + } + } + if (pair_regs.size()) + STR(128, INDEX_PRE, pair_regs[0], SP, -16); + } +} +void ARM64FloatEmitter::ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp) +{ + bool bundled_loadstore = false; + int num_regs = registers.Count(); + + for (int i = 0; i < 32; ++i) + { + if (!registers[i]) + continue; + + int count = 0; + while (++count < 4 && (i + count) < 32 && registers[i + count]) + { + } + if (count > 1) + { + bundled_loadstore = true; + break; + } + } + + if (bundled_loadstore && tmp != INVALID_REG) + { + // The temporary register is only used to indicate that we can use this code path + std::vector<ARM64Reg> island_regs; + for (int i = 0; i < 32; ++i) + { + if (!registers[i]) + continue; + + int count = 0; + while (++count < 4 && (i + count) < 32 && registers[i + count]) + { + } + + if (count == 1) + island_regs.push_back((ARM64Reg)(Q0 + i)); + else + LD1(64, count, INDEX_POST, (ARM64Reg)(Q0 + i), SP); + + i += count - 1; + } + + // Handle island registers + std::vector<ARM64Reg> pair_regs; + for (auto& it : island_regs) + { + pair_regs.push_back(it); + if (pair_regs.size() == 2) + { + LDP(128, INDEX_POST, pair_regs[0], pair_regs[1], SP, 32); + pair_regs.clear(); + } + } + if (pair_regs.size()) + LDR(128, INDEX_POST, pair_regs[0], SP, 16); + } + else + { + bool odd = num_regs % 2; + std::vector<ARM64Reg> pair_regs; + for (int i = 31; i >= 0; --i) + { + if (!registers[i]) + continue; + + if (odd) + { + // First load must be a regular LDR if odd + odd = false; + LDR(128, INDEX_POST, (ARM64Reg)(Q0 + i), SP, 16); + } + else + { + pair_regs.push_back((ARM64Reg)(Q0 + i)); + if (pair_regs.size() == 2) + { + LDP(128, INDEX_POST, pair_regs[1], pair_regs[0], SP, 32); + pair_regs.clear(); + } + } + } + } +} + +void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + unsigned int n, imm_s, imm_r; + if (!Is64Bit(Rn)) + imm &= 0xFFFFFFFF; + if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) + { + AND(Rd, Rn, imm_r, imm_s, n != 0); + } + else + { + ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, + "ANDI2R - failed to construct logical immediate value from %08x, need scratch", + (u32)imm); + MOVI2R(scratch, imm); + AND(Rd, Rn, scratch); + } +} + +void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + unsigned int n, imm_s, imm_r; + if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) + { + ORR(Rd, Rn, imm_r, imm_s, n != 0); + } + else + { + ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, + "ORRI2R - failed to construct logical immediate value from %08x, need scratch", + (u32)imm); + MOVI2R(scratch, imm); + ORR(Rd, Rn, scratch); + } +} + +void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + unsigned int n, imm_s, imm_r; + if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) + { + EOR(Rd, Rn, imm_r, imm_s, n != 0); + } + else + { + ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, + "EORI2R - failed to construct logical immediate value from %08x, need scratch", + (u32)imm); + MOVI2R(scratch, imm); + EOR(Rd, Rn, scratch); + } +} + +void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + unsigned int n, imm_s, imm_r; + if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) + { + ANDS(Rd, Rn, imm_r, imm_s, n != 0); + } + else + { + ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, + "ANDSI2R - failed to construct logical immediate value from %08x, need scratch", + (u32)imm); + MOVI2R(scratch, imm); + ANDS(Rd, Rn, scratch); + } +} + +void ARM64XEmitter::AddImmediate(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool shift, bool negative, + bool flags) +{ + switch ((negative << 1) | flags) + { + case 0: + ADD(Rd, Rn, imm, shift); + break; + case 1: + ADDS(Rd, Rn, imm, shift); + break; + case 2: + SUB(Rd, Rn, imm, shift); + break; + case 3: + SUBS(Rd, Rn, imm, shift); + break; + } +} + +void ARM64XEmitter::ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags, + ARM64Reg scratch) +{ + bool has_scratch = scratch != INVALID_REG; + u64 imm_neg = Is64Bit(Rd) ? -imm : -imm & 0xFFFFFFFFuLL; + bool neg_neg = negative ? false : true; + + // Fast paths, aarch64 immediate instructions + // Try them all first + if (imm <= 0xFFF) + { + AddImmediate(Rd, Rn, imm, false, negative, flags); + return; + } + if (imm <= 0xFFFFFF && (imm & 0xFFF) == 0) + { + AddImmediate(Rd, Rn, imm >> 12, true, negative, flags); + return; + } + if (imm_neg <= 0xFFF) + { + AddImmediate(Rd, Rn, imm_neg, false, neg_neg, flags); + return; + } + if (imm_neg <= 0xFFFFFF && (imm_neg & 0xFFF) == 0) + { + AddImmediate(Rd, Rn, imm_neg >> 12, true, neg_neg, flags); + return; + } + + // ADD+ADD is slower than MOVK+ADD, but inplace. + // But it supports a few more bits, so use it to avoid MOVK+MOVK+ADD. + // As this splits the addition in two parts, this must not be done on setting flags. + if (!flags && (imm >= 0x10000u || !has_scratch) && imm < 0x1000000u) + { + AddImmediate(Rd, Rn, imm & 0xFFF, false, negative, false); + AddImmediate(Rd, Rd, imm >> 12, true, negative, false); + return; + } + if (!flags && (imm_neg >= 0x10000u || !has_scratch) && imm_neg < 0x1000000u) + { + AddImmediate(Rd, Rn, imm_neg & 0xFFF, false, neg_neg, false); + AddImmediate(Rd, Rd, imm_neg >> 12, true, neg_neg, false); + return; + } + + ASSERT_MSG(DYNA_REC, has_scratch, + "ADDI2R - failed to construct arithmetic immediate value from %08x, need scratch", + (u32)imm); + + negative ^= MOVI2R2(scratch, imm, imm_neg); + switch ((negative << 1) | flags) + { + case 0: + ADD(Rd, Rn, scratch); + break; + case 1: + ADDS(Rd, Rn, scratch); + break; + case 2: + SUB(Rd, Rn, scratch); + break; + case 3: + SUBS(Rd, Rn, scratch); + break; + } +} + +void ARM64XEmitter::ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + ADDI2R_internal(Rd, Rn, imm, false, false, scratch); +} + +void ARM64XEmitter::ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + ADDI2R_internal(Rd, Rn, imm, false, true, scratch); +} + +void ARM64XEmitter::SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + ADDI2R_internal(Rd, Rn, imm, true, false, scratch); +} + +void ARM64XEmitter::SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + ADDI2R_internal(Rd, Rn, imm, true, true, scratch); +} + +void ARM64XEmitter::CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch) +{ + ADDI2R_internal(Is64Bit(Rn) ? ZR : WZR, Rn, imm, true, true, scratch); +} + +bool ARM64XEmitter::TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) +{ + u32 val; + bool shift; + if (IsImmArithmetic(imm, &val, &shift)) + ADD(Rd, Rn, val, shift); + else + return false; + + return true; +} + +bool ARM64XEmitter::TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) +{ + u32 val; + bool shift; + if (IsImmArithmetic(imm, &val, &shift)) + SUB(Rd, Rn, val, shift); + else + return false; + + return true; +} + +bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u32 imm) +{ + u32 val; + bool shift; + if (IsImmArithmetic(imm, &val, &shift)) + CMP(Rn, val, shift); + else + return false; + + return true; +} + +bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) +{ + u32 n, imm_r, imm_s; + if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) + AND(Rd, Rn, imm_r, imm_s, n != 0); + else + return false; + + return true; +} +bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) +{ + u32 n, imm_r, imm_s; + if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) + ORR(Rd, Rn, imm_r, imm_s, n != 0); + else + return false; + + return true; +} +bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) +{ + u32 n, imm_r, imm_s; + if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) + EOR(Rd, Rn, imm_r, imm_s, n != 0); + else + return false; + + return true; +} + +void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate) +{ + ASSERT_MSG(DYNA_REC, !IsDouble(Rd), "MOVI2F does not yet support double precision"); + uint8_t imm8; + if (value == 0.0) + { + FMOV(Rd, IsDouble(Rd) ? ZR : WZR); + if (negate) + FNEG(Rd, Rd); + // TODO: There are some other values we could generate with the float-imm instruction, like + // 1.0... + } + else if (FPImm8FromFloat(value, &imm8)) + { + FMOV(Rd, imm8); + } + else + { + ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, + "Failed to find a way to generate FP immediate %f without scratch", value); + if (negate) + value = -value; + + const u32 ival = Common::BitCast<u32>(value); + m_emit->MOVI2R(scratch, ival); + FMOV(Rd, scratch); + } +} + +// TODO: Quite a few values could be generated easily using the MOVI instruction and friends. +void ARM64FloatEmitter::MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch) +{ + // TODO: Make it work with more element sizes + // TODO: Optimize - there are shorter solution for many values + ARM64Reg s = (ARM64Reg)(S0 + DecodeReg(Rd)); + MOVI2F(s, value, scratch); + DUP(32, Rd, Rd, 0); +} + +} // namespace Arm64Gen |