aboutsummaryrefslogtreecommitdiff
path: root/src/dolphin
diff options
context:
space:
mode:
authorRSDuck <rsduck@users.noreply.github.com>2019-06-22 01:28:32 +0200
committerRSDuck <rsduck@users.noreply.github.com>2020-04-26 13:02:53 +0200
commitc5c342c0091d9bf36500950a21585c5c98dd7d9d (patch)
tree79abf542c763cce60ffe650e300bfee31194ba8a /src/dolphin
parentd2f05cd30fcd530655649549452c34dea1969281 (diff)
JIT: base
all instructions are interpreted
Diffstat (limited to 'src/dolphin')
-rw-r--r--src/dolphin/Assert.h47
-rw-r--r--src/dolphin/BitSet.h218
-rw-r--r--src/dolphin/CPUDetect.h76
-rw-r--r--src/dolphin/CodeBlock.h121
-rw-r--r--src/dolphin/CommonFuncs.cpp52
-rw-r--r--src/dolphin/CommonFuncs.h58
-rw-r--r--src/dolphin/Intrinsics.h72
-rw-r--r--src/dolphin/Log.h20
-rw-r--r--src/dolphin/MemoryUtil.cpp193
-rw-r--r--src/dolphin/MemoryUtil.h22
-rw-r--r--src/dolphin/license_dolphin.txt339
-rw-r--r--src/dolphin/x64ABI.cpp119
-rw-r--r--src/dolphin/x64ABI.h57
-rw-r--r--src/dolphin/x64CPUDetect.cpp274
-rw-r--r--src/dolphin/x64Emitter.cpp3398
-rw-r--r--src/dolphin/x64Emitter.h1180
-rw-r--r--src/dolphin/x64Reg.h96
17 files changed, 6342 insertions, 0 deletions
diff --git a/src/dolphin/Assert.h b/src/dolphin/Assert.h
new file mode 100644
index 0000000..4eb16e0
--- /dev/null
+++ b/src/dolphin/Assert.h
@@ -0,0 +1,47 @@
+// Copyright 2015 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+#include <assert.h>
+
+#define ASSERT_MSG(_t_, _a_, _fmt_, ...) \
+ assert(_a_) \
+ /*do \
+ { \
+ if (!(_a_)) \
+ { \
+ if (!PanicYesNo(_fmt_, ##__VA_ARGS__)) \
+ Crash(); \
+ } \
+ } while (0)*/
+
+#define DEBUG_ASSERT_MSG(_t_, _a_, _msg_, ...) \
+ assert(_a_); \
+ /*do \
+ { \
+ if (MAX_LOGLEVEL >= LogTypes::LOG_LEVELS::LDEBUG && !(_a_)) \
+ { \
+ ERROR_LOG(_t_, _msg_, ##__VA_ARGS__); \
+ if (!PanicYesNo(_msg_, ##__VA_ARGS__)) \
+ Crash(); \
+ } \
+ } while (0)*/
+
+#define ASSERT(_a_) \
+ assert(_a_) \
+ /*do \
+ { \
+ ASSERT_MSG(MASTER_LOG, _a_, \
+ _trans("An error occurred.\n\n Line: %d\n File: %s\n\nIgnore and continue?"), \
+ __LINE__, __FILE__); \
+ } while (0)*/
+
+#define DEBUG_ASSERT(_a_) \
+ assert(_a_) \
+ /*do \
+ { \
+ if (MAX_LOGLEVEL >= LogTypes::LOG_LEVELS::LDEBUG) \
+ ASSERT(_a_); \
+ } while (0)*/
diff --git a/src/dolphin/BitSet.h b/src/dolphin/BitSet.h
new file mode 100644
index 0000000..d32b020
--- /dev/null
+++ b/src/dolphin/BitSet.h
@@ -0,0 +1,218 @@
+// This file is under the public domain.
+
+#pragma once
+
+#include <cstddef>
+#include <initializer_list>
+#include <type_traits>
+#include "../types.h"
+
+#ifdef _WIN32
+
+#include <intrin.h>
+
+namespace Common
+{
+template <typename T>
+constexpr int CountSetBits(T v)
+{
+ // from https://graphics.stanford.edu/~seander/bithacks.html
+ // GCC has this built in, but MSVC's intrinsic will only emit the actual
+ // POPCNT instruction, which we're not depending on
+ v = v - ((v >> 1) & (T) ~(T)0 / 3);
+ v = (v & (T) ~(T)0 / 15 * 3) + ((v >> 2) & (T) ~(T)0 / 15 * 3);
+ v = (v + (v >> 4)) & (T) ~(T)0 / 255 * 15;
+ return (T)(v * ((T) ~(T)0 / 255)) >> (sizeof(T) - 1) * 8;
+}
+inline int LeastSignificantSetBit(u8 val)
+{
+ unsigned long index;
+ _BitScanForward(&index, val);
+ return (int)index;
+}
+inline int LeastSignificantSetBit(u16 val)
+{
+ unsigned long index;
+ _BitScanForward(&index, val);
+ return (int)index;
+}
+inline int LeastSignificantSetBit(u32 val)
+{
+ unsigned long index;
+ _BitScanForward(&index, val);
+ return (int)index;
+}
+inline int LeastSignificantSetBit(u64 val)
+{
+ unsigned long index;
+ _BitScanForward64(&index, val);
+ return (int)index;
+}
+#else
+namespace Common
+{
+constexpr int CountSetBits(u8 val)
+{
+ return __builtin_popcount(val);
+}
+constexpr int CountSetBits(u16 val)
+{
+ return __builtin_popcount(val);
+}
+constexpr int CountSetBits(u32 val)
+{
+ return __builtin_popcount(val);
+}
+constexpr int CountSetBits(u64 val)
+{
+ return __builtin_popcountll(val);
+}
+inline int LeastSignificantSetBit(u8 val)
+{
+ return __builtin_ctz(val);
+}
+inline int LeastSignificantSetBit(u16 val)
+{
+ return __builtin_ctz(val);
+}
+inline int LeastSignificantSetBit(u32 val)
+{
+ return __builtin_ctz(val);
+}
+inline int LeastSignificantSetBit(u64 val)
+{
+ return __builtin_ctzll(val);
+}
+#endif
+
+// Similar to std::bitset, this is a class which encapsulates a bitset, i.e.
+// using the set bits of an integer to represent a set of integers. Like that
+// class, it acts like an array of bools:
+// BitSet32 bs;
+// bs[1] = true;
+// but also like the underlying integer ([0] = least significant bit):
+// BitSet32 bs2 = ...;
+// bs = (bs ^ bs2) & BitSet32(0xffff);
+// The following additional functionality is provided:
+// - Construction using an initializer list.
+// BitSet bs { 1, 2, 4, 8 };
+// - Efficiently iterating through the set bits:
+// for (int i : bs)
+// [i is the *index* of a set bit]
+// (This uses the appropriate CPU instruction to find the next set bit in one
+// operation.)
+// - Counting set bits using .Count() - see comment on that method.
+
+// TODO: use constexpr when MSVC gets out of the Dark Ages
+
+template <typename IntTy>
+class BitSet
+{
+ static_assert(!std::is_signed<IntTy>::value, "BitSet should not be used with signed types");
+
+public:
+ // A reference to a particular bit, returned from operator[].
+ class Ref
+ {
+ public:
+ constexpr Ref(Ref&& other) : m_bs(other.m_bs), m_mask(other.m_mask) {}
+ constexpr Ref(BitSet* bs, IntTy mask) : m_bs(bs), m_mask(mask) {}
+ constexpr operator bool() const { return (m_bs->m_val & m_mask) != 0; }
+ bool operator=(bool set)
+ {
+ m_bs->m_val = (m_bs->m_val & ~m_mask) | (set ? m_mask : 0);
+ return set;
+ }
+
+ private:
+ BitSet* m_bs;
+ IntTy m_mask;
+ };
+
+ // A STL-like iterator is required to be able to use range-based for loops.
+ class Iterator
+ {
+ public:
+ constexpr Iterator(const Iterator& other) : m_val(other.m_val), m_bit(other.m_bit) {}
+ constexpr Iterator(IntTy val, int bit) : m_val(val), m_bit(bit) {}
+ Iterator& operator=(Iterator other)
+ {
+ new (this) Iterator(other);
+ return *this;
+ }
+ Iterator& operator++()
+ {
+ if (m_val == 0)
+ {
+ m_bit = -1;
+ }
+ else
+ {
+ int bit = LeastSignificantSetBit(m_val);
+ m_val &= ~(1 << bit);
+ m_bit = bit;
+ }
+ return *this;
+ }
+ Iterator operator++(int)
+ {
+ Iterator other(*this);
+ ++*this;
+ return other;
+ }
+ constexpr int operator*() const { return m_bit; }
+ constexpr bool operator==(Iterator other) const { return m_bit == other.m_bit; }
+ constexpr bool operator!=(Iterator other) const { return m_bit != other.m_bit; }
+
+ private:
+ IntTy m_val;
+ int m_bit;
+ };
+
+ constexpr BitSet() : m_val(0) {}
+ constexpr explicit BitSet(IntTy val) : m_val(val) {}
+ BitSet(std::initializer_list<int> init)
+ {
+ m_val = 0;
+ for (int bit : init)
+ m_val |= (IntTy)1 << bit;
+ }
+
+ constexpr static BitSet AllTrue(size_t count)
+ {
+ return BitSet(count == sizeof(IntTy) * 8 ? ~(IntTy)0 : (((IntTy)1 << count) - 1));
+ }
+
+ Ref operator[](size_t bit) { return Ref(this, (IntTy)1 << bit); }
+ constexpr const Ref operator[](size_t bit) const { return (*const_cast<BitSet*>(this))[bit]; }
+ constexpr bool operator==(BitSet other) const { return m_val == other.m_val; }
+ constexpr bool operator!=(BitSet other) const { return m_val != other.m_val; }
+ constexpr bool operator<(BitSet other) const { return m_val < other.m_val; }
+ constexpr bool operator>(BitSet other) const { return m_val > other.m_val; }
+ constexpr BitSet operator|(BitSet other) const { return BitSet(m_val | other.m_val); }
+ constexpr BitSet operator&(BitSet other) const { return BitSet(m_val & other.m_val); }
+ constexpr BitSet operator^(BitSet other) const { return BitSet(m_val ^ other.m_val); }
+ constexpr BitSet operator~() const { return BitSet(~m_val); }
+ constexpr BitSet operator<<(IntTy shift) const { return BitSet(m_val << shift); }
+ constexpr BitSet operator>>(IntTy shift) const { return BitSet(m_val >> shift); }
+ constexpr explicit operator bool() const { return m_val != 0; }
+ BitSet& operator|=(BitSet other) { return *this = *this | other; }
+ BitSet& operator&=(BitSet other) { return *this = *this & other; }
+ BitSet& operator^=(BitSet other) { return *this = *this ^ other; }
+ BitSet& operator<<=(IntTy shift) { return *this = *this << shift; }
+ BitSet& operator>>=(IntTy shift) { return *this = *this >> shift; }
+ // Warning: Even though on modern CPUs this is a single fast instruction,
+ // Dolphin's official builds do not currently assume POPCNT support on x86,
+ // so slower explicit bit twiddling is generated. Still should generally
+ // be faster than a loop.
+ constexpr unsigned int Count() const { return CountSetBits(m_val); }
+ constexpr Iterator begin() const { return ++Iterator(m_val, 0); }
+ constexpr Iterator end() const { return Iterator(m_val, -1); }
+ IntTy m_val;
+};
+} // namespace Common
+
+using BitSet8 = Common::BitSet<u8>;
+using BitSet16 = Common::BitSet<u16>;
+using BitSet32 = Common::BitSet<u32>;
+using BitSet64 = Common::BitSet<u64>;
diff --git a/src/dolphin/CPUDetect.h b/src/dolphin/CPUDetect.h
new file mode 100644
index 0000000..bd4fd8d
--- /dev/null
+++ b/src/dolphin/CPUDetect.h
@@ -0,0 +1,76 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+// Detect the CPU, so we'll know which optimizations to use
+#pragma once
+
+#include <string>
+
+enum class CPUVendor
+{
+ Intel,
+ AMD,
+ ARM,
+ Other,
+};
+
+struct CPUInfo
+{
+ CPUVendor vendor = CPUVendor::Intel;
+
+ char cpu_string[0x41] = {};
+ char brand_string[0x21] = {};
+ bool OS64bit = false;
+ bool CPU64bit = false;
+ bool Mode64bit = false;
+
+ bool HTT = false;
+ int num_cores = 0;
+ int logical_cpu_count = 0;
+
+ bool bSSE = false;
+ bool bSSE2 = false;
+ bool bSSE3 = false;
+ bool bSSSE3 = false;
+ bool bPOPCNT = false;
+ bool bSSE4_1 = false;
+ bool bSSE4_2 = false;
+ bool bLZCNT = false;
+ bool bSSE4A = false;
+ bool bAVX = false;
+ bool bAVX2 = false;
+ bool bBMI1 = false;
+ bool bBMI2 = false;
+ bool bFMA = false;
+ bool bFMA4 = false;
+ bool bAES = false;
+ // FXSAVE/FXRSTOR
+ bool bFXSR = false;
+ bool bMOVBE = false;
+ // This flag indicates that the hardware supports some mode
+ // in which denormal inputs _and_ outputs are automatically set to (signed) zero.
+ bool bFlushToZero = false;
+ bool bLAHFSAHF64 = false;
+ bool bLongMode = false;
+ bool bAtom = false;
+
+ // ARMv8 specific
+ bool bFP = false;
+ bool bASIMD = false;
+ bool bCRC32 = false;
+ bool bSHA1 = false;
+ bool bSHA2 = false;
+
+ // Call Detect()
+ explicit CPUInfo();
+
+ // Turn the CPU info into a string we can show
+ std::string Summarize();
+
+private:
+ // Detects the various CPU features
+ void Detect();
+};
+
+extern CPUInfo cpu_info;
diff --git a/src/dolphin/CodeBlock.h b/src/dolphin/CodeBlock.h
new file mode 100644
index 0000000..1434297
--- /dev/null
+++ b/src/dolphin/CodeBlock.h
@@ -0,0 +1,121 @@
+// Copyright 2014 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+#include <cstddef>
+#include <vector>
+
+#include "Assert.h"
+#include "../types.h"
+#include "MemoryUtil.h"
+
+namespace Common
+{
+// Everything that needs to generate code should inherit from this.
+// You get memory management for free, plus, you can use all emitter functions without
+// having to prefix them with gen-> or something similar.
+// Example implementation:
+// class JIT : public CodeBlock<ARMXEmitter> {}
+template <class T>
+class CodeBlock : public T
+{
+private:
+ // A privately used function to set the executable RAM space to something invalid.
+ // For debugging usefulness it should be used to set the RAM to a host specific breakpoint
+ // instruction
+ virtual void PoisonMemory() = 0;
+
+protected:
+ u8* region = nullptr;
+ // Size of region we can use.
+ size_t region_size = 0;
+ // Original size of the region we allocated.
+ size_t total_region_size = 0;
+
+ bool m_is_child = false;
+ std::vector<CodeBlock*> m_children;
+
+public:
+ CodeBlock() = default;
+ virtual ~CodeBlock()
+ {
+ if (region)
+ FreeCodeSpace();
+ }
+ CodeBlock(const CodeBlock&) = delete;
+ CodeBlock& operator=(const CodeBlock&) = delete;
+ CodeBlock(CodeBlock&&) = delete;
+ CodeBlock& operator=(CodeBlock&&) = delete;
+
+ // Call this before you generate any code.
+ void AllocCodeSpace(size_t size)
+ {
+ region_size = size;
+ total_region_size = size;
+ region = static_cast<u8*>(Common::AllocateExecutableMemory(total_region_size));
+ T::SetCodePtr(region);
+ }
+
+ // Always clear code space with breakpoints, so that if someone accidentally executes
+ // uninitialized, it just breaks into the debugger.
+ void ClearCodeSpace()
+ {
+ PoisonMemory();
+ ResetCodePtr();
+ }
+
+ // Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
+ void FreeCodeSpace()
+ {
+ ASSERT(!m_is_child);
+ Common::FreeMemoryPages(region, total_region_size);
+ region = nullptr;
+ region_size = 0;
+ total_region_size = 0;
+ for (CodeBlock* child : m_children)
+ {
+ child->region = nullptr;
+ child->region_size = 0;
+ child->total_region_size = 0;
+ }
+ }
+
+ bool IsInSpace(const u8* ptr) const { return ptr >= region && ptr < (region + region_size); }
+ // Cannot currently be undone. Will write protect the entire code region.
+ // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
+ void WriteProtect() { Common::WriteProtectMemory(region, region_size, true); }
+ void ResetCodePtr() { T::SetCodePtr(region); }
+ size_t GetSpaceLeft() const
+ {
+ ASSERT(static_cast<size_t>(T::GetCodePtr() - region) < region_size);
+ return region_size - (T::GetCodePtr() - region);
+ }
+
+ bool IsAlmostFull() const
+ {
+ // This should be bigger than the biggest block ever.
+ return GetSpaceLeft() < 0x10000;
+ }
+
+ bool HasChildren() const { return region_size != total_region_size; }
+ u8* AllocChildCodeSpace(size_t child_size)
+ {
+ ASSERT_MSG(DYNA_REC, child_size < GetSpaceLeft(), "Insufficient space for child allocation.");
+ u8* child_region = region + region_size - child_size;
+ region_size -= child_size;
+ return child_region;
+ }
+ void AddChildCodeSpace(CodeBlock* child, size_t child_size)
+ {
+ u8* child_region = AllocChildCodeSpace(child_size);
+ child->m_is_child = true;
+ child->region = child_region;
+ child->region_size = child_size;
+ child->total_region_size = child_size;
+ child->ResetCodePtr();
+ m_children.emplace_back(child);
+ }
+};
+} // namespace Common
diff --git a/src/dolphin/CommonFuncs.cpp b/src/dolphin/CommonFuncs.cpp
new file mode 100644
index 0000000..f85051d
--- /dev/null
+++ b/src/dolphin/CommonFuncs.cpp
@@ -0,0 +1,52 @@
+// Copyright 2009 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#include <cstddef>
+#include <cstring>
+#include <errno.h>
+#include <type_traits>
+
+#include "CommonFuncs.h"
+
+#ifdef _WIN32
+#include <windows.h>
+#define strerror_r(err, buf, len) strerror_s(buf, len, err)
+#endif
+
+constexpr size_t BUFFER_SIZE = 256;
+
+// Wrapper function to get last strerror(errno) string.
+// This function might change the error code.
+std::string LastStrerrorString()
+{
+ char error_message[BUFFER_SIZE];
+
+ // There are two variants of strerror_r. The XSI version stores the message to the passed-in
+ // buffer and returns an int (0 on success). The GNU version returns a pointer to the message,
+ // which might have been stored in the passed-in buffer or might be a static string.
+
+ // We check defines in order to figure out variant is in use, and we store the returned value
+ // to a variable so that we'll get a compile-time check that our assumption was correct.
+
+#if defined(__GLIBC__) && (_GNU_SOURCE || (_POSIX_C_SOURCE < 200112L && _XOPEN_SOURCE < 600))
+ const char* str = strerror_r(errno, error_message, BUFFER_SIZE);
+ return std::string(str);
+#else
+ int error_code = strerror_r(errno, error_message, BUFFER_SIZE);
+ return error_code == 0 ? std::string(error_message) : "";
+#endif
+}
+
+#ifdef _WIN32
+// Wrapper function to get GetLastError() string.
+// This function might change the error code.
+std::string GetLastErrorString()
+{
+ char error_message[BUFFER_SIZE];
+
+ FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, GetLastError(),
+ MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), error_message, BUFFER_SIZE, nullptr);
+ return std::string(error_message);
+}
+#endif
diff --git a/src/dolphin/CommonFuncs.h b/src/dolphin/CommonFuncs.h
new file mode 100644
index 0000000..708fbc3
--- /dev/null
+++ b/src/dolphin/CommonFuncs.h
@@ -0,0 +1,58 @@
+// Copyright 2009 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+#include <cstddef>
+#include <string>
+#include "../types.h"
+
+// Will fail to compile on a non-array:
+template <typename T, size_t N>
+constexpr size_t ArraySize(T (&arr)[N])
+{
+ return N;
+}
+
+#ifndef _WIN32
+
+// go to debugger mode
+#define Crash() \
+ { \
+ __builtin_trap(); \
+ }
+
+#else // WIN32
+// Function Cross-Compatibility
+#define strcasecmp _stricmp
+#define strncasecmp _strnicmp
+#define unlink _unlink
+#define vscprintf _vscprintf
+
+// 64 bit offsets for Windows
+#define fseeko _fseeki64
+#define ftello _ftelli64
+#define atoll _atoi64
+#define stat _stat64
+#define fstat _fstat64
+#define fileno _fileno
+
+extern "C" {
+__declspec(dllimport) void __stdcall DebugBreak(void);
+}
+#define Crash() \
+ { \
+ DebugBreak(); \
+ }
+#endif // WIN32 ndef
+
+// Wrapper function to get last strerror(errno) string.
+// This function might change the error code.
+std::string LastStrerrorString();
+
+#ifdef _WIN32
+// Wrapper function to get GetLastError() string.
+// This function might change the error code.
+std::string GetLastErrorString();
+#endif
diff --git a/src/dolphin/Intrinsics.h b/src/dolphin/Intrinsics.h
new file mode 100644
index 0000000..483f219
--- /dev/null
+++ b/src/dolphin/Intrinsics.h
@@ -0,0 +1,72 @@
+// Copyright 2015 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+#if defined(_M_X86)
+
+/**
+ * It is assumed that all compilers used to build Dolphin support intrinsics up to and including
+ * SSE 4.2 on x86/x64.
+ */
+
+#if defined(__GNUC__) || defined(__clang__)
+
+/**
+ * Due to limitations in GCC, SSE intrinsics are only available when compiling with the
+ * corresponding instruction set enabled. However, using the target attribute, we can compile
+ * single functions with a different target instruction set, while still creating a generic build.
+ *
+ * Since this instruction set is enabled per-function, any callers should verify that the
+ * instruction set is supported at runtime before calling it, and provide a fallback implementation
+ * when not supported.
+ *
+ * When building with -march=native, or enabling the instruction sets in the compile flags, permit
+ * usage of the instrinsics without any function attributes. If the command-line architecture does
+ * not support this instruction set, enable it via function targeting.
+ */
+
+#include <x86intrin.h>
+#ifndef __SSE4_2__
+#define FUNCTION_TARGET_SSE42 [[gnu::target("sse4.2")]]
+#endif
+#ifndef __SSE4_1__
+#define FUNCTION_TARGET_SSR41 [[gnu::target("sse4.1")]]
+#endif
+#ifndef __SSSE3__
+#define FUNCTION_TARGET_SSSE3 [[gnu::target("ssse3")]]
+#endif
+#ifndef __SSE3__
+#define FUNCTION_TARGET_SSE3 [[gnu::target("sse3")]]
+#endif
+
+#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
+
+/**
+ * MSVC and ICC support intrinsics for any instruction set without any function attributes.
+ */
+#include <intrin.h>
+
+#endif // defined(_MSC_VER) || defined(__INTEL_COMPILER)
+
+#endif // _M_X86
+
+/**
+ * Define the FUNCTION_TARGET macros to nothing if they are not needed, or not on an X86 platform.
+ * This way when a function is defined with FUNCTION_TARGET you don't need to define a second
+ * version without the macro around a #ifdef guard. Be careful when using intrinsics, as all use
+ * should still be placed around a #ifdef _M_X86 if the file is compiled on all architectures.
+ */
+#ifndef FUNCTION_TARGET_SSE42
+#define FUNCTION_TARGET_SSE42
+#endif
+#ifndef FUNCTION_TARGET_SSR41
+#define FUNCTION_TARGET_SSR41
+#endif
+#ifndef FUNCTION_TARGET_SSSE3
+#define FUNCTION_TARGET_SSSE3
+#endif
+#ifndef FUNCTION_TARGET_SSE3
+#define FUNCTION_TARGET_SSE3
+#endif
diff --git a/src/dolphin/Log.h b/src/dolphin/Log.h
new file mode 100644
index 0000000..21e69a5
--- /dev/null
+++ b/src/dolphin/Log.h
@@ -0,0 +1,20 @@
+#pragma once
+
+#include "CommonFuncs.h"
+
+#include <stdio.h>
+
+#define PanicAlert(msg) \
+ do \
+ { \
+ printf("%s\n", msg); \
+ Crash(); \
+ } while (false)
+
+#define DYNA_REC 0
+
+#define ERROR_LOG(which, fmt, ...) \
+ do \
+ { \
+ printf(fmt "\n", ## __VA_ARGS__); \
+ } while (false)
diff --git a/src/dolphin/MemoryUtil.cpp b/src/dolphin/MemoryUtil.cpp
new file mode 100644
index 0000000..01cb897
--- /dev/null
+++ b/src/dolphin/MemoryUtil.cpp
@@ -0,0 +1,193 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#include <cstddef>
+#include <cstdlib>
+#include <string>
+
+#define PanicAlert(fmt, ...) \
+ do \
+ { \
+ printf(fmt "\n", ## __VA_ARGS__); \
+ abort(); \
+ } while (false)
+
+#include "../types.h"
+#include "CommonFuncs.h"
+
+#ifdef _WIN32
+#include <windows.h>
+//#include "Common/StringUtil.h"
+#else
+#include <stdio.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#if defined __APPLE__ || defined __FreeBSD__ || defined __OpenBSD__
+#include <sys/sysctl.h>
+#elif defined __HAIKU__
+#include <OS.h>
+#else
+#include <sys/sysinfo.h>
+#endif
+#endif
+
+namespace Common
+{
+// This is purposely not a full wrapper for virtualalloc/mmap, but it
+// provides exactly the primitive operations that Dolphin needs.
+
+void* AllocateExecutableMemory(size_t size)
+{
+ printf("c\n");
+
+#if defined(_WIN32)
+ void* ptr = VirtualAlloc(nullptr, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
+#else
+ void* ptr =
+ mmap(nullptr, size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANON | MAP_PRIVATE, -1, 0);
+
+ if (ptr == MAP_FAILED)
+ ptr = nullptr;
+#endif
+ printf("a\n");
+
+ if (ptr == nullptr)
+ PanicAlert("Failed to allocate executable memory");
+
+ printf("b\n");
+
+ return ptr;
+}
+
+void* AllocateMemoryPages(size_t size)
+{
+#ifdef _WIN32
+ void* ptr = VirtualAlloc(nullptr, size, MEM_COMMIT, PAGE_READWRITE);
+#else
+ void* ptr = mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
+
+ if (ptr == MAP_FAILED)
+ ptr = nullptr;
+#endif
+
+ if (ptr == nullptr)
+ PanicAlert("Failed to allocate raw memory");
+
+ return ptr;
+}
+
+void* AllocateAlignedMemory(size_t size, size_t alignment)
+{
+#ifdef _WIN32
+ void* ptr = _aligned_malloc(size, alignment);
+#else
+ void* ptr = nullptr;
+ if (posix_memalign(&ptr, alignment, size) != 0)
+ ERROR_LOG(MEMMAP, "Failed to allocate aligned memory");
+#endif
+
+ if (ptr == nullptr)
+ PanicAlert("Failed to allocate aligned memory");
+
+ return ptr;
+}
+
+void FreeMemoryPages(void* ptr, size_t size)
+{
+ if (ptr)
+ {
+#ifdef _WIN32
+ if (!VirtualFree(ptr, 0, MEM_RELEASE))
+ PanicAlert("FreeMemoryPages failed!\nVirtualFree: %s", GetLastErrorString().c_str());
+#else
+ if (munmap(ptr, size) != 0)
+ PanicAlert("FreeMemoryPages failed!\nmunmap: %s", LastStrerrorString().c_str());
+#endif
+ }
+}
+
+void FreeAlignedMemory(void* ptr)
+{
+ if (ptr)
+ {
+#ifdef _WIN32
+ _aligned_free(ptr);
+#else
+ free(ptr);
+#endif
+ }
+}
+
+void ReadProtectMemory(void* ptr, size_t size)
+{
+#ifdef _WIN32
+ DWORD oldValue;
+ if (!VirtualProtect(ptr, size, PAGE_NOACCESS, &oldValue))
+ PanicAlert("ReadProtectMemory failed!\nVirtualProtect: %s", GetLastErrorString().c_str());
+#else
+ if (mprotect(ptr, size, PROT_NONE) != 0)
+ PanicAlert("ReadProtectMemory failed!\nmprotect: %s", LastStrerrorString().c_str());
+#endif
+}
+
+void WriteProtectMemory(void* ptr, size_t size, bool allowExecute)
+{
+#ifdef _WIN32
+ DWORD oldValue;
+ if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READ : PAGE_READONLY, &oldValue))
+ PanicAlert("WriteProtectMemory failed!\nVirtualProtect: %s", GetLastErrorString().c_str());
+#else
+ if (mprotect(ptr, size, allowExecute ? (PROT_READ | PROT_EXEC) : PROT_READ) != 0)
+ PanicAlert("WriteProtectMemory failed!\nmprotect: %s", LastStrerrorString().c_str());
+#endif
+}
+
+void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute)
+{
+#ifdef _WIN32
+ DWORD oldValue;
+ if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE, &oldValue))
+ PanicAlert("UnWriteProtectMemory failed!\nVirtualProtect: %s", GetLastErrorString().c_str());
+#else
+ if (mprotect(ptr, size,
+ allowExecute ? (PROT_READ | PROT_WRITE | PROT_EXEC) : PROT_WRITE | PROT_READ) != 0)
+ {
+ PanicAlert("UnWriteProtectMemory failed!\nmprotect: %s", LastStrerrorString().c_str());
+ }
+#endif
+}
+
+size_t MemPhysical()
+{
+#ifdef _WIN32
+ MEMORYSTATUSEX memInfo;
+ memInfo.dwLength = sizeof(MEMORYSTATUSEX);
+ GlobalMemoryStatusEx(&memInfo);
+ return memInfo.ullTotalPhys;
+#elif defined __APPLE__ || defined __FreeBSD__ || defined __OpenBSD__
+ int mib[2];
+ size_t physical_memory;
+ mib[0] = CTL_HW;
+#ifdef __APPLE__
+ mib[1] = HW_MEMSIZE;
+#elif defined __FreeBSD__
+ mib[1] = HW_REALMEM;
+#elif defined __OpenBSD__
+ mib[1] = HW_PHYSMEM;
+#endif
+ size_t length = sizeof(size_t);
+ sysctl(mib, 2, &physical_memory, &length, NULL, 0);
+ return physical_memory;
+#elif defined __HAIKU__
+ system_info sysinfo;
+ get_system_info(&sysinfo);
+ return static_cast<size_t>(sysinfo.max_pages * B_PAGE_SIZE);
+#else
+ struct sysinfo memInfo;
+ sysinfo(&memInfo);
+ return (size_t)memInfo.totalram * memInfo.mem_unit;
+#endif
+}
+
+} // namespace Common
diff --git a/src/dolphin/MemoryUtil.h b/src/dolphin/MemoryUtil.h
new file mode 100644
index 0000000..607b7a8
--- /dev/null
+++ b/src/dolphin/MemoryUtil.h
@@ -0,0 +1,22 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+#include <cstddef>
+#include <string>
+
+namespace Common
+{
+void* AllocateExecutableMemory(size_t size);
+void* AllocateMemoryPages(size_t size);
+void FreeMemoryPages(void* ptr, size_t size);
+void* AllocateAlignedMemory(size_t size, size_t alignment);
+void FreeAlignedMemory(void* ptr);
+void ReadProtectMemory(void* ptr, size_t size);
+void WriteProtectMemory(void* ptr, size_t size, bool executable = false);
+void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute = false);
+size_t MemPhysical();
+
+} // namespace Common
diff --git a/src/dolphin/license_dolphin.txt b/src/dolphin/license_dolphin.txt
new file mode 100644
index 0000000..d511905
--- /dev/null
+++ b/src/dolphin/license_dolphin.txt
@@ -0,0 +1,339 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 2, June 1991
+
+ Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The licenses for most software are designed to take away your
+freedom to share and change it. By contrast, the GNU General Public
+License is intended to guarantee your freedom to share and change free
+software--to make sure the software is free for all its users. This
+General Public License applies to most of the Free Software
+Foundation's software and to any other program whose authors commit to
+using it. (Some other Free Software Foundation software is covered by
+the GNU Lesser General Public License instead.) You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+this service if you wish), that you receive source code or can get it
+if you want it, that you can change the software or use pieces of it
+in new free programs; and that you know you can do these things.
+
+ To protect your rights, we need to make restrictions that forbid
+anyone to deny you these rights or to ask you to surrender the rights.
+These restrictions translate to certain responsibilities for you if you
+distribute copies of the software, or if you modify it.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must give the recipients all the rights that
+you have. You must make sure that they, too, receive or can get the
+source code. And you must show them these terms so they know their
+rights.
+
+ We protect your rights with two steps: (1) copyright the software, and
+(2) offer you this license which gives you legal permission to copy,
+distribute and/or modify the software.
+
+ Also, for each author's protection and ours, we want to make certain
+that everyone understands that there is no warranty for this free
+software. If the software is modified by someone else and passed on, we
+want its recipients to know that what they have is not the original, so
+that any problems introduced by others will not reflect on the original
+authors' reputations.
+
+ Finally, any free program is threatened constantly by software
+patents. We wish to avoid the danger that redistributors of a free
+program will individually obtain patent licenses, in effect making the
+program proprietary. To prevent this, we have made it clear that any
+patent must be licensed for everyone's free use or not licensed at all.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ GNU GENERAL PUBLIC LICENSE
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+ 0. This License applies to any program or other work which contains
+a notice placed by the copyright holder saying it may be distributed
+under the terms of this General Public License. The "Program", below,
+refers to any such program or work, and a "work based on the Program"
+means either the Program or any derivative work under copyright law:
+that is to say, a work containing the Program or a portion of it,
+either verbatim or with modifications and/or translated into another
+language. (Hereinafter, translation is included without limitation in
+the term "modification".) Each licensee is addressed as "you".
+
+Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope. The act of
+running the Program is not restricted, and the output from the Program
+is covered only if its contents constitute a work based on the
+Program (independent of having been made by running the Program).
+Whether that is true depends on what the Program does.
+
+ 1. You may copy and distribute verbatim copies of the Program's
+source code as you receive it, in any medium, provided that you
+conspicuously and appropriately publish on each copy an appropriate
+copyright notice and disclaimer of warranty; keep intact all the
+notices that refer to this License and to the absence of any warranty;
+and give any other recipients of the Program a copy of this License
+along with the Program.
+
+You may charge a fee for the physical act of transferring a copy, and
+you may at your option offer warranty protection in exchange for a fee.
+
+ 2. You may modify your copy or copies of the Program or any portion
+of it, thus forming a work based on the Program, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+ a) You must cause the modified files to carry prominent notices
+ stating that you changed the files and the date of any change.
+
+ b) You must cause any work that you distribute or publish, that in
+ whole or in part contains or is derived from the Program or any
+ part thereof, to be licensed as a whole at no charge to all third
+ parties under the terms of this License.
+
+ c) If the modified program normally reads commands interactively
+ when run, you must cause it, when started running for such
+ interactive use in the most ordinary way, to print or display an
+ announcement including an appropriate copyright notice and a
+ notice that there is no warranty (or else, saying that you provide
+ a warranty) and that users may redistribute the program under
+ these conditions, and telling the user how to view a copy of this
+ License. (Exception: if the Program itself is interactive but
+ does not normally print such an announcement, your work based on
+ the Program is not required to print an announcement.)
+
+These requirements apply to the modified work as a whole. If
+identifiable sections of that work are not derived from the Program,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works. But when you
+distribute the same sections as part of a whole which is a work based
+on the Program, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Program.
+
+In addition, mere aggregation of another work not based on the Program
+with the Program (or with a work based on the Program) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+ 3. You may copy and distribute the Program (or a work based on it,
+under Section 2) in object code or executable form under the terms of
+Sections 1 and 2 above provided that you also do one of the following:
+
+ a) Accompany it with the complete corresponding machine-readable
+ source code, which must be distributed under the terms of Sections
+ 1 and 2 above on a medium customarily used for software interchange; or,
+
+ b) Accompany it with a written offer, valid for at least three
+ years, to give any third party, for a charge no more than your
+ cost of physically performing source distribution, a complete
+ machine-readable copy of the corresponding source code, to be
+ distributed under the terms of Sections 1 and 2 above on a medium
+ customarily used for software interchange; or,
+
+ c) Accompany it with the information you received as to the offer
+ to distribute corresponding source code. (This alternative is
+ allowed only for noncommercial distribution and only if you
+ received the program in object code or executable form with such
+ an offer, in accord with Subsection b above.)
+
+The source code for a work means the preferred form of the work for
+making modifications to it. For an executable work, complete source
+code means all the source code for all modules it contains, plus any
+associated interface definition files, plus the scripts used to
+control compilation and installation of the executable. However, as a
+special exception, the source code distributed need not include
+anything that is normally distributed (in either source or binary
+form) with the major components (compiler, kernel, and so on) of the
+operating system on which the executable runs, unless that component
+itself accompanies the executable.
+
+If distribution of executable or object code is made by offering
+access to copy from a designated place, then offering equivalent
+access to copy the source code from the same place counts as
+distribution of the source code, even though third parties are not
+compelled to copy the source along with the object code.
+
+ 4. You may not copy, modify, sublicense, or distribute the Program
+except as expressly provided under this License. Any attempt
+otherwise to copy, modify, sublicense or distribute the Program is
+void, and will automatically terminate your rights under this License.
+However, parties who have received copies, or rights, from you under
+this License will not have their licenses terminated so long as such
+parties remain in full compliance.
+
+ 5. You are not required to accept this License, since you have not
+signed it. However, nothing else grants you permission to modify or
+distribute the Program or its derivative works. These actions are
+prohibited by law if you do not accept this License. Therefore, by
+modifying or distributing the Program (or any work based on the
+Program), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Program or works based on it.
+
+ 6. Each time you redistribute the Program (or any work based on the
+Program), the recipient automatically receives a license from the
+original licensor to copy, distribute or modify the Program subject to
+these terms and conditions. You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties to
+this License.
+
+ 7. If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Program at all. For example, if a patent
+license would not permit royalty-free redistribution of the Program by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Program.
+
+If any portion of this section is held invalid or unenforceable under
+any particular circumstance, the balance of the section is intended to
+apply and the section as a whole is intended to apply in other
+circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system, which is
+implemented by public license practices. Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+
+ 8. If the distribution and/or use of the Program is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Program under this License
+may add an explicit geographical distribution limitation excluding
+those countries, so that distribution is permitted only in or among
+countries not thus excluded. In such case, this License incorporates
+the limitation as if written in the body of this License.
+
+ 9. The Free Software Foundation may publish revised and/or new versions
+of the General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Program
+specifies a version number of this License which applies to it and "any
+later version", you have the option of following the terms and conditions
+either of that version or of any later version published by the Free
+Software Foundation. If the Program does not specify a version number of
+this License, you may choose any version ever published by the Free Software
+Foundation.
+
+ 10. If you wish to incorporate parts of the Program into other free
+programs whose distribution conditions are different, write to the author
+to ask for permission. For software which is copyrighted by the Free
+Software Foundation, write to the Free Software Foundation; we sometimes
+make exceptions for this. Our decision will be guided by the two goals
+of preserving the free status of all derivatives of our free software and
+of promoting the sharing and reuse of software generally.
+
+ NO WARRANTY
+
+ 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
+FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
+OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
+PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
+OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
+TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
+PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
+REPAIR OR CORRECTION.
+
+ 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
+REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
+INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
+OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
+TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
+YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
+PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGES.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+convey the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ <one line to give the program's name and a brief idea of what it does.>
+ Copyright (C) <year> <name of author>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License along
+ with this program; if not, write to the Free Software Foundation, Inc.,
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+
+Also add information on how to contact you by electronic and paper mail.
+
+If the program is interactive, make it output a short notice like this
+when it starts in an interactive mode:
+
+ Gnomovision version 69, Copyright (C) year name of author
+ Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, the commands you use may
+be called something other than `show w' and `show c'; they could even be
+mouse-clicks or menu items--whatever suits your program.
+
+You should also get your employer (if you work as a programmer) or your
+school, if any, to sign a "copyright disclaimer" for the program, if
+necessary. Here is a sample; alter the names:
+
+ Yoyodyne, Inc., hereby disclaims all copyright interest in the program
+ `Gnomovision' (which makes passes at compilers) written by James Hacker.
+
+ <signature of Ty Coon>, 1 April 1989
+ Ty Coon, President of Vice
+
+This General Public License does not permit incorporating your program into
+proprietary programs. If your program is a subroutine library, you may
+consider it more useful to permit linking proprietary applications with the
+library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.
diff --git a/src/dolphin/x64ABI.cpp b/src/dolphin/x64ABI.cpp
new file mode 100644
index 0000000..d86a158
--- /dev/null
+++ b/src/dolphin/x64ABI.cpp
@@ -0,0 +1,119 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#include "../types.h"
+#include "x64ABI.h"
+#include "x64Emitter.h"
+
+using namespace Gen;
+
+// Shared code between Win64 and Unix64
+
+void XEmitter::ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size,
+ size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp)
+{
+ size_t shadow = 0;
+#if defined(_WIN32)
+ shadow = 0x20;
+#endif
+
+ int count = (mask & ABI_ALL_GPRS).Count();
+ rsp_alignment -= count * 8;
+ size_t subtraction = 0;
+ int fpr_count = (mask & ABI_ALL_FPRS).Count();
+ if (fpr_count)
+ {
+ // If we have any XMMs to save, we must align the stack here.
+ subtraction = rsp_alignment & 0xf;
+ }
+ subtraction += 16 * fpr_count;
+ size_t xmm_base_subtraction = subtraction;
+ subtraction += needed_frame_size;
+ subtraction += shadow;
+ // Final alignment.
+ rsp_alignment -= subtraction;
+ subtraction += rsp_alignment & 0xf;
+
+ *shadowp = shadow;
+ *subtractionp = subtraction;
+ *xmm_offsetp = subtraction - xmm_base_subtraction;
+}
+
+size_t XEmitter::ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
+ size_t needed_frame_size)
+{
+ size_t shadow, subtraction, xmm_offset;
+ ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction,
+ &xmm_offset);
+
+ for (int r : mask& ABI_ALL_GPRS)
+ PUSH((X64Reg)r);
+
+ if (subtraction)
+ SUB(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction));
+
+ for (int x : mask& ABI_ALL_FPRS)
+ {
+ MOVAPD(MDisp(RSP, (int)xmm_offset), (X64Reg)(x - 16));
+ xmm_offset += 16;
+ }
+
+ return shadow;
+}
+
+void XEmitter::ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
+ size_t needed_frame_size)
+{
+ size_t shadow, subtraction, xmm_offset;
+ ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction,
+ &xmm_offset);
+
+ for (int x : mask& ABI_ALL_FPRS)
+ {
+ MOVAPD((X64Reg)(x - 16), MDisp(RSP, (int)xmm_offset));
+ xmm_offset += 16;
+ }
+
+ if (subtraction)
+ ADD(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction));
+
+ for (int r = 15; r >= 0; r--)
+ {
+ if (mask[r])
+ POP((X64Reg)r);
+ }
+}
+
+void XEmitter::MOVTwo(int bits, Gen::X64Reg dst1, Gen::X64Reg src1, s32 offset1, Gen::X64Reg dst2,
+ Gen::X64Reg src2)
+{
+ if (dst1 == src2 && dst2 == src1)
+ {
+ XCHG(bits, R(src1), R(src2));
+ if (offset1)
+ ADD(bits, R(dst1), Imm32(offset1));
+ }
+ else if (src2 != dst1)
+ {
+ if (dst1 != src1 && offset1)
+ LEA(bits, dst1, MDisp(src1, offset1));
+ else if (dst1 != src1)
+ MOV(bits, R(dst1), R(src1));
+ else if (offset1)
+ ADD(bits, R(dst1), Imm32(offset1));
+ if (dst2 != src2)
+ MOV(bits, R(dst2), R(src2));
+ }
+ else
+ {
+ if (dst2 != src2)
+ MOV(bits, R(dst2), R(src2));
+ if (dst1 != src1 && offset1)
+ LEA(bits, dst1, MDisp(src1, offset1));
+ else if (dst1 != src1)
+ MOV(bits, R(dst1), R(src1));
+ else if (offset1)
+ ADD(bits, R(dst1), Imm32(offset1));
+ }
+}
diff --git a/src/dolphin/x64ABI.h b/src/dolphin/x64ABI.h
new file mode 100644
index 0000000..997782e
--- /dev/null
+++ b/src/dolphin/x64ABI.h
@@ -0,0 +1,57 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+#include "BitSet.h"
+#include "x64Reg.h"
+
+// x64 ABI:s, and helpers to help follow them when JIT-ing code.
+// All convensions return values in EAX (+ possibly EDX).
+
+// Windows 64-bit
+// * 4-reg "fastcall" variant, very new-skool stack handling
+// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself
+// calls_
+// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space.
+// Scratch: RAX RCX RDX R8 R9 R10 R11
+// Callee-save: RBX RSI RDI RBP R12 R13 R14 R15
+// Parameters: RCX RDX R8 R9, further MOV-ed
+
+// Linux 64-bit
+// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed)
+// Scratch: RAX RCX RDX RSI RDI R8 R9 R10 R11
+// Callee-save: RBX RBP R12 R13 R14 R15
+// Parameters: RDI RSI RDX RCX R8 R9
+
+#define ABI_ALL_FPRS BitSet32(0xffff0000)
+#define ABI_ALL_GPRS BitSet32(0x0000ffff)
+
+#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
+
+#define ABI_PARAM1 RCX
+#define ABI_PARAM2 RDX
+#define ABI_PARAM3 R8
+#define ABI_PARAM4 R9
+
+// xmm0-xmm15 use the upper 16 bits in the functions that push/pop registers.
+#define ABI_ALL_CALLER_SAVED \
+ (BitSet32{RAX, RCX, RDX, R8, R9, R10, R11})
+#else // 64-bit Unix / OS X
+
+#define ABI_PARAM1 RDI
+#define ABI_PARAM2 RSI
+#define ABI_PARAM3 RDX
+#define ABI_PARAM4 RCX
+#define ABI_PARAM5 R8
+#define ABI_PARAM6 R9
+
+// FIXME: avoid pushing all 16 XMM registers when possible? most functions we call probably
+// don't actually clobber them.
+#define ABI_ALL_CALLER_SAVED (BitSet32{RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11} | ABI_ALL_FPRS)
+#endif // WIN32
+
+#define ABI_ALL_CALLEE_SAVED (~ABI_ALL_CALLER_SAVED)
+
+#define ABI_RETURN RAX
diff --git a/src/dolphin/x64CPUDetect.cpp b/src/dolphin/x64CPUDetect.cpp
new file mode 100644
index 0000000..05ee11c
--- /dev/null
+++ b/src/dolphin/x64CPUDetect.cpp
@@ -0,0 +1,274 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#include <cstring>
+#include <string>
+
+#include "CPUDetect.h"
+#include "../types.h"
+#include "Intrinsics.h"
+
+#ifndef _MSVC_VER
+
+#ifdef __FreeBSD__
+#include <unistd.h>
+
+#include <machine/cpufunc.h>
+#include <sys/types.h>
+#endif
+
+static inline void __cpuidex(int info[4], int function_id, int subfunction_id)
+{
+#ifdef __FreeBSD__
+ // Despite the name, this is just do_cpuid() with ECX as second input.
+ cpuid_count((u_int)function_id, (u_int)subfunction_id, (u_int*)info);
+#else
+ info[0] = function_id; // eax
+ info[2] = subfunction_id; // ecx
+ __asm__("cpuid"
+ : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3])
+ : "a"(function_id), "c"(subfunction_id));
+#endif
+}
+
+static inline void __cpuid(int info[4], int function_id)
+{
+ return __cpuidex(info, function_id, 0);
+}
+
+#endif // ifndef _WIN32
+
+#ifdef _MSVC_VER
+
+static u64 xgetbv(u32 index)
+{
+ return _xgetbv(index);
+}
+constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK;
+
+#else
+
+static u64 xgetbv(u32 index)
+{
+ u32 eax, edx;
+ __asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
+ return ((u64)edx << 32) | eax;
+}
+constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0;
+#endif // ifdef _WIN32
+
+CPUInfo cpu_info;
+
+CPUInfo::CPUInfo()
+{
+ Detect();
+}
+
+// Detects the various CPU features
+void CPUInfo::Detect()
+{
+#ifdef _M_X86_64
+ Mode64bit = true;
+ OS64bit = true;
+#endif
+ num_cores = 1;
+
+ // Set obvious defaults, for extra safety
+ if (Mode64bit)
+ {
+ bSSE = true;
+ bSSE2 = true;
+ bLongMode = true;
+ }
+
+ // Assume CPU supports the CPUID instruction. Those that don't can barely
+ // boot modern OS:es anyway.
+ int cpu_id[4];
+
+ // Detect CPU's CPUID capabilities, and grab CPU string
+ __cpuid(cpu_id, 0x00000000);
+ u32 max_std_fn = cpu_id[0]; // EAX
+ std::memcpy(&brand_string[0], &cpu_id[1], sizeof(int));
+ std::memcpy(&brand_string[4], &cpu_id[3], sizeof(int));
+ std::memcpy(&brand_string[8], &cpu_id[2], sizeof(int));
+ __cpuid(cpu_id, 0x80000000);
+ u32 max_ex_fn = cpu_id[0];
+ if (!strcmp(brand_string, "GenuineIntel"))
+ vendor = CPUVendor::Intel;
+ else if (!strcmp(brand_string, "AuthenticAMD"))
+ vendor = CPUVendor::AMD;
+ else
+ vendor = CPUVendor::Other;
+
+ // Set reasonable default brand string even if brand string not available.
+ strcpy(cpu_string, brand_string);
+
+ // Detect family and other misc stuff.
+ bool ht = false;
+ HTT = ht;
+ logical_cpu_count = 1;
+ if (max_std_fn >= 1)
+ {
+ __cpuid(cpu_id, 0x00000001);
+ int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff);
+ int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0);
+ // Detect people unfortunate enough to be running Dolphin on an Atom
+ if (family == 6 &&
+ (model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 ||
+ model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D))
+ bAtom = true;
+ logical_cpu_count = (cpu_id[1] >> 16) & 0xFF;
+ ht = (cpu_id[3] >> 28) & 1;
+
+ if ((cpu_id[3] >> 25) & 1)
+ bSSE = true;
+ if ((cpu_id[3] >> 26) & 1)
+ bSSE2 = true;
+ if ((cpu_id[2]) & 1)
+ bSSE3 = true;
+ if ((cpu_id[2] >> 9) & 1)
+ bSSSE3 = true;
+ if ((cpu_id[2] >> 19) & 1)
+ bSSE4_1 = true;
+ if ((cpu_id[2] >> 20) & 1)
+ bSSE4_2 = true;
+ if ((cpu_id[2] >> 22) & 1)
+ bMOVBE = true;
+ if ((cpu_id[2] >> 25) & 1)
+ bAES = true;
+
+ if ((cpu_id[3] >> 24) & 1)
+ {
+ // We can use FXSAVE.
+ bFXSR = true;
+ }
+
+ // AVX support requires 3 separate checks:
+ // - Is the AVX bit set in CPUID?
+ // - Is the XSAVE bit set in CPUID?
+ // - XGETBV result has the XCR bit set.
+ if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1))
+ {
+ if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6)
+ {
+ bAVX = true;
+ if ((cpu_id[2] >> 12) & 1)
+ bFMA = true;
+ }
+ }
+
+ if (max_std_fn >= 7)
+ {
+ __cpuidex(cpu_id, 0x00000007, 0x00000000);
+ // careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed
+ if ((cpu_id[1] >> 5) & 1)
+ bAVX2 = bAVX;
+ if ((cpu_id[1] >> 3) & 1)
+ bBMI1 = true;
+ if ((cpu_id[1] >> 8) & 1)
+ bBMI2 = true;
+ }
+ }
+
+ bFlushToZero = bSSE;
+
+ if (max_ex_fn >= 0x80000004)
+ {
+ // Extract CPU model string
+ __cpuid(cpu_id, 0x80000002);
+ memcpy(cpu_string, cpu_id, sizeof(cpu_id));
+ __cpuid(cpu_id, 0x80000003);
+ memcpy(cpu_string + 16, cpu_id, sizeof(cpu_id));
+ __cpuid(cpu_id, 0x80000004);
+ memcpy(cpu_string + 32, cpu_id, sizeof(cpu_id));
+ }
+ if (max_ex_fn >= 0x80000001)
+ {
+ // Check for more features.
+ __cpuid(cpu_id, 0x80000001);
+ if (cpu_id[2] & 1)
+ bLAHFSAHF64 = true;
+ if ((cpu_id[2] >> 5) & 1)
+ bLZCNT = true;
+ if ((cpu_id[2] >> 16) & 1)
+ bFMA4 = true;
+ if ((cpu_id[3] >> 29) & 1)
+ bLongMode = true;
+ }
+
+ num_cores = (logical_cpu_count == 0) ? 1 : logical_cpu_count;
+
+ if (max_ex_fn >= 0x80000008)
+ {
+ // Get number of cores. This is a bit complicated. Following AMD manual here.
+ __cpuid(cpu_id, 0x80000008);
+ int apic_id_core_id_size = (cpu_id[2] >> 12) & 0xF;
+ if (apic_id_core_id_size == 0)
+ {
+ if (ht)
+ {
+ // New mechanism for modern Intel CPUs.
+ if (vendor == CPUVendor::Intel)
+ {
+ __cpuidex(cpu_id, 0x00000004, 0x00000000);
+ int cores_x_package = ((cpu_id[0] >> 26) & 0x3F) + 1;
+ HTT = (cores_x_package < logical_cpu_count);
+ cores_x_package = ((logical_cpu_count % cores_x_package) == 0) ? cores_x_package : 1;
+ num_cores = (cores_x_package > 1) ? cores_x_package : num_cores;
+ logical_cpu_count /= cores_x_package;
+ }
+ }
+ }
+ else
+ {
+ // Use AMD's new method.
+ num_cores = (cpu_id[2] & 0xFF) + 1;
+ }
+ }
+}
+
+// Turn the CPU info into a string we can show
+std::string CPUInfo::Summarize()
+{
+ std::string sum(cpu_string);
+ sum += " (";
+ sum += brand_string;
+ sum += ")";
+
+ if (bSSE)
+ sum += ", SSE";
+ if (bSSE2)
+ {
+ sum += ", SSE2";
+ if (!bFlushToZero)
+ sum += " (but not DAZ!)";
+ }
+ if (bSSE3)
+ sum += ", SSE3";
+ if (bSSSE3)
+ sum += ", SSSE3";
+ if (bSSE4_1)
+ sum += ", SSE4.1";
+ if (bSSE4_2)
+ sum += ", SSE4.2";
+ if (HTT)
+ sum += ", HTT";
+ if (bAVX)
+ sum += ", AVX";
+ if (bAVX2)
+ sum += ", AVX2";
+ if (bBMI1)
+ sum += ", BMI1";
+ if (bBMI2)
+ sum += ", BMI2";
+ if (bFMA)
+ sum += ", FMA";
+ if (bAES)
+ sum += ", AES";
+ if (bMOVBE)
+ sum += ", MOVBE";
+ if (bLongMode)
+ sum += ", 64-bit support";
+ return sum;
+}
diff --git a/src/dolphin/x64Emitter.cpp b/src/dolphin/x64Emitter.cpp
new file mode 100644
index 0000000..7849624
--- /dev/null
+++ b/src/dolphin/x64Emitter.cpp
@@ -0,0 +1,3398 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#include <cinttypes>
+#include <cstring>
+
+#include "CPUDetect.h"
+#include "../types.h"
+#include "Log.h"
+#include "x64Emitter.h"
+#include "x64Reg.h"
+
+namespace Gen
+{
+// TODO(ector): Add EAX special casing, for ever so slightly smaller code.
+struct NormalOpDef
+{
+ u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
+};
+
+// 0xCC is code for invalid combination of immediates
+static const NormalOpDef normalops[11] = {
+ {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD
+ {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC
+
+ {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB
+ {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB
+
+ {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND
+ {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR
+
+ {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR
+ {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV
+
+ {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from)
+ {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP
+
+ {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG
+};
+
+enum NormalSSEOps
+{
+ sseCMP = 0xC2,
+ sseADD = 0x58, // ADD
+ sseSUB = 0x5C, // SUB
+ sseAND = 0x54, // AND
+ sseANDN = 0x55, // ANDN
+ sseOR = 0x56,
+ sseXOR = 0x57,
+ sseMUL = 0x59, // MUL
+ sseDIV = 0x5E, // DIV
+ sseMIN = 0x5D, // MIN
+ sseMAX = 0x5F, // MAX
+ sseCOMIS = 0x2F, // COMIS
+ sseUCOMIS = 0x2E, // UCOMIS
+ sseSQRT = 0x51, // SQRT
+ sseRCP = 0x53, // RCP
+ sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!)
+ sseMOVAPfromRM = 0x28, // MOVAP from RM
+ sseMOVAPtoRM = 0x29, // MOVAP to RM
+ sseMOVUPfromRM = 0x10, // MOVUP from RM
+ sseMOVUPtoRM = 0x11, // MOVUP to RM
+ sseMOVLPfromRM = 0x12,
+ sseMOVLPtoRM = 0x13,
+ sseMOVHPfromRM = 0x16,
+ sseMOVHPtoRM = 0x17,
+ sseMOVHLPS = 0x12,
+ sseMOVLHPS = 0x16,
+ sseMOVDQfromRM = 0x6F,
+ sseMOVDQtoRM = 0x7F,
+ sseMASKMOVDQU = 0xF7,
+ sseLDDQU = 0xF0,
+ sseSHUF = 0xC6,
+ sseMOVNTDQ = 0xE7,
+ sseMOVNTP = 0x2B,
+};
+
+enum class NormalOp
+{
+ ADD,
+ ADC,
+ SUB,
+ SBB,
+ AND,
+ OR,
+ XOR,
+ MOV,
+ TEST,
+ CMP,
+ XCHG,
+};
+
+enum class FloatOp
+{
+ LD = 0,
+ ST = 2,
+ STP = 3,
+ LD80 = 5,
+ STP80 = 7,
+
+ Invalid = -1,
+};
+
+void XEmitter::SetCodePtr(u8* ptr)
+{
+ code = ptr;
+}
+
+const u8* XEmitter::GetCodePtr() const
+{
+ return code;
+}
+
+u8* XEmitter::GetWritableCodePtr()
+{
+ return code;
+}
+
+void XEmitter::Write8(u8 value)
+{
+ *code++ = value;
+}
+
+void XEmitter::Write16(u16 value)
+{
+ std::memcpy(code, &value, sizeof(u16));
+ code += sizeof(u16);
+}
+
+void XEmitter::Write32(u32 value)
+{
+ std::memcpy(code, &value, sizeof(u32));
+ code += sizeof(u32);
+}
+
+void XEmitter::Write64(u64 value)
+{
+ std::memcpy(code, &value, sizeof(u64));
+ code += sizeof(u64);
+}
+
+void XEmitter::ReserveCodeSpace(int bytes)
+{
+ for (int i = 0; i < bytes; i++)
+ *code++ = 0xCC;
+}
+
+u8* XEmitter::AlignCodeTo(size_t alignment)
+{
+ ASSERT_MSG(DYNA_REC, alignment != 0 && (alignment & (alignment - 1)) == 0,
+ "Alignment must be power of two");
+ u64 c = reinterpret_cast<u64>(code) & (alignment - 1);
+ if (c)
+ ReserveCodeSpace(static_cast<int>(alignment - c));
+ return code;
+}
+
+u8* XEmitter::AlignCode4()
+{
+ return AlignCodeTo(4);
+}
+
+u8* XEmitter::AlignCode16()
+{
+ return AlignCodeTo(16);
+}
+
+u8* XEmitter::AlignCodePage()
+{
+ return AlignCodeTo(4096);
+}
+
+// This operation modifies flags; check to see the flags are locked.
+// If the flags are locked, we should immediately and loudly fail before
+// causing a subtle JIT bug.
+void XEmitter::CheckFlags()
+{
+ ASSERT_MSG(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!");
+}
+
+void XEmitter::WriteModRM(int mod, int reg, int rm)
+{
+ Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
+}
+
+void XEmitter::WriteSIB(int scale, int index, int base)
+{
+ Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
+}
+
+void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const
+{
+ if (customOp == -1)
+ customOp = operandReg;
+ u8 op = 0x40;
+ // REX.W (whether operation is a 64-bit operation)
+ if (opBits == 64)
+ op |= 8;
+ // REX.R (whether ModR/M reg field refers to R8-R15.
+ if (customOp & 8)
+ op |= 4;
+ // REX.X (whether ModR/M SIB index field refers to R8-R15)
+ if (indexReg & 8)
+ op |= 2;
+ // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
+ if (offsetOrBaseReg & 8)
+ op |= 1;
+ // Write REX if wr have REX bits to write, or if the operation accesses
+ // SIL, DIL, BPL, or SPL.
+ if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
+ (opBits == 8 && (customOp & 0x10c) == 4))
+ {
+ emit->Write8(op);
+ // Check the operation doesn't access AH, BH, CH, or DH.
+ DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0);
+ DEBUG_ASSERT((customOp & 0x100) == 0);
+ }
+}
+
+void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
+ int W) const
+{
+ int R = !(regOp1 & 8);
+ int X = !(indexReg & 8);
+ int B = !(offsetOrBaseReg & 8);
+
+ int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
+
+ // do we need any VEX fields that only appear in the three-byte form?
+ if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
+ {
+ u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp;
+ emit->Write8(0xC5);
+ emit->Write8(RvvvvLpp);
+ }
+ else
+ {
+ u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
+ u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp;
+ emit->Write8(0xC4);
+ emit->Write8(RXBmmmmm);
+ emit->Write8(WvvvvLpp);
+ }
+}
+
+void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg,
+ bool warn_64bit_offset) const
+{
+ if (_operandReg == INVALID_REG)
+ _operandReg = (X64Reg)this->operandReg;
+ int mod = 0;
+ int ireg = indexReg;
+ bool SIB = false;
+ int _offsetOrBaseReg = this->offsetOrBaseReg;
+
+ if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address
+ {
+ // Oh, RIP addressing.
+ _offsetOrBaseReg = 5;
+ emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
+ // TODO : add some checks
+ u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
+ s64 distance = (s64)offset - (s64)ripAddr;
+ ASSERT_MSG(DYNA_REC,
+ (distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset,
+ "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset);
+ s32 offs = (s32)distance;
+ emit->Write32((u32)offs);
+ return;
+ }
+
+ if (scale == 0)
+ {
+ // Oh, no memory, Just a reg.
+ mod = 3; // 11
+ }
+ else
+ {
+ // Ah good, no scaling.
+ if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
+ {
+ // Okay, we're good. No SIB necessary.
+ int ioff = (int)offset;
+ if (ioff == 0)
+ {
+ mod = 0;
+ }
+ else if (ioff < -128 || ioff > 127)
+ {
+ mod = 2; // 32-bit displacement
+ }
+ else
+ {
+ mod = 1; // 8-bit displacement
+ }
+ }
+ else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
+ {
+ SIB = true;
+ mod = 0;
+ _offsetOrBaseReg = 5;
+ }
+ else
+ {
+ if ((_offsetOrBaseReg & 7) == 4) // this would occupy the SIB encoding :(
+ {
+ // So we have to fake it with SIB encoding :(
+ SIB = true;
+ }
+
+ if (scale >= SCALE_1 && scale < SCALE_ATREG)
+ {
+ SIB = true;
+ }
+
+ if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
+ {
+ SIB = true;
+ ireg = _offsetOrBaseReg;
+ }
+
+ // Okay, we're fine. Just disp encoding.
+ // We need displacement. Which size?
+ int ioff = (int)(s64)offset;
+ if (ioff < -128 || ioff > 127)
+ {
+ mod = 2; // 32-bit displacement
+ }
+ else
+ {
+ mod = 1; // 8-bit displacement
+ }
+ }
+ }
+
+ // Okay. Time to do the actual writing
+ // ModRM byte:
+ int oreg = _offsetOrBaseReg;
+ if (SIB)
+ oreg = 4;
+
+ emit->WriteModRM(mod, _operandReg & 7, oreg & 7);
+
+ if (SIB)
+ {
+ // SIB byte
+ int ss;
+ switch (scale)
+ {
+ case SCALE_NONE:
+ _offsetOrBaseReg = 4;
+ ss = 0;
+ break; // RSP
+ case SCALE_1:
+ ss = 0;
+ break;
+ case SCALE_2:
+ ss = 1;
+ break;
+ case SCALE_4:
+ ss = 2;
+ break;
+ case SCALE_8:
+ ss = 3;
+ break;
+ case SCALE_NOBASE_2:
+ ss = 1;
+ break;
+ case SCALE_NOBASE_4:
+ ss = 2;
+ break;
+ case SCALE_NOBASE_8:
+ ss = 3;
+ break;
+ case SCALE_ATREG:
+ ss = 0;
+ break;
+ default:
+ ASSERT_MSG(DYNA_REC, 0, "Invalid scale for SIB byte");
+ ss = 0;
+ break;
+ }
+ emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7)));
+ }
+
+ if (mod == 1) // 8-bit disp
+ {
+ emit->Write8((u8)(s8)(s32)offset);
+ }
+ else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp
+ {
+ emit->Write32((u32)offset);
+ }
+}
+
+// W = operand extended width (1 if 64-bit)
+// R = register# upper bit
+// X = scale amnt upper bit
+// B = base register# upper bit
+void XEmitter::Rex(int w, int r, int x, int b)
+{
+ w = w ? 1 : 0;
+ r = r ? 1 : 0;
+ x = x ? 1 : 0;
+ b = b ? 1 : 0;
+ u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
+ if (rx != 0x40)
+ Write8(rx);
+}
+
+void XEmitter::JMP(const u8* addr, bool force5Bytes)
+{
+ u64 fn = (u64)addr;
+ if (!force5Bytes)
+ {
+ s64 distance = (s64)(fn - ((u64)code + 2));
+ ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80,
+ "Jump target too far away, needs force5Bytes = true");
+ // 8 bits will do
+ Write8(0xEB);
+ Write8((u8)(s8)distance);
+ }
+ else
+ {
+ s64 distance = (s64)(fn - ((u64)code + 5));
+
+ ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
+ Write8(0xE9);
+ Write32((u32)(s32)distance);
+ }
+}
+
+void XEmitter::JMPptr(const OpArg& arg2)
+{
+ OpArg arg = arg2;
+ if (arg.IsImm())
+ ASSERT_MSG(DYNA_REC, 0, "JMPptr - Imm argument");
+ arg.operandReg = 4;
+ arg.WriteREX(this, 0, 0);
+ Write8(0xFF);
+ arg.WriteRest(this);
+}
+
+// Can be used to trap other processors, before overwriting their code
+// not used in Dolphin
+void XEmitter::JMPself()
+{
+ Write8(0xEB);
+ Write8(0xFE);
+}
+
+void XEmitter::CALLptr(OpArg arg)
+{
+ if (arg.IsImm())
+ ASSERT_MSG(DYNA_REC, 0, "CALLptr - Imm argument");
+ arg.operandReg = 2;
+ arg.WriteREX(this, 0, 0);
+ Write8(0xFF);
+ arg.WriteRest(this);
+}
+
+void XEmitter::CALL(const void* fnptr)
+{
+ u64 distance = u64(fnptr) - (u64(code) + 5);
+ ASSERT_MSG(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL,
+ "CALL out of range (%p calls %p)", code, fnptr);
+ Write8(0xE8);
+ Write32(u32(distance));
+}
+
+FixupBranch XEmitter::CALL()
+{
+ FixupBranch branch;
+ branch.type = FixupBranch::Type::Branch32Bit;
+ branch.ptr = code + 5;
+ Write8(0xE8);
+ Write32(0);
+ return branch;
+}
+
+FixupBranch XEmitter::J(bool force5bytes)
+{
+ FixupBranch branch;
+ branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit;
+ branch.ptr = code + (force5bytes ? 5 : 2);
+ if (!force5bytes)
+ {
+ // 8 bits will do
+ Write8(0xEB);
+ Write8(0);
+ }
+ else
+ {
+ Write8(0xE9);
+ Write32(0);
+ }
+ return branch;
+}
+
+FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
+{
+ FixupBranch branch;
+ branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit;
+ branch.ptr = code + (force5bytes ? 6 : 2);
+ if (!force5bytes)
+ {
+ // 8 bits will do
+ Write8(0x70 + conditionCode);
+ Write8(0);
+ }
+ else
+ {
+ Write8(0x0F);
+ Write8(0x80 + conditionCode);
+ Write32(0);
+ }
+ return branch;
+}
+
+void XEmitter::J_CC(CCFlags conditionCode, const u8* addr)
+{
+ u64 fn = (u64)addr;
+ s64 distance = (s64)(fn - ((u64)code + 2));
+ if (distance < -0x80 || distance >= 0x80)
+ {
+ distance = (s64)(fn - ((u64)code + 6));
+ ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
+ Write8(0x0F);
+ Write8(0x80 + conditionCode);
+ Write32((u32)(s32)distance);
+ }
+ else
+ {
+ Write8(0x70 + conditionCode);
+ Write8((u8)(s8)distance);
+ }
+}
+
+void XEmitter::SetJumpTarget(const FixupBranch& branch)
+{
+ if (branch.type == FixupBranch::Type::Branch8Bit)
+ {
+ s64 distance = (s64)(code - branch.ptr);
+ if (!(distance >= -0x80 && distance < 0x80))
+ {
+ printf("miauz\n");
+ }
+ ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80,
+ "Jump target too far away, needs force5Bytes = true");
+ branch.ptr[-1] = (u8)(s8)distance;
+ }
+ else if (branch.type == FixupBranch::Type::Branch32Bit)
+ {
+ s64 distance = (s64)(code - branch.ptr);
+ ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
+
+ s32 valid_distance = static_cast<s32>(distance);
+ std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32));
+ }
+}
+
+// Single byte opcodes
+// There is no PUSHAD/POPAD in 64-bit mode.
+void XEmitter::INT3()
+{
+ Write8(0xCC);
+}
+void XEmitter::RET()
+{
+ Write8(0xC3);
+}
+void XEmitter::RET_FAST()
+{
+ Write8(0xF3);
+ Write8(0xC3);
+} // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to
+ // a ret
+
+// The first sign of decadence: optimized NOPs.
+void XEmitter::NOP(size_t size)
+{
+ DEBUG_ASSERT((int)size > 0);
+ while (true)
+ {
+ switch (size)
+ {
+ case 0:
+ return;
+ case 1:
+ Write8(0x90);
+ return;
+ case 2:
+ Write8(0x66);
+ Write8(0x90);
+ return;
+ case 3:
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x00);
+ return;
+ case 4:
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x40);
+ Write8(0x00);
+ return;
+ case 5:
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x44);
+ Write8(0x00);
+ Write8(0x00);
+ return;
+ case 6:
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x44);
+ Write8(0x00);
+ Write8(0x00);
+ return;
+ case 7:
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x80);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ return;
+ case 8:
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ return;
+ case 9:
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ return;
+ case 10:
+ Write8(0x66);
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ return;
+ default:
+ // Even though x86 instructions are allowed to be up to 15 bytes long,
+ // AMD advises against using NOPs longer than 11 bytes because they
+ // carry a performance penalty on CPUs older than AMD family 16h.
+ Write8(0x66);
+ Write8(0x66);
+ Write8(0x66);
+ Write8(0x0F);
+ Write8(0x1F);
+ Write8(0x84);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ Write8(0x00);
+ size -= 11;
+ continue;
+ }
+ }
+}
+
+void XEmitter::PAUSE()
+{
+ Write8(0xF3);
+ NOP();
+} // use in tight spinloops for energy saving on some CPU
+void XEmitter::CLC()
+{
+ CheckFlags();
+ Write8(0xF8);
+} // clear carry
+void XEmitter::CMC()
+{
+ CheckFlags();
+ Write8(0xF5);
+} // flip carry
+void XEmitter::STC()
+{
+ CheckFlags();
+ Write8(0xF9);
+} // set carry
+
+// TODO: xchg ah, al ???
+void XEmitter::XCHG_AHAL()
+{
+ Write8(0x86);
+ Write8(0xe0);
+ // alt. 86 c4
+}
+
+// These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
+void XEmitter::LAHF()
+{
+ Write8(0x9F);
+}
+void XEmitter::SAHF()
+{
+ CheckFlags();
+ Write8(0x9E);
+}
+
+void XEmitter::PUSHF()
+{
+ Write8(0x9C);
+}
+void XEmitter::POPF()
+{
+ CheckFlags();
+ Write8(0x9D);
+}
+
+void XEmitter::LFENCE()
+{
+ Write8(0x0F);
+ Write8(0xAE);
+ Write8(0xE8);
+}
+void XEmitter::MFENCE()
+{
+ Write8(0x0F);
+ Write8(0xAE);
+ Write8(0xF0);
+}
+void XEmitter::SFENCE()
+{
+ Write8(0x0F);
+ Write8(0xAE);
+ Write8(0xF8);
+}
+
+void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
+{
+ if (bits == 16)
+ Write8(0x66);
+ Rex(bits == 64, 0, 0, (int)reg >> 3);
+ Write8(byte + ((int)reg & 7));
+}
+
+void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
+{
+ if (bits == 16)
+ Write8(0x66);
+ Rex(bits == 64, 0, 0, (int)reg >> 3);
+ Write8(byte1);
+ Write8(byte2 + ((int)reg & 7));
+}
+
+void XEmitter::CWD(int bits)
+{
+ if (bits == 16)
+ Write8(0x66);
+ Rex(bits == 64, 0, 0, 0);
+ Write8(0x99);
+}
+
+void XEmitter::CBW(int bits)
+{
+ if (bits == 8)
+ Write8(0x66);
+ Rex(bits == 32, 0, 0, 0);
+ Write8(0x98);
+}
+
+// Simple opcodes
+
+// push/pop do not need wide to be 64-bit
+void XEmitter::PUSH(X64Reg reg)
+{
+ WriteSimple1Byte(32, 0x50, reg);
+}
+void XEmitter::POP(X64Reg reg)
+{
+ WriteSimple1Byte(32, 0x58, reg);
+}
+
+void XEmitter::PUSH(int bits, const OpArg& reg)
+{
+ if (reg.IsSimpleReg())
+ PUSH(reg.GetSimpleReg());
+ else if (reg.IsImm())
+ {
+ switch (reg.GetImmBits())
+ {
+ case 8:
+ Write8(0x6A);
+ Write8((u8)(s8)reg.offset);
+ break;
+ case 16:
+ Write8(0x66);
+ Write8(0x68);
+ Write16((u16)(s16)(s32)reg.offset);
+ break;
+ case 32:
+ Write8(0x68);
+ Write32((u32)reg.offset);
+ break;
+ default:
+ ASSERT_MSG(DYNA_REC, 0, "PUSH - Bad imm bits");
+ break;
+ }
+ }
+ else
+ {
+ if (bits == 16)
+ Write8(0x66);
+ reg.WriteREX(this, bits, bits);
+ Write8(0xFF);
+ reg.WriteRest(this, 0, (X64Reg)6);
+ }
+}
+
+void XEmitter::POP(int /*bits*/, const OpArg& reg)
+{
+ if (reg.IsSimpleReg())
+ POP(reg.GetSimpleReg());
+ else
+ ASSERT_MSG(DYNA_REC, 0, "POP - Unsupported encoding");
+}
+
+void XEmitter::BSWAP(int bits, X64Reg reg)
+{
+ if (bits >= 32)
+ {
+ WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
+ }
+ else if (bits == 16)
+ {
+ ROL(16, R(reg), Imm8(8));
+ }
+ else if (bits == 8)
+ {
+ // Do nothing - can't bswap a single byte...
+ }
+ else
+ {
+ ASSERT_MSG(DYNA_REC, 0, "BSWAP - Wrong number of bits");
+ }
+}
+
+// Undefined opcode - reserved
+// If we ever need a way to always cause a non-breakpoint hard exception...
+void XEmitter::UD2()
+{
+ Write8(0x0F);
+ Write8(0x0B);
+}
+
+void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
+{
+ ASSERT_MSG(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument");
+ arg.operandReg = (u8)level;
+ arg.WriteREX(this, 0, 0);
+ Write8(0x0F);
+ Write8(0x18);
+ arg.WriteRest(this);
+}
+
+void XEmitter::SETcc(CCFlags flag, OpArg dest)
+{
+ ASSERT_MSG(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument");
+ dest.operandReg = 0;
+ dest.WriteREX(this, 0, 8);
+ Write8(0x0F);
+ Write8(0x90 + (u8)flag);
+ dest.WriteRest(this);
+}
+
+void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
+{
+ ASSERT_MSG(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument");
+ ASSERT_MSG(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported");
+ if (bits == 16)
+ Write8(0x66);
+ src.operandReg = dest;
+ src.WriteREX(this, bits, bits);
+ Write8(0x0F);
+ Write8(0x40 + (u8)flag);
+ src.WriteRest(this);
+}
+
+void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
+{
+ ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument");
+ CheckFlags();
+ src.operandReg = ext;
+ if (bits == 16)
+ Write8(0x66);
+ src.WriteREX(this, bits, bits, 0);
+ if (bits == 8)
+ {
+ Write8(0xF6);
+ }
+ else
+ {
+ Write8(0xF7);
+ }
+ src.WriteRest(this);
+}
+
+void XEmitter::MUL(int bits, const OpArg& src)
+{
+ WriteMulDivType(bits, src, 4);
+}
+void XEmitter::DIV(int bits, const OpArg& src)
+{
+ WriteMulDivType(bits, src, 6);
+}
+void XEmitter::IMUL(int bits, const OpArg& src)
+{
+ WriteMulDivType(bits, src, 5);
+}
+void XEmitter::IDIV(int bits, const OpArg& src)
+{
+ WriteMulDivType(bits, src, 7);
+}
+void XEmitter::NEG(int bits, const OpArg& src)
+{
+ WriteMulDivType(bits, src, 3);
+}
+void XEmitter::NOT(int bits, const OpArg& src)
+{
+ WriteMulDivType(bits, src, 2);
+}
+
+void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
+{
+ ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument");
+ CheckFlags();
+ src.operandReg = (u8)dest;
+ if (bits == 16)
+ Write8(0x66);
+ if (rep)
+ Write8(0xF3);
+ src.WriteREX(this, bits, bits);
+ Write8(0x0F);
+ Write8(byte2);
+ src.WriteRest(this);
+}
+
+void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src)
+{
+ if (bits <= 16)
+ ASSERT_MSG(DYNA_REC, 0, "MOVNTI - bits<=16");
+ WriteBitSearchType(bits, src, dest, 0xC3);
+}
+
+void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src)
+{
+ WriteBitSearchType(bits, dest, src, 0xBC);
+} // Bottom bit to top bit
+void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src)
+{
+ WriteBitSearchType(bits, dest, src, 0xBD);
+} // Top bit to bottom bit
+
+void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src)
+{
+ CheckFlags();
+ if (!cpu_info.bBMI1)
+ PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
+ WriteBitSearchType(bits, dest, src, 0xBC, true);
+}
+void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src)
+{
+ CheckFlags();
+ if (!cpu_info.bLZCNT)
+ PanicAlert("Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
+ WriteBitSearchType(bits, dest, src, 0xBD, true);
+}
+
+void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
+{
+ ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument");
+ if (dbits == sbits)
+ {
+ MOV(dbits, R(dest), src);
+ return;
+ }
+ src.operandReg = (u8)dest;
+ if (dbits == 16)
+ Write8(0x66);
+ src.WriteREX(this, dbits, sbits);
+ if (sbits == 8)
+ {
+ Write8(0x0F);
+ Write8(0xBE);
+ }
+ else if (sbits == 16)
+ {
+ Write8(0x0F);
+ Write8(0xBF);
+ }
+ else if (sbits == 32 && dbits == 64)
+ {
+ Write8(0x63);
+ }
+ else
+ {
+ Crash();
+ }
+ src.WriteRest(this);
+}
+
+void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
+{
+ ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument");
+ if (dbits == sbits)
+ {
+ MOV(dbits, R(dest), src);
+ return;
+ }
+ src.operandReg = (u8)dest;
+ if (dbits == 16)
+ Write8(0x66);
+ // the 32bit result is automatically zero extended to 64bit
+ src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits);
+ if (sbits == 8)
+ {
+ Write8(0x0F);
+ Write8(0xB6);
+ }
+ else if (sbits == 16)
+ {
+ Write8(0x0F);
+ Write8(0xB7);
+ }
+ else if (sbits == 32 && dbits == 64)
+ {
+ Write8(0x8B);
+ }
+ else
+ {
+ ASSERT_MSG(DYNA_REC, 0, "MOVZX - Invalid size");
+ }
+ src.WriteRest(this);
+}
+
+void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg)
+{
+ ASSERT_MSG(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it.");
+ if (bits == 8)
+ {
+ MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg);
+ return;
+ }
+ if (bits == 16)
+ Write8(0x66);
+ ASSERT_MSG(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!");
+ arg.WriteREX(this, bits, bits, reg);
+ Write8(0x0F);
+ Write8(0x38);
+ Write8(op);
+ arg.WriteRest(this, 0, reg);
+}
+void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src)
+{
+ WriteMOVBE(bits, 0xF0, dest, src);
+}
+void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src)
+{
+ WriteMOVBE(bits, 0xF1, src, dest);
+}
+
+void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend, MovInfo* info)
+{
+ if (info)
+ {
+ info->address = GetWritableCodePtr();
+ info->nonAtomicSwapStore = false;
+ }
+
+ switch (size)
+ {
+ case 8:
+ if (sign_extend)
+ MOVSX(32, 8, dst, src);
+ else
+ MOVZX(32, 8, dst, src);
+ break;
+ case 16:
+ MOVZX(32, 16, dst, src);
+ if (sign_extend)
+ {
+ BSWAP(32, dst);
+ SAR(32, R(dst), Imm8(16));
+ }
+ else
+ {
+ ROL(16, R(dst), Imm8(8));
+ }
+ break;
+ case 32:
+ case 64:
+ if (cpu_info.bMOVBE)
+ {
+ MOVBE(size, dst, src);
+ }
+ else
+ {
+ MOV(size, R(dst), src);
+ BSWAP(size, dst);
+ }
+ break;
+ }
+}
+
+void XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info)
+{
+ if (cpu_info.bMOVBE)
+ {
+ if (info)
+ {
+ info->address = GetWritableCodePtr();
+ info->nonAtomicSwapStore = false;
+ }
+ MOVBE(size, dst, src);
+ }
+ else
+ {
+ BSWAP(size, src);
+ if (info)
+ {
+ info->address = GetWritableCodePtr();
+ info->nonAtomicSwapStore = true;
+ info->nonAtomicSwapStoreSrc = src;
+ }
+ MOV(size, dst, R(src));
+ }
+}
+
+void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
+{
+ ASSERT_MSG(DYNA_REC, !src.IsImm(), "LEA - Imm argument");
+ src.operandReg = (u8)dest;
+ if (bits == 16)
+ Write8(0x66); // TODO: performance warning
+ src.WriteREX(this, bits, bits);
+ Write8(0x8D);
+ src.WriteRest(this, 0, INVALID_REG, bits == 64);
+}
+
+// shift can be either imm8 or cl
+void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
+{
+ CheckFlags();
+ bool writeImm = false;
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteShift - can't shift imms");
+ }
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
+ (shift.IsImm() && shift.GetImmBits() != 8))
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteShift - illegal argument");
+ }
+ dest.operandReg = ext;
+ if (bits == 16)
+ Write8(0x66);
+ dest.WriteREX(this, bits, bits, 0);
+ if (shift.GetImmBits() == 8)
+ {
+ // ok an imm
+ u8 imm = (u8)shift.offset;
+ if (imm == 1)
+ {
+ Write8(bits == 8 ? 0xD0 : 0xD1);
+ }
+ else
+ {
+ writeImm = true;
+ Write8(bits == 8 ? 0xC0 : 0xC1);
+ }
+ }
+ else
+ {
+ Write8(bits == 8 ? 0xD2 : 0xD3);
+ }
+ dest.WriteRest(this, writeImm ? 1 : 0);
+ if (writeImm)
+ Write8((u8)shift.offset);
+}
+
+// large rotates and shift are slower on Intel than AMD
+// Intel likes to rotate by 1, and the op is smaller too
+void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 0);
+}
+void XEmitter::ROR_(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 1);
+}
+void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 2);
+}
+void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 3);
+}
+void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 4);
+}
+void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 5);
+}
+void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift)
+{
+ WriteShift(bits, dest, shift, 7);
+}
+
+// index can be either imm8 or register, don't use memory destination because it's slow
+void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext)
+{
+ CheckFlags();
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - can't test imms");
+ }
+ if ((index.IsImm() && index.GetImmBits() != 8))
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - illegal argument");
+ }
+ if (bits == 16)
+ Write8(0x66);
+ if (index.IsImm())
+ {
+ dest.WriteREX(this, bits, bits);
+ Write8(0x0F);
+ Write8(0xBA);
+ dest.WriteRest(this, 1, (X64Reg)ext);
+ Write8((u8)index.offset);
+ }
+ else
+ {
+ X64Reg operand = index.GetSimpleReg();
+ dest.WriteREX(this, bits, bits, operand);
+ Write8(0x0F);
+ Write8(0x83 + 8 * ext);
+ dest.WriteRest(this, 1, operand);
+ }
+}
+
+void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index)
+{
+ WriteBitTest(bits, dest, index, 4);
+}
+void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index)
+{
+ WriteBitTest(bits, dest, index, 5);
+}
+void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index)
+{
+ WriteBitTest(bits, dest, index, 6);
+}
+void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index)
+{
+ WriteBitTest(bits, dest, index, 7);
+}
+
+// shift can be either imm8 or cl
+void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
+{
+ CheckFlags();
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "SHRD - can't use imms as destination");
+ }
+ if (!src.IsSimpleReg())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "SHRD - must use simple register as source");
+ }
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
+ (shift.IsImm() && shift.GetImmBits() != 8))
+ {
+ ASSERT_MSG(DYNA_REC, 0, "SHRD - illegal shift");
+ }
+ if (bits == 16)
+ Write8(0x66);
+ X64Reg operand = src.GetSimpleReg();
+ dest.WriteREX(this, bits, bits, operand);
+ if (shift.GetImmBits() == 8)
+ {
+ Write8(0x0F);
+ Write8(0xAC);
+ dest.WriteRest(this, 1, operand);
+ Write8((u8)shift.offset);
+ }
+ else
+ {
+ Write8(0x0F);
+ Write8(0xAD);
+ dest.WriteRest(this, 0, operand);
+ }
+}
+
+void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
+{
+ CheckFlags();
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "SHLD - can't use imms as destination");
+ }
+ if (!src.IsSimpleReg())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "SHLD - must use simple register as source");
+ }
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
+ (shift.IsImm() && shift.GetImmBits() != 8))
+ {
+ ASSERT_MSG(DYNA_REC, 0, "SHLD - illegal shift");
+ }
+ if (bits == 16)
+ Write8(0x66);
+ X64Reg operand = src.GetSimpleReg();
+ dest.WriteREX(this, bits, bits, operand);
+ if (shift.GetImmBits() == 8)
+ {
+ Write8(0x0F);
+ Write8(0xA4);
+ dest.WriteRest(this, 1, operand);
+ Write8((u8)shift.offset);
+ }
+ else
+ {
+ Write8(0x0F);
+ Write8(0xA5);
+ dest.WriteRest(this, 0, operand);
+ }
+}
+
+void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits)
+{
+ if (bits == 16)
+ emit->Write8(0x66);
+
+ this->operandReg = (u8)_operandReg;
+ WriteREX(emit, bits, bits);
+ emit->Write8(op);
+ WriteRest(emit);
+}
+
+// operand can either be immediate or register
+void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand,
+ int bits) const
+{
+ X64Reg _operandReg;
+ if (IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
+ }
+
+ if (bits == 16)
+ emit->Write8(0x66);
+
+ int immToWrite = 0;
+ const NormalOpDef& op_def = normalops[static_cast<int>(op)];
+
+ if (operand.IsImm())
+ {
+ WriteREX(emit, bits, bits);
+
+ if (!toRM)
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
+ }
+
+ if (operand.scale == SCALE_IMM8 && bits == 8)
+ {
+ // op al, imm8
+ if (!scale && offsetOrBaseReg == AL && op_def.eaximm8 != 0xCC)
+ {
+ emit->Write8(op_def.eaximm8);
+ emit->Write8((u8)operand.offset);
+ return;
+ }
+ // mov reg, imm8
+ if (!scale && op == NormalOp::MOV)
+ {
+ emit->Write8(0xB0 + (offsetOrBaseReg & 7));
+ emit->Write8((u8)operand.offset);
+ return;
+ }
+ // op r/m8, imm8
+ emit->Write8(op_def.imm8);
+ immToWrite = 8;
+ }
+ else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
+ (operand.scale == SCALE_IMM32 && bits == 32) ||
+ (operand.scale == SCALE_IMM32 && bits == 64))
+ {
+ // Try to save immediate size if we can, but first check to see
+ // if the instruction supports simm8.
+ // op r/m, imm8
+ if (op_def.simm8 != 0xCC &&
+ ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
+ (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
+ {
+ emit->Write8(op_def.simm8);
+ immToWrite = 8;
+ }
+ else
+ {
+ // mov reg, imm
+ if (!scale && op == NormalOp::MOV && bits != 64)
+ {
+ emit->Write8(0xB8 + (offsetOrBaseReg & 7));
+ if (bits == 16)
+ emit->Write16((u16)operand.offset);
+ else
+ emit->Write32((u32)operand.offset);
+ return;
+ }
+ // op eax, imm
+ if (!scale && offsetOrBaseReg == EAX && op_def.eaximm32 != 0xCC)
+ {
+ emit->Write8(op_def.eaximm32);
+ if (bits == 16)
+ emit->Write16((u16)operand.offset);
+ else
+ emit->Write32((u32)operand.offset);
+ return;
+ }
+ // op r/m, imm
+ emit->Write8(op_def.imm32);
+ immToWrite = bits == 16 ? 16 : 32;
+ }
+ }
+ else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
+ (operand.scale == SCALE_IMM8 && bits == 32) ||
+ (operand.scale == SCALE_IMM8 && bits == 64))
+ {
+ // op r/m, imm8
+ emit->Write8(op_def.simm8);
+ immToWrite = 8;
+ }
+ else if (operand.scale == SCALE_IMM64 && bits == 64)
+ {
+ if (scale)
+ {
+ ASSERT_MSG(DYNA_REC, 0,
+ "WriteNormalOp - MOV with 64-bit imm requires register destination");
+ }
+ // mov reg64, imm64
+ else if (op == NormalOp::MOV)
+ {
+ // movabs reg64, imm64 (10 bytes)
+ if (static_cast<s64>(operand.offset) != static_cast<s32>(operand.offset))
+ {
+ emit->Write8(0xB8 + (offsetOrBaseReg & 7));
+ emit->Write64(operand.offset);
+ return;
+ }
+ // mov reg64, simm32 (7 bytes)
+ emit->Write8(op_def.imm32);
+ immToWrite = 32;
+ }
+ else
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
+ }
+ }
+ else
+ {
+ ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case %d %d", operand.scale, bits);
+ }
+
+ // pass extension in REG of ModRM
+ _operandReg = static_cast<X64Reg>(op_def.ext);
+ }
+ else
+ {
+ _operandReg = (X64Reg)operand.offsetOrBaseReg;
+ WriteREX(emit, bits, bits, _operandReg);
+ // op r/m, reg
+ if (toRM)
+ {
+ emit->Write8(bits == 8 ? op_def.toRm8 : op_def.toRm32);
+ }
+ // op reg, r/m
+ else
+ {
+ emit->Write8(bits == 8 ? op_def.fromRm8 : op_def.fromRm32);
+ }
+ }
+ WriteRest(emit, immToWrite >> 3, _operandReg);
+ switch (immToWrite)
+ {
+ case 0:
+ break;
+ case 8:
+ emit->Write8((u8)operand.offset);
+ break;
+ case 16:
+ emit->Write16((u16)operand.offset);
+ break;
+ case 32:
+ emit->Write32((u32)operand.offset);
+ break;
+ default:
+ ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
+ }
+}
+
+void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2)
+{
+ if (a1.IsImm())
+ {
+ // Booh! Can't write to an imm
+ ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
+ return;
+ }
+ if (a2.IsImm())
+ {
+ a1.WriteNormalOp(this, true, op, a2, bits);
+ }
+ else
+ {
+ if (a1.IsSimpleReg())
+ {
+ a2.WriteNormalOp(this, false, op, a1, bits);
+ }
+ else
+ {
+ ASSERT_MSG(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(),
+ "WriteNormalOp - a1 and a2 cannot both be memory");
+ a1.WriteNormalOp(this, true, op, a2, bits);
+ }
+ }
+}
+
+void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::ADD, a1, a2);
+}
+void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::ADC, a1, a2);
+}
+void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::SUB, a1, a2);
+}
+void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::SBB, a1, a2);
+}
+void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::AND, a1, a2);
+}
+void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::OR, a1, a2);
+}
+void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::XOR, a1, a2);
+}
+void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2)
+{
+ if (bits == 64 && a1.IsSimpleReg() && a2.scale == SCALE_IMM64 &&
+ a2.offset == static_cast<u32>(a2.offset))
+ {
+ WriteNormalOp(32, NormalOp::MOV, a1, a2.AsImm32());
+ return;
+ }
+ if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
+ {
+ ERROR_LOG(DYNA_REC, "Redundant MOV @ %p - bug in JIT?", code);
+ }
+ WriteNormalOp(bits, NormalOp::MOV, a1, a2);
+}
+void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::TEST, a1, a2);
+}
+void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ WriteNormalOp(bits, NormalOp::CMP, a1, a2);
+}
+void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2)
+{
+ WriteNormalOp(bits, NormalOp::XCHG, a1, a2);
+}
+void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ if (a1.IsSimpleReg() && a2.IsZero()) // turn 'CMP reg, 0' into shorter 'TEST reg, reg'
+ {
+ WriteNormalOp(bits, NormalOp::TEST, a1, a1);
+ }
+ else
+ {
+ WriteNormalOp(bits, NormalOp::CMP, a1, a2);
+ }
+}
+
+void XEmitter::MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2)
+{
+ // This stomps on flags, so ensure they aren't locked
+ DEBUG_ASSERT(!flags_locked);
+
+ // Zero shortcuts (note that this can generate no code in the case where a1 == dest && a2 == zero
+ // or a2 == dest && a1 == zero)
+ if (a1.IsZero())
+ {
+ if (!a2.IsSimpleReg() || a2.GetSimpleReg() != dest)
+ {
+ MOV(bits, R(dest), a2);
+ }
+ return;
+ }
+ if (a2.IsZero())
+ {
+ if (!a1.IsSimpleReg() || a1.GetSimpleReg() != dest)
+ {
+ MOV(bits, R(dest), a1);
+ }
+ return;
+ }
+
+ // If dest == a1 or dest == a2 we can simplify this
+ if (a1.IsSimpleReg() && a1.GetSimpleReg() == dest)
+ {
+ ADD(bits, R(dest), a2);
+ return;
+ }
+
+ if (a2.IsSimpleReg() && a2.GetSimpleReg() == dest)
+ {
+ ADD(bits, R(dest), a1);
+ return;
+ }
+
+ // TODO: 32-bit optimizations may apply to other bit sizes (confirm)
+ if (bits == 32)
+ {
+ if (a1.IsImm() && a2.IsImm())
+ {
+ MOV(32, R(dest), Imm32(a1.Imm32() + a2.Imm32()));
+ return;
+ }
+
+ if (a1.IsSimpleReg() && a2.IsSimpleReg())
+ {
+ LEA(32, dest, MRegSum(a1.GetSimpleReg(), a2.GetSimpleReg()));
+ return;
+ }
+
+ if (a1.IsSimpleReg() && a2.IsImm())
+ {
+ LEA(32, dest, MDisp(a1.GetSimpleReg(), a2.Imm32()));
+ return;
+ }
+
+ if (a1.IsImm() && a2.IsSimpleReg())
+ {
+ LEA(32, dest, MDisp(a2.GetSimpleReg(), a1.Imm32()));
+ return;
+ }
+ }
+
+ // Fallback
+ MOV(bits, R(dest), a1);
+ ADD(bits, R(dest), a2);
+}
+
+void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
+{
+ CheckFlags();
+ if (bits == 8)
+ {
+ ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!");
+ return;
+ }
+
+ if (a1.IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
+ return;
+ }
+
+ if (!a2.IsImm())
+ {
+ ASSERT_MSG(DYNA_REC, 0, "IMUL - third arg must be imm!");
+ return;
+ }
+
+ if (bits == 16)
+ Write8(0x66);
+ a1.WriteREX(this, bits, bits, regOp);
+
+ if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
+ (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
+ {
+ Write8(0x6B);
+ a1.WriteRest(this, 1, regOp);
+ Write8((u8)a2.offset);
+ }
+ else
+ {
+ Write8(0x69);
+ if (a2.GetImmBits() == 16 && bits == 16)
+ {
+ a1.WriteRest(this, 2, regOp);
+ Write16((u16)a2.offset);
+ }
+ else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
+ {
+ a1.WriteRest(this, 4, regOp);
+ Write32((u32)a2.offset);
+ }
+ else
+ {
+ ASSERT_MSG(DYNA_REC, 0, "IMUL - unhandled case!");
+ }
+ }
+}
+
+void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
+{
+ CheckFlags();
+ if (bits == 8)
+ {
+ ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!");
+ return;
+ }
+
+ if (a.IsImm())
+ {
+ IMUL(bits, regOp, R(regOp), a);
+ return;
+ }
+
+ if (bits == 16)
+ Write8(0x66);
+ a.WriteREX(this, bits, bits, regOp);
+ Write8(0x0F);
+ Write8(0xAF);
+ a.WriteRest(this, 0, regOp);
+}
+
+void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+ if (opPrefix)
+ Write8(opPrefix);
+ arg.operandReg = regOp;
+ arg.WriteREX(this, 0, 0);
+ Write8(0x0F);
+ if (op > 0xFF)
+ Write8((op >> 8) & 0xFF);
+ Write8(op & 0xFF);
+ arg.WriteRest(this, extrabytes);
+}
+
+static int GetVEXmmmmm(u16 op)
+{
+ // Currently, only 0x38 and 0x3A are used as secondary escape byte.
+ if ((op >> 8) == 0x3A)
+ return 3;
+ else if ((op >> 8) == 0x38)
+ return 2;
+ else
+ return 1;
+}
+
+static int GetVEXpp(u8 opPrefix)
+{
+ if (opPrefix == 0x66)
+ return 1;
+ else if (opPrefix == 0xF3)
+ return 2;
+ else if (opPrefix == 0xF2)
+ return 3;
+ else
+ return 0;
+}
+
+void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int W, int extrabytes)
+{
+ int mmmmm = GetVEXmmmmm(op);
+ int pp = GetVEXpp(opPrefix);
+ // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
+ arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W);
+ Write8(op & 0xFF);
+ arg.WriteRest(this, extrabytes, regOp1);
+}
+
+void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ X64Reg regOp3, int W)
+{
+ WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1);
+ Write8((u8)regOp3 << 4);
+}
+
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int W, int extrabytes)
+{
+ if (!cpu_info.bAVX)
+ PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer.");
+ WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
+}
+
+void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ X64Reg regOp3, int W)
+{
+ if (!cpu_info.bAVX)
+ PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer.");
+ WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W);
+}
+
+void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W)
+{
+ if (!cpu_info.bFMA)
+ PanicAlert("Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd.");
+ WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W);
+}
+
+void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int W)
+{
+ if (!cpu_info.bFMA4)
+ PanicAlert("Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd.");
+ WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W);
+}
+
+void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
+ const OpArg& arg, int extrabytes)
+{
+ if (arg.IsImm())
+ PanicAlert("BMI1/2 instructions don't support immediate operands.");
+ if (size != 32 && size != 64)
+ PanicAlert("BMI1/2 instructions only support 32-bit and 64-bit modes!");
+ int W = size == 64;
+ WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
+}
+
+void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
+ const OpArg& arg, int extrabytes)
+{
+ CheckFlags();
+ if (!cpu_info.bBMI1)
+ PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
+ WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
+}
+
+void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
+ const OpArg& arg, int extrabytes)
+{
+ if (!cpu_info.bBMI2)
+ PanicAlert("Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
+ WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
+}
+
+void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x6E, dest, arg, 0);
+}
+void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src)
+{
+ WriteSSEOp(0x66, 0x7E, src, arg, 0);
+}
+
+void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
+{
+ // Alternate encoding
+ // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+ arg.operandReg = dest;
+ Write8(0x66);
+ arg.WriteREX(this, 64, 0);
+ Write8(0x0f);
+ Write8(0x6E);
+ arg.WriteRest(this, 0);
+}
+
+void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
+{
+ if (src > 7 || arg.IsSimpleReg())
+ {
+ // Alternate encoding
+ // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+ arg.operandReg = src;
+ Write8(0x66);
+ arg.WriteREX(this, 64, 0);
+ Write8(0x0f);
+ Write8(0x7E);
+ arg.WriteRest(this, 0);
+ }
+ else
+ {
+ arg.operandReg = src;
+ arg.WriteREX(this, 0, 0);
+ Write8(0x66);
+ Write8(0x0f);
+ Write8(0xD6);
+ arg.WriteRest(this, 0);
+ }
+}
+
+void XEmitter::WriteMXCSR(OpArg arg, int ext)
+{
+ if (arg.IsImm() || arg.IsSimpleReg())
+ ASSERT_MSG(DYNA_REC, 0, "MXCSR - invalid operand");
+
+ arg.operandReg = ext;
+ arg.WriteREX(this, 0, 0);
+ Write8(0x0F);
+ Write8(0xAE);
+ arg.WriteRest(this);
+}
+
+void XEmitter::STMXCSR(const OpArg& memloc)
+{
+ WriteMXCSR(memloc, 3);
+}
+void XEmitter::LDMXCSR(const OpArg& memloc)
+{
+ WriteMXCSR(memloc, 2);
+}
+
+void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);
+}
+void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x00, sseMOVNTP, regOp, arg);
+}
+void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVNTP, regOp, arg);
+}
+
+void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseADD, regOp, arg);
+}
+void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseADD, regOp, arg);
+}
+void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseSUB, regOp, arg);
+}
+void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseSUB, regOp, arg);
+}
+void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare)
+{
+ WriteSSEOp(0xF3, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare)
+{
+ WriteSSEOp(0xF2, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::MULSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseMUL, regOp, arg);
+}
+void XEmitter::MULSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseMUL, regOp, arg);
+}
+void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseDIV, regOp, arg);
+}
+void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseDIV, regOp, arg);
+}
+void XEmitter::MINSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseMIN, regOp, arg);
+}
+void XEmitter::MINSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseMIN, regOp, arg);
+}
+void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseMAX, regOp, arg);
+}
+void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseMAX, regOp, arg);
+}
+void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseSQRT, regOp, arg);
+}
+void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseSQRT, regOp, arg);
+}
+void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseRCP, regOp, arg);
+}
+void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseRSQRT, regOp, arg);
+}
+
+void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseADD, regOp, arg);
+}
+void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseADD, regOp, arg);
+}
+void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseSUB, regOp, arg);
+}
+void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseSUB, regOp, arg);
+}
+void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare)
+{
+ WriteSSEOp(0x00, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare)
+{
+ WriteSSEOp(0x66, sseCMP, regOp, arg, 1);
+ Write8(compare);
+}
+void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseAND, regOp, arg);
+}
+void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseAND, regOp, arg);
+}
+void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseANDN, regOp, arg);
+}
+void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseANDN, regOp, arg);
+}
+void XEmitter::ORPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseOR, regOp, arg);
+}
+void XEmitter::ORPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseOR, regOp, arg);
+}
+void XEmitter::XORPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseXOR, regOp, arg);
+}
+void XEmitter::XORPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseXOR, regOp, arg);
+}
+void XEmitter::MULPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMUL, regOp, arg);
+}
+void XEmitter::MULPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMUL, regOp, arg);
+}
+void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseDIV, regOp, arg);
+}
+void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseDIV, regOp, arg);
+}
+void XEmitter::MINPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMIN, regOp, arg);
+}
+void XEmitter::MINPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMIN, regOp, arg);
+}
+void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMAX, regOp, arg);
+}
+void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMAX, regOp, arg);
+}
+void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseSQRT, regOp, arg);
+}
+void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseSQRT, regOp, arg);
+}
+void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseRCP, regOp, arg);
+}
+void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseRSQRT, regOp, arg);
+}
+void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle)
+{
+ WriteSSEOp(0x00, sseSHUF, regOp, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle)
+{
+ WriteSSEOp(0x66, sseSHUF, regOp, arg, 1);
+ Write8(shuffle);
+}
+
+void XEmitter::COMISS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseCOMIS, regOp, arg);
+} // weird that these should be packed
+void XEmitter::COMISD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseCOMIS, regOp, arg);
+} // ordered
+void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseUCOMIS, regOp, arg);
+} // unordered
+void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseUCOMIS, regOp, arg);
+}
+
+void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);
+}
+void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);
+}
+void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);
+}
+void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);
+}
+void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);
+}
+void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);
+}
+void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);
+}
+void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);
+}
+
+void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);
+}
+void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);
+}
+void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg);
+}
+void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg);
+}
+void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg);
+}
+void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg);
+}
+void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg);
+}
+void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg);
+}
+void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp)
+{
+ WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg);
+}
+
+void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2)
+{
+ WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));
+}
+void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2)
+{
+ WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));
+}
+
+void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, 0x5A, regOp, arg);
+}
+void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x5A, regOp, arg);
+}
+
+void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, 0x5A, regOp, arg);
+}
+void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, 0x5A, regOp, arg);
+}
+void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, 0x2D, regOp, arg);
+}
+void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, 0x2D, regOp, arg);
+}
+void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, 0x2A, regOp, arg);
+}
+void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, 0x2A, regOp, arg);
+}
+
+void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, 0xE6, regOp, arg);
+}
+void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x00, 0x5B, regOp, arg);
+}
+void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, 0xE6, regOp, arg);
+}
+void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x5B, regOp, arg);
+}
+
+void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, 0x2C, regOp, arg);
+}
+void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, 0x2C, regOp, arg);
+}
+void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0xF3, 0x5B, regOp, arg);
+}
+void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xE6, regOp, arg);
+}
+
+void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src)
+{
+ WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));
+}
+
+void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x00, 0x50, dest, arg);
+}
+void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x50, dest, arg);
+}
+
+void XEmitter::LDDQU(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0xF2, sseLDDQU, dest, arg);
+} // For integer data only
+
+void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x00, 0x14, dest, arg);
+}
+void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x00, 0x15, dest, arg);
+}
+void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x14, dest, arg);
+}
+void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x15, dest, arg);
+}
+
+// Pretty much every x86 CPU nowadays supports SSE3,
+// but the SSE2 fallbacks are easy.
+void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg)
+{
+ if (cpu_info.bSSE3)
+ {
+ WriteSSEOp(0xF3, 0x12, regOp, arg);
+ }
+ else
+ {
+ if (!arg.IsSimpleReg(regOp))
+ MOVAPD(regOp, arg);
+ UNPCKLPS(regOp, R(regOp));
+ }
+}
+void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg)
+{
+ if (cpu_info.bSSE3)
+ {
+ WriteSSEOp(0xF3, 0x16, regOp, arg);
+ }
+ else
+ {
+ if (!arg.IsSimpleReg(regOp))
+ MOVAPD(regOp, arg);
+ UNPCKHPS(regOp, R(regOp));
+ }
+}
+void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
+{
+ if (cpu_info.bSSE3)
+ {
+ WriteSSEOp(0xF2, 0x12, regOp, arg);
+ }
+ else
+ {
+ if (!arg.IsSimpleReg(regOp))
+ MOVSD(regOp, arg);
+ UNPCKLPD(regOp, R(regOp));
+ }
+}
+
+// There are a few more left
+
+// Also some integer instructions are missing
+void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x6B, dest, arg);
+}
+void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x63, dest, arg);
+}
+void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x67, dest, arg);
+}
+
+void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x60, dest, arg);
+}
+void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x61, dest, arg);
+}
+void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x62, dest, arg);
+}
+void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x6C, dest, arg);
+}
+
+void XEmitter::PSRLW(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRLD(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRLQ(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xd3, reg, arg);
+}
+
+void XEmitter::PSRLDQ(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLW(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLD(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLQ(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLDQ(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg));
+ Write8(shift);
+}
+
+// WARNING not REX compatible
+void XEmitter::PSRAW(X64Reg reg, int shift)
+{
+ if (reg > 7)
+ PanicAlert("The PSRAW-emitter does not support regs above 7");
+ Write8(0x66);
+ Write8(0x0f);
+ Write8(0x71);
+ Write8(0xE0 | reg);
+ Write8(shift);
+}
+
+// WARNING not REX compatible
+void XEmitter::PSRAD(X64Reg reg, int shift)
+{
+ if (reg > 7)
+ PanicAlert("The PSRAD-emitter does not support regs above 7");
+ Write8(0x66);
+ Write8(0x0f);
+ Write8(0x72);
+ Write8(0xE0 | reg);
+ Write8(shift);
+}
+
+void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
+{
+ if (!cpu_info.bSSSE3)
+ PanicAlert("Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
+ WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
+}
+
+void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
+{
+ if (!cpu_info.bSSE4_1)
+ PanicAlert("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
+ WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
+}
+
+void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSSE3Op(0x66, 0x3800, dest, arg);
+}
+void XEmitter::PTEST(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3817, dest, arg);
+}
+void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x382b, dest, arg);
+}
+
+void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3820, dest, arg);
+}
+void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3821, dest, arg);
+}
+void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3822, dest, arg);
+}
+void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3823, dest, arg);
+}
+void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3824, dest, arg);
+}
+void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3825, dest, arg);
+}
+void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3830, dest, arg);
+}
+void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3831, dest, arg);
+}
+void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3832, dest, arg);
+}
+void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3833, dest, arg);
+}
+void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3834, dest, arg);
+}
+void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3835, dest, arg);
+}
+
+void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3810, dest, arg);
+}
+void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3814, dest, arg);
+}
+void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSE41Op(0x66, 0x3815, dest, arg);
+}
+void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend)
+{
+ WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1);
+ Write8(blend);
+}
+void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend)
+{
+ WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1);
+ Write8(blend);
+}
+
+void XEmitter::PAND(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xDB, dest, arg);
+}
+void XEmitter::PANDN(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xDF, dest, arg);
+}
+void XEmitter::PXOR(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xEF, dest, arg);
+}
+void XEmitter::POR(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xEB, dest, arg);
+}
+
+void XEmitter::PADDB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xFC, dest, arg);
+}
+void XEmitter::PADDW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xFD, dest, arg);
+}
+void XEmitter::PADDD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xFE, dest, arg);
+}
+void XEmitter::PADDQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xD4, dest, arg);
+}
+
+void XEmitter::PADDSB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xEC, dest, arg);
+}
+void XEmitter::PADDSW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xED, dest, arg);
+}
+void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xDC, dest, arg);
+}
+void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xDD, dest, arg);
+}
+
+void XEmitter::PSUBB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xF8, dest, arg);
+}
+void XEmitter::PSUBW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xF9, dest, arg);
+}
+void XEmitter::PSUBD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xFA, dest, arg);
+}
+void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xFB, dest, arg);
+}
+
+void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xE8, dest, arg);
+}
+void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xE9, dest, arg);
+}
+void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xD8, dest, arg);
+}
+void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xD9, dest, arg);
+}
+
+void XEmitter::PAVGB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xE0, dest, arg);
+}
+void XEmitter::PAVGW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xE3, dest, arg);
+}
+
+void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x74, dest, arg);
+}
+void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x75, dest, arg);
+}
+void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x76, dest, arg);
+}
+
+void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x64, dest, arg);
+}
+void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x65, dest, arg);
+}
+void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0x66, dest, arg);
+}
+
+void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg)
+{
+ WriteSSEOp(0x66, 0xC5, dest, arg);
+ Write8(subreg);
+}
+void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg)
+{
+ WriteSSEOp(0x66, 0xC4, dest, arg);
+ Write8(subreg);
+}
+void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg)
+{
+ WriteSSE41Op(0x66, 0x3A22, dest, arg);
+ Write8(subreg);
+}
+
+void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xF5, dest, arg);
+}
+void XEmitter::PSADBW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xF6, dest, arg);
+}
+
+void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xEE, dest, arg);
+}
+void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xDE, dest, arg);
+}
+void XEmitter::PMINSW(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xEA, dest, arg);
+}
+void XEmitter::PMINUB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xDA, dest, arg);
+}
+
+void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg)
+{
+ WriteSSEOp(0x66, 0xD7, dest, arg);
+}
+void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle)
+{
+ WriteSSEOp(0x66, 0x70, regOp, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle)
+{
+ WriteSSEOp(0xF2, 0x70, regOp, arg, 1);
+ Write8(shuffle);
+}
+void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle)
+{
+ WriteSSEOp(0xF3, 0x70, regOp, arg, 1);
+ Write8(shuffle);
+}
+
+// VEX
+void XEmitter::VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF3, sseADD, regOp1, regOp2, arg);
+}
+void XEmitter::VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF3, sseSUB, regOp1, regOp2, arg);
+}
+void XEmitter::VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF3, sseMUL, regOp1, regOp2, arg);
+}
+void XEmitter::VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF3, sseDIV, regOp1, regOp2, arg);
+}
+void XEmitter::VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseADD, regOp1, regOp2, arg);
+}
+void XEmitter::VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseSUB, regOp1, regOp2, arg);
+}
+void XEmitter::VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseMUL, regOp1, regOp2, arg);
+}
+void XEmitter::VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseDIV, regOp1, regOp2, arg);
+}
+void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);
+}
+void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);
+}
+void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);
+}
+void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);
+}
+void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);
+}
+void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);
+}
+void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);
+}
+void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);
+}
+void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);
+}
+void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare)
+{
+ WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1);
+ Write8(compare);
+}
+void XEmitter::VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle)
+{
+ WriteAVXOp(0x00, sseSHUF, regOp1, regOp2, arg, 0, 1);
+ Write8(shuffle);
+}
+void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle)
+{
+ WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1);
+ Write8(shuffle);
+}
+void XEmitter::VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, 0x14, regOp1, regOp2, arg);
+}
+void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);
+}
+void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);
+}
+void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3)
+{
+ WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3);
+}
+void XEmitter::VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend)
+{
+ WriteAVXOp(0x66, 0x3A0C, regOp1, regOp2, arg, 0, 1);
+ Write8(blend);
+}
+void XEmitter::VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend)
+{
+ WriteAVXOp(0x66, 0x3A0D, regOp1, regOp2, arg, 0, 1);
+ Write8(blend);
+}
+
+void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg);
+}
+void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg);
+}
+void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg);
+}
+void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg);
+}
+void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg);
+}
+void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg);
+}
+void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg);
+}
+void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg);
+}
+
+void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg);
+}
+void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg);
+}
+void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg);
+}
+void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg);
+}
+
+void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x98, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA8, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB8, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x98, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x99, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA9, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB9, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x99, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9A, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAA, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBA, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9B, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAB, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBB, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9C, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAC, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBC, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9D, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAD, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBD, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9E, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAE, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBE, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9F, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAF, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBF, regOp1, regOp2, arg);
+}
+void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x96, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA6, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB6, regOp1, regOp2, arg);
+}
+void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x96, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x97, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA7, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB7, regOp1, regOp2, arg);
+}
+void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0x97, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1);
+}
+void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1);
+}
+
+#define FMA4(name, op) \
+ void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) \
+ { \
+ WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1); \
+ } \
+ void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) \
+ { \
+ WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0); \
+ }
+
+FMA4(VFMADDSUBPS, 0x5C)
+FMA4(VFMADDSUBPD, 0x5D)
+FMA4(VFMSUBADDPS, 0x5E)
+FMA4(VFMSUBADDPD, 0x5F)
+FMA4(VFMADDPS, 0x68)
+FMA4(VFMADDPD, 0x69)
+FMA4(VFMADDSS, 0x6A)
+FMA4(VFMADDSD, 0x6B)
+FMA4(VFMSUBPS, 0x6C)
+FMA4(VFMSUBPD, 0x6D)
+FMA4(VFMSUBSS, 0x6E)
+FMA4(VFMSUBSD, 0x6F)
+FMA4(VFNMADDPS, 0x78)
+FMA4(VFNMADDPD, 0x79)
+FMA4(VFNMADDSS, 0x7A)
+FMA4(VFNMADDSD, 0x7B)
+FMA4(VFNMSUBPS, 0x7C)
+FMA4(VFNMSUBPD, 0x7D)
+FMA4(VFNMSUBSS, 0x7E)
+FMA4(VFNMSUBSD, 0x7F)
+#undef FMA4
+
+void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
+{
+ WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
+{
+ WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
+{
+ WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate)
+{
+ WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1);
+ Write8(rotate);
+}
+void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);
+}
+void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);
+}
+void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);
+}
+void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
+{
+ CheckFlags();
+ WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);
+}
+void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg)
+{
+ WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);
+}
+void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg)
+{
+ WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);
+}
+void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg)
+{
+ WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);
+}
+void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
+{
+ WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);
+}
+void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
+{
+ WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);
+}
+
+// Prefixes
+
+void XEmitter::LOCK()
+{
+ Write8(0xF0);
+}
+void XEmitter::REP()
+{
+ Write8(0xF3);
+}
+void XEmitter::REPNE()
+{
+ Write8(0xF2);
+}
+void XEmitter::FSOverride()
+{
+ Write8(0x64);
+}
+void XEmitter::GSOverride()
+{
+ Write8(0x65);
+}
+
+void XEmitter::FWAIT()
+{
+ Write8(0x9B);
+}
+
+// TODO: make this more generic
+void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg)
+{
+ int mf = 0;
+ ASSERT_MSG(DYNA_REC, !(bits == 80 && op_80b == FloatOp::Invalid),
+ "WriteFloatLoadStore: 80 bits not supported for this instruction");
+ switch (bits)
+ {
+ case 32:
+ mf = 0;
+ break;
+ case 64:
+ mf = 4;
+ break;
+ case 80:
+ mf = 2;
+ break;
+ default:
+ ASSERT_MSG(DYNA_REC, 0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
+ }
+ Write8(0xd9 | mf);
+ // x87 instructions use the reg field of the ModR/M byte as opcode:
+ if (bits == 80)
+ op = op_80b;
+ arg.WriteRest(this, 0, static_cast<X64Reg>(op));
+}
+
+void XEmitter::FLD(int bits, const OpArg& src)
+{
+ WriteFloatLoadStore(bits, FloatOp::LD, FloatOp::LD80, src);
+}
+void XEmitter::FST(int bits, const OpArg& dest)
+{
+ WriteFloatLoadStore(bits, FloatOp::ST, FloatOp::Invalid, dest);
+}
+void XEmitter::FSTP(int bits, const OpArg& dest)
+{
+ WriteFloatLoadStore(bits, FloatOp::STP, FloatOp::STP80, dest);
+}
+void XEmitter::FNSTSW_AX()
+{
+ Write8(0xDF);
+ Write8(0xE0);
+}
+
+void XEmitter::RDTSC()
+{
+ Write8(0x0F);
+ Write8(0x31);
+}
+}
diff --git a/src/dolphin/x64Emitter.h b/src/dolphin/x64Emitter.h
new file mode 100644
index 0000000..122850d
--- /dev/null
+++ b/src/dolphin/x64Emitter.h
@@ -0,0 +1,1180 @@
+// Copyright 2008 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
+
+#pragma once
+
+#include <cstddef>
+#include <cstring>
+#include <functional>
+#include <tuple>
+#include <type_traits>
+
+#include "Assert.h"
+#include "BitSet.h"
+#include "CodeBlock.h"
+#include "../types.h"
+#include "x64ABI.h"
+
+namespace Gen
+{
+enum CCFlags
+{
+ CC_O = 0,
+ CC_NO = 1,
+ CC_B = 2,
+ CC_C = 2,
+ CC_NAE = 2,
+ CC_NB = 3,
+ CC_NC = 3,
+ CC_AE = 3,
+ CC_Z = 4,
+ CC_E = 4,
+ CC_NZ = 5,
+ CC_NE = 5,
+ CC_BE = 6,
+ CC_NA = 6,
+ CC_NBE = 7,
+ CC_A = 7,
+ CC_S = 8,
+ CC_NS = 9,
+ CC_P = 0xA,
+ CC_PE = 0xA,
+ CC_NP = 0xB,
+ CC_PO = 0xB,
+ CC_L = 0xC,
+ CC_NGE = 0xC,
+ CC_NL = 0xD,
+ CC_GE = 0xD,
+ CC_LE = 0xE,
+ CC_NG = 0xE,
+ CC_NLE = 0xF,
+ CC_G = 0xF
+};
+
+enum
+{
+ NUMGPRs = 16,
+ NUMXMMs = 16,
+};
+
+enum
+{
+ SCALE_NONE = 0,
+ SCALE_1 = 1,
+ SCALE_2 = 2,
+ SCALE_4 = 4,
+ SCALE_8 = 8,
+ SCALE_ATREG = 16,
+ // SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
+ SCALE_NOBASE_2 = 34,
+ SCALE_NOBASE_4 = 36,
+ SCALE_NOBASE_8 = 40,
+ SCALE_RIP = 0xFF,
+ SCALE_IMM8 = 0xF0,
+ SCALE_IMM16 = 0xF1,
+ SCALE_IMM32 = 0xF2,
+ SCALE_IMM64 = 0xF3,
+};
+
+enum SSECompare
+{
+ CMP_EQ = 0,
+ CMP_LT = 1,
+ CMP_LE = 2,
+ CMP_UNORD = 3,
+ CMP_NEQ = 4,
+ CMP_NLT = 5,
+ CMP_NLE = 6,
+ CMP_ORD = 7,
+};
+
+class XEmitter;
+enum class FloatOp;
+enum class NormalOp;
+
+// Information about a generated MOV op
+struct MovInfo final
+{
+ u8* address;
+ bool nonAtomicSwapStore;
+ // valid iff nonAtomicSwapStore is true
+ X64Reg nonAtomicSwapStoreSrc;
+};
+
+// RIP addressing does not benefit from micro op fusion on Core arch
+struct OpArg
+{
+ // For accessing offset and operandReg.
+ // This also allows us to keep the op writing functions private.
+ friend class XEmitter;
+
+ // dummy op arg, used for storage
+ constexpr OpArg() = default;
+ constexpr OpArg(u64 offset_, int scale_, X64Reg rm_reg = RAX, X64Reg scaled_reg = RAX)
+ : scale{static_cast<u8>(scale_)}, offsetOrBaseReg{static_cast<u16>(rm_reg)},
+ indexReg{static_cast<u16>(scaled_reg)}, offset{offset_}
+ {
+ }
+ constexpr bool operator==(const OpArg& b) const
+ {
+ // TODO: Use std::tie here once Dolphin requires C++17. (We can't do it immediately,
+ // (because we still support some older versions of GCC where std::tie is not constexpr.)
+ return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
+ indexReg == b.indexReg && offset == b.offset;
+ }
+ constexpr bool operator!=(const OpArg& b) const { return !operator==(b); }
+ u64 Imm64() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM64);
+ return (u64)offset;
+ }
+ u32 Imm32() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM32);
+ return (u32)offset;
+ }
+ u16 Imm16() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM16);
+ return (u16)offset;
+ }
+ u8 Imm8() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM8);
+ return (u8)offset;
+ }
+
+ s64 SImm64() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM64);
+ return (s64)offset;
+ }
+ s32 SImm32() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM32);
+ return (s32)offset;
+ }
+ s16 SImm16() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM16);
+ return (s16)offset;
+ }
+ s8 SImm8() const
+ {
+ DEBUG_ASSERT(scale == SCALE_IMM8);
+ return (s8)offset;
+ }
+
+ OpArg AsImm64() const
+ {
+ DEBUG_ASSERT(IsImm());
+ return OpArg((u64)offset, SCALE_IMM64);
+ }
+ OpArg AsImm32() const
+ {
+ DEBUG_ASSERT(IsImm());
+ return OpArg((u32)offset, SCALE_IMM32);
+ }
+ OpArg AsImm16() const
+ {
+ DEBUG_ASSERT(IsImm());
+ return OpArg((u16)offset, SCALE_IMM16);
+ }
+ OpArg AsImm8() const
+ {
+ DEBUG_ASSERT(IsImm());
+ return OpArg((u8)offset, SCALE_IMM8);
+ }
+
+ constexpr bool IsImm() const
+ {
+ return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 ||
+ scale == SCALE_IMM64;
+ }
+ constexpr bool IsSimpleReg() const { return scale == SCALE_NONE; }
+ constexpr bool IsSimpleReg(X64Reg reg) const { return IsSimpleReg() && GetSimpleReg() == reg; }
+ constexpr bool IsZero() const { return IsImm() && offset == 0; }
+ constexpr int GetImmBits() const
+ {
+ switch (scale)
+ {
+ case SCALE_IMM8:
+ return 8;
+ case SCALE_IMM16:
+ return 16;
+ case SCALE_IMM32:
+ return 32;
+ case SCALE_IMM64:
+ return 64;
+ default:
+ return -1;
+ }
+ }
+
+ constexpr X64Reg GetSimpleReg() const
+ {
+ if (scale == SCALE_NONE)
+ return static_cast<X64Reg>(offsetOrBaseReg);
+
+ return INVALID_REG;
+ }
+
+ void AddMemOffset(int val)
+ {
+ DEBUG_ASSERT_MSG(DYNA_REC, scale == SCALE_RIP || (scale <= SCALE_ATREG && scale > SCALE_NONE),
+ "Tried to increment an OpArg which doesn't have an offset");
+ offset += val;
+ }
+
+private:
+ void WriteREX(XEmitter* emit, int opBits, int bits, int customOp = -1) const;
+ void WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
+ int W = 0) const;
+ void WriteRest(XEmitter* emit, int extraBytes = 0, X64Reg operandReg = INVALID_REG,
+ bool warn_64bit_offset = true) const;
+ void WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg operandReg, int bits);
+ void WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const;
+
+ u8 scale = 0;
+ u16 offsetOrBaseReg = 0;
+ u16 indexReg = 0;
+ u64 offset = 0; // Also used to store immediates.
+ u16 operandReg = 0;
+};
+
+template <typename T>
+inline OpArg M(const T* ptr)
+{
+ return OpArg((u64)(const void*)ptr, (int)SCALE_RIP);
+}
+constexpr OpArg R(X64Reg value)
+{
+ return OpArg(0, SCALE_NONE, value);
+}
+constexpr OpArg MatR(X64Reg value)
+{
+ return OpArg(0, SCALE_ATREG, value);
+}
+
+constexpr OpArg MDisp(X64Reg value, int offset)
+{
+ return OpArg(static_cast<u32>(offset), SCALE_ATREG, value);
+}
+
+constexpr OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
+{
+ return OpArg(offset, scale, base, scaled);
+}
+
+constexpr OpArg MScaled(X64Reg scaled, int scale, int offset)
+{
+ if (scale == SCALE_1)
+ return OpArg(offset, SCALE_ATREG, scaled);
+
+ return OpArg(offset, scale | 0x20, RAX, scaled);
+}
+
+constexpr OpArg MRegSum(X64Reg base, X64Reg offset)
+{
+ return MComplex(base, offset, 1, 0);
+}
+
+constexpr OpArg Imm8(u8 imm)
+{
+ return OpArg(imm, SCALE_IMM8);
+}
+constexpr OpArg Imm16(u16 imm)
+{
+ return OpArg(imm, SCALE_IMM16);
+} // rarely used
+constexpr OpArg Imm32(u32 imm)
+{
+ return OpArg(imm, SCALE_IMM32);
+}
+constexpr OpArg Imm64(u64 imm)
+{
+ return OpArg(imm, SCALE_IMM64);
+}
+inline OpArg ImmPtr(const void* imm)
+{
+ return Imm64(reinterpret_cast<u64>(imm));
+}
+
+inline u32 PtrOffset(const void* ptr, const void* base = nullptr)
+{
+ s64 distance = (s64)ptr - (s64)base;
+ if (distance >= 0x80000000LL || distance < -0x80000000LL)
+ {
+ ASSERT_MSG(DYNA_REC, 0, "pointer offset out of range");
+ return 0;
+ }
+
+ return (u32)distance;
+}
+
+// usage: int a[]; ARRAY_OFFSET(a,10)
+#define ARRAY_OFFSET(array, index) ((u32)((u64) & (array)[index] - (u64) & (array)[0]))
+// usage: struct {int e;} s; STRUCT_OFFSET(s,e)
+#define STRUCT_OFFSET(str, elem) ((u32)((u64) & (str).elem - (u64) & (str)))
+
+struct FixupBranch
+{
+ enum class Type
+ {
+ Branch8Bit,
+ Branch32Bit
+ };
+
+ u8* ptr;
+ Type type;
+};
+
+class XEmitter
+{
+ friend struct OpArg; // for Write8 etc
+private:
+ u8* code = nullptr;
+ bool flags_locked = false;
+
+ void CheckFlags();
+
+ void Rex(int w, int r, int x, int b);
+ void WriteModRM(int mod, int reg, int rm);
+ void WriteSIB(int scale, int index, int base);
+ void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
+ void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
+ void WriteMulDivType(int bits, OpArg src, int ext);
+ void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
+ void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext);
+ void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext);
+ void WriteMXCSR(OpArg arg, int ext);
+ void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
+ void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
+ void WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0,
+ int extrabytes = 0);
+ void WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ X64Reg regOp3, int W = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0,
+ int extrabytes = 0);
+ void WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ X64Reg regOp3, int W = 0);
+ void WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0);
+ void WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0);
+ void WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int extrabytes = 0);
+ void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int extrabytes = 0);
+ void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
+ int extrabytes = 0);
+ void WriteMOVBE(int bits, u8 op, X64Reg regOp, const OpArg& arg);
+ void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg);
+ void WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2);
+
+ void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size,
+ size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
+
+protected:
+ void Write8(u8 value);
+ void Write16(u16 value);
+ void Write32(u32 value);
+ void Write64(u64 value);
+
+public:
+ XEmitter() = default;
+ explicit XEmitter(u8* code_ptr) : code{code_ptr} {}
+ virtual ~XEmitter() = default;
+ void SetCodePtr(u8* ptr);
+ void ReserveCodeSpace(int bytes);
+ u8* AlignCodeTo(size_t alignment);
+ u8* AlignCode4();
+ u8* AlignCode16();
+ u8* AlignCodePage();
+ const u8* GetCodePtr() const;
+ u8* GetWritableCodePtr();
+
+ void LockFlags() { flags_locked = true; }
+ void UnlockFlags() { flags_locked = false; }
+ // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
+ // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other
+ // string instr.,
+ // INC and DEC are slow on Intel Core, but not on AMD. They create a
+ // false flag dependency because they only update a subset of the flags.
+ // XCHG is SLOW and should be avoided.
+
+ // Debug breakpoint
+ void INT3();
+
+ // Do nothing
+ void NOP(size_t count = 1);
+
+ // Save energy in wait-loops on P4 only. Probably not too useful.
+ void PAUSE();
+
+ // Flag control
+ void STC();
+ void CLC();
+ void CMC();
+
+ // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and
+ // AMD!
+ void LAHF(); // 3 cycle vector path
+ void SAHF(); // direct path fast
+
+ // Stack control
+ void PUSH(X64Reg reg);
+ void POP(X64Reg reg);
+ void PUSH(int bits, const OpArg& reg);
+ void POP(int bits, const OpArg& reg);
+ void PUSHF();
+ void POPF();
+
+ // Flow control
+ void RET();
+ void RET_FAST();
+ void UD2();
+ FixupBranch J(bool force5bytes = false);
+
+ void JMP(const u8* addr, bool force5Bytes = false);
+ void JMPptr(const OpArg& arg);
+ void JMPself(); // infinite loop!
+#ifdef CALL
+#undef CALL
+#endif
+ void CALL(const void* fnptr);
+ FixupBranch CALL();
+ void CALLptr(OpArg arg);
+
+ FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
+ void J_CC(CCFlags conditionCode, const u8* addr);
+
+ void SetJumpTarget(const FixupBranch& branch);
+
+ void SETcc(CCFlags flag, OpArg dest);
+ // Note: CMOV brings small if any benefit on current CPUs.
+ void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
+
+ // Fences
+ void LFENCE();
+ void MFENCE();
+ void SFENCE();
+
+ // Bit scan
+ void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit
+ void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit
+
+ // Cache control
+ enum PrefetchLevel
+ {
+ PF_NTA, // Non-temporal (data used once and only once)
+ PF_T0, // All cache levels
+ PF_T1, // Levels 2+ (aliased to T0 on AMD)
+ PF_T2, // Levels 3+ (aliased to T0 on AMD)
+ };
+ void PREFETCH(PrefetchLevel level, OpArg arg);
+ void MOVNTI(int bits, const OpArg& dest, X64Reg src);
+ void MOVNTDQ(const OpArg& arg, X64Reg regOp);
+ void MOVNTPS(const OpArg& arg, X64Reg regOp);
+ void MOVNTPD(const OpArg& arg, X64Reg regOp);
+
+ // Multiplication / division
+ void MUL(int bits, const OpArg& src); // UNSIGNED
+ void IMUL(int bits, const OpArg& src); // SIGNED
+ void IMUL(int bits, X64Reg regOp, const OpArg& src);
+ void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm);
+ void DIV(int bits, const OpArg& src);
+ void IDIV(int bits, const OpArg& src);
+
+ // Shift
+ void ROL(int bits, const OpArg& dest, const OpArg& shift);
+ void ROR_(int bits, const OpArg& dest, const OpArg& shift);
+ void RCL(int bits, const OpArg& dest, const OpArg& shift);
+ void RCR(int bits, const OpArg& dest, const OpArg& shift);
+ void SHL(int bits, const OpArg& dest, const OpArg& shift);
+ void SHR(int bits, const OpArg& dest, const OpArg& shift);
+ void SAR(int bits, const OpArg& dest, const OpArg& shift);
+
+ // Bit Test
+ void BT(int bits, const OpArg& dest, const OpArg& index);
+ void BTS(int bits, const OpArg& dest, const OpArg& index);
+ void BTR(int bits, const OpArg& dest, const OpArg& index);
+ void BTC(int bits, const OpArg& dest, const OpArg& index);
+
+ // Double-Precision Shift
+ void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
+ void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
+
+ // Extend EAX into EDX in various ways
+ void CWD(int bits = 16);
+ inline void CDQ() { CWD(32); }
+ inline void CQO() { CWD(64); }
+ void CBW(int bits = 8);
+ inline void CWDE() { CBW(16); }
+ inline void CDQE() { CBW(32); }
+ // Load effective address
+ void LEA(int bits, X64Reg dest, OpArg src);
+
+ // Integer arithmetic
+ void NEG(int bits, const OpArg& src);
+ void ADD(int bits, const OpArg& a1, const OpArg& a2);
+ void ADC(int bits, const OpArg& a1, const OpArg& a2);
+ void SUB(int bits, const OpArg& a1, const OpArg& a2);
+ void SBB(int bits, const OpArg& a1, const OpArg& a2);
+ void AND(int bits, const OpArg& a1, const OpArg& a2);
+ void CMP(int bits, const OpArg& a1, const OpArg& a2);
+
+ // Bit operations
+ void NOT(int bits, const OpArg& src);
+ void OR(int bits, const OpArg& a1, const OpArg& a2);
+ void XOR(int bits, const OpArg& a1, const OpArg& a2);
+ void MOV(int bits, const OpArg& a1, const OpArg& a2);
+ void TEST(int bits, const OpArg& a1, const OpArg& a2);
+
+ void CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2);
+ void MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2);
+
+ // Are these useful at all? Consider removing.
+ void XCHG(int bits, const OpArg& a1, const OpArg& a2);
+ void XCHG_AHAL();
+
+ // Byte swapping (32 and 64-bit only).
+ void BSWAP(int bits, X64Reg reg);
+
+ // Sign/zero extension
+ void MOVSX(int dbits, int sbits, X64Reg dest,
+ OpArg src); // automatically uses MOVSXD if necessary
+ void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
+
+ // Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
+ void MOVBE(int bits, X64Reg dest, const OpArg& src);
+ void MOVBE(int bits, const OpArg& dest, X64Reg src);
+ void LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend = false,
+ MovInfo* info = nullptr);
+ void SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info = nullptr);
+
+ // Available only on AMD >= Phenom or Intel >= Haswell
+ void LZCNT(int bits, X64Reg dest, const OpArg& src);
+ // Note: this one is actually part of BMI1
+ void TZCNT(int bits, X64Reg dest, const OpArg& src);
+
+ // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
+ void STMXCSR(const OpArg& memloc);
+ void LDMXCSR(const OpArg& memloc);
+
+ // Prefixes
+ void LOCK();
+ void REP();
+ void REPNE();
+ void FSOverride();
+ void GSOverride();
+
+ // x87
+ enum x87StatusWordBits
+ {
+ x87_InvalidOperation = 0x1,
+ x87_DenormalizedOperand = 0x2,
+ x87_DivisionByZero = 0x4,
+ x87_Overflow = 0x8,
+ x87_Underflow = 0x10,
+ x87_Precision = 0x20,
+ x87_StackFault = 0x40,
+ x87_ErrorSummary = 0x80,
+ x87_C0 = 0x100,
+ x87_C1 = 0x200,
+ x87_C2 = 0x400,
+ x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
+ x87_C3 = 0x4000,
+ x87_FPUBusy = 0x8000,
+ };
+
+ void FLD(int bits, const OpArg& src);
+ void FST(int bits, const OpArg& dest);
+ void FSTP(int bits, const OpArg& dest);
+ void FNSTSW_AX();
+ void FWAIT();
+
+ // SSE/SSE2: Floating point arithmetic
+ void ADDSS(X64Reg regOp, const OpArg& arg);
+ void ADDSD(X64Reg regOp, const OpArg& arg);
+ void SUBSS(X64Reg regOp, const OpArg& arg);
+ void SUBSD(X64Reg regOp, const OpArg& arg);
+ void MULSS(X64Reg regOp, const OpArg& arg);
+ void MULSD(X64Reg regOp, const OpArg& arg);
+ void DIVSS(X64Reg regOp, const OpArg& arg);
+ void DIVSD(X64Reg regOp, const OpArg& arg);
+ void MINSS(X64Reg regOp, const OpArg& arg);
+ void MINSD(X64Reg regOp, const OpArg& arg);
+ void MAXSS(X64Reg regOp, const OpArg& arg);
+ void MAXSD(X64Reg regOp, const OpArg& arg);
+ void SQRTSS(X64Reg regOp, const OpArg& arg);
+ void SQRTSD(X64Reg regOp, const OpArg& arg);
+ void RCPSS(X64Reg regOp, const OpArg& arg);
+ void RSQRTSS(X64Reg regOp, const OpArg& arg);
+
+ // SSE/SSE2: Floating point bitwise (yes)
+ void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare);
+ void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare);
+
+ // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
+ void ADDPS(X64Reg regOp, const OpArg& arg);
+ void ADDPD(X64Reg regOp, const OpArg& arg);
+ void SUBPS(X64Reg regOp, const OpArg& arg);
+ void SUBPD(X64Reg regOp, const OpArg& arg);
+ void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare);
+ void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare);
+ void MULPS(X64Reg regOp, const OpArg& arg);
+ void MULPD(X64Reg regOp, const OpArg& arg);
+ void DIVPS(X64Reg regOp, const OpArg& arg);
+ void DIVPD(X64Reg regOp, const OpArg& arg);
+ void MINPS(X64Reg regOp, const OpArg& arg);
+ void MINPD(X64Reg regOp, const OpArg& arg);
+ void MAXPS(X64Reg regOp, const OpArg& arg);
+ void MAXPD(X64Reg regOp, const OpArg& arg);
+ void SQRTPS(X64Reg regOp, const OpArg& arg);
+ void SQRTPD(X64Reg regOp, const OpArg& arg);
+ void RCPPS(X64Reg regOp, const OpArg& arg);
+ void RSQRTPS(X64Reg regOp, const OpArg& arg);
+
+ // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
+ void ANDPS(X64Reg regOp, const OpArg& arg);
+ void ANDPD(X64Reg regOp, const OpArg& arg);
+ void ANDNPS(X64Reg regOp, const OpArg& arg);
+ void ANDNPD(X64Reg regOp, const OpArg& arg);
+ void ORPS(X64Reg regOp, const OpArg& arg);
+ void ORPD(X64Reg regOp, const OpArg& arg);
+ void XORPS(X64Reg regOp, const OpArg& arg);
+ void XORPD(X64Reg regOp, const OpArg& arg);
+
+ // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
+ void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle);
+ void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle);
+
+ // SSE3
+ void MOVSLDUP(X64Reg regOp, const OpArg& arg);
+ void MOVSHDUP(X64Reg regOp, const OpArg& arg);
+ void MOVDDUP(X64Reg regOp, const OpArg& arg);
+
+ // SSE/SSE2: Useful alternative to shuffle in some cases.
+ void UNPCKLPS(X64Reg dest, const OpArg& src);
+ void UNPCKHPS(X64Reg dest, const OpArg& src);
+ void UNPCKLPD(X64Reg dest, const OpArg& src);
+ void UNPCKHPD(X64Reg dest, const OpArg& src);
+
+ // SSE/SSE2: Compares.
+ void COMISS(X64Reg regOp, const OpArg& arg);
+ void COMISD(X64Reg regOp, const OpArg& arg);
+ void UCOMISS(X64Reg regOp, const OpArg& arg);
+ void UCOMISD(X64Reg regOp, const OpArg& arg);
+
+ // SSE/SSE2: Moves. Use the right data type for your data, in most cases.
+ void MOVAPS(X64Reg regOp, const OpArg& arg);
+ void MOVAPD(X64Reg regOp, const OpArg& arg);
+ void MOVAPS(const OpArg& arg, X64Reg regOp);
+ void MOVAPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVUPS(X64Reg regOp, const OpArg& arg);
+ void MOVUPD(X64Reg regOp, const OpArg& arg);
+ void MOVUPS(const OpArg& arg, X64Reg regOp);
+ void MOVUPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVDQA(X64Reg regOp, const OpArg& arg);
+ void MOVDQA(const OpArg& arg, X64Reg regOp);
+ void MOVDQU(X64Reg regOp, const OpArg& arg);
+ void MOVDQU(const OpArg& arg, X64Reg regOp);
+
+ void MOVSS(X64Reg regOp, const OpArg& arg);
+ void MOVSD(X64Reg regOp, const OpArg& arg);
+ void MOVSS(const OpArg& arg, X64Reg regOp);
+ void MOVSD(const OpArg& arg, X64Reg regOp);
+
+ void MOVLPS(X64Reg regOp, const OpArg& arg);
+ void MOVLPD(X64Reg regOp, const OpArg& arg);
+ void MOVLPS(const OpArg& arg, X64Reg regOp);
+ void MOVLPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVHPS(X64Reg regOp, const OpArg& arg);
+ void MOVHPD(X64Reg regOp, const OpArg& arg);
+ void MOVHPS(const OpArg& arg, X64Reg regOp);
+ void MOVHPD(const OpArg& arg, X64Reg regOp);
+
+ void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
+ void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
+
+ // Be careful when using these overloads for reg <--> xmm moves.
+ // The one you cast to OpArg with R(reg) is the x86 reg, the other
+ // one is the xmm reg.
+ // ie: "MOVD_xmm(eax, R(xmm1))" generates incorrect code (movd xmm0, rcx)
+ // use "MOVD_xmm(R(eax), xmm1)" instead.
+ void MOVD_xmm(X64Reg dest, const OpArg& arg);
+ void MOVQ_xmm(X64Reg dest, OpArg arg);
+ void MOVD_xmm(const OpArg& arg, X64Reg src);
+ void MOVQ_xmm(OpArg arg, X64Reg src);
+
+ // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in
+ // question.
+ void MOVMSKPS(X64Reg dest, const OpArg& arg);
+ void MOVMSKPD(X64Reg dest, const OpArg& arg);
+
+ // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a
+ // weird one.
+ void MASKMOVDQU(X64Reg dest, X64Reg src);
+ void LDDQU(X64Reg dest, const OpArg& src);
+
+ // SSE/SSE2: Data type conversions.
+ void CVTPS2PD(X64Reg dest, const OpArg& src);
+ void CVTPD2PS(X64Reg dest, const OpArg& src);
+ void CVTSS2SD(X64Reg dest, const OpArg& src);
+ void CVTSI2SS(X64Reg dest, const OpArg& src);
+ void CVTSD2SS(X64Reg dest, const OpArg& src);
+ void CVTSI2SD(X64Reg dest, const OpArg& src);
+ void CVTDQ2PD(X64Reg regOp, const OpArg& arg);
+ void CVTPD2DQ(X64Reg regOp, const OpArg& arg);
+ void CVTDQ2PS(X64Reg regOp, const OpArg& arg);
+ void CVTPS2DQ(X64Reg regOp, const OpArg& arg);
+
+ void CVTTPS2DQ(X64Reg regOp, const OpArg& arg);
+ void CVTTPD2DQ(X64Reg regOp, const OpArg& arg);
+
+ // Destinations are X64 regs (rax, rbx, ...) for these instructions.
+ void CVTSS2SI(X64Reg xregdest, const OpArg& src);
+ void CVTSD2SI(X64Reg xregdest, const OpArg& src);
+ void CVTTSS2SI(X64Reg xregdest, const OpArg& arg);
+ void CVTTSD2SI(X64Reg xregdest, const OpArg& arg);
+
+ // SSE2: Packed integer instructions
+ void PACKSSDW(X64Reg dest, const OpArg& arg);
+ void PACKSSWB(X64Reg dest, const OpArg& arg);
+ void PACKUSDW(X64Reg dest, const OpArg& arg);
+ void PACKUSWB(X64Reg dest, const OpArg& arg);
+
+ void PUNPCKLBW(X64Reg dest, const OpArg& arg);
+ void PUNPCKLWD(X64Reg dest, const OpArg& arg);
+ void PUNPCKLDQ(X64Reg dest, const OpArg& arg);
+ void PUNPCKLQDQ(X64Reg dest, const OpArg& arg);
+
+ void PTEST(X64Reg dest, const OpArg& arg);
+ void PAND(X64Reg dest, const OpArg& arg);
+ void PANDN(X64Reg dest, const OpArg& arg);
+ void PXOR(X64Reg dest, const OpArg& arg);
+ void POR(X64Reg dest, const OpArg& arg);
+
+ void PADDB(X64Reg dest, const OpArg& arg);
+ void PADDW(X64Reg dest, const OpArg& arg);
+ void PADDD(X64Reg dest, const OpArg& arg);
+ void PADDQ(X64Reg dest, const OpArg& arg);
+
+ void PADDSB(X64Reg dest, const OpArg& arg);
+ void PADDSW(X64Reg dest, const OpArg& arg);
+ void PADDUSB(X64Reg dest, const OpArg& arg);
+ void PADDUSW(X64Reg dest, const OpArg& arg);
+
+ void PSUBB(X64Reg dest, const OpArg& arg);
+ void PSUBW(X64Reg dest, const OpArg& arg);
+ void PSUBD(X64Reg dest, const OpArg& arg);
+ void PSUBQ(X64Reg dest, const OpArg& arg);
+
+ void PSUBSB(X64Reg dest, const OpArg& arg);
+ void PSUBSW(X64Reg dest, const OpArg& arg);
+ void PSUBUSB(X64Reg dest, const OpArg& arg);
+ void PSUBUSW(X64Reg dest, const OpArg& arg);
+
+ void PAVGB(X64Reg dest, const OpArg& arg);
+ void PAVGW(X64Reg dest, const OpArg& arg);
+
+ void PCMPEQB(X64Reg dest, const OpArg& arg);
+ void PCMPEQW(X64Reg dest, const OpArg& arg);
+ void PCMPEQD(X64Reg dest, const OpArg& arg);
+
+ void PCMPGTB(X64Reg dest, const OpArg& arg);
+ void PCMPGTW(X64Reg dest, const OpArg& arg);
+ void PCMPGTD(X64Reg dest, const OpArg& arg);
+
+ void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg);
+ void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg);
+ void PINSRD(X64Reg dest, const OpArg& arg, u8 subreg);
+
+ void PMADDWD(X64Reg dest, const OpArg& arg);
+ void PSADBW(X64Reg dest, const OpArg& arg);
+
+ void PMAXSW(X64Reg dest, const OpArg& arg);
+ void PMAXUB(X64Reg dest, const OpArg& arg);
+ void PMINSW(X64Reg dest, const OpArg& arg);
+ void PMINUB(X64Reg dest, const OpArg& arg);
+
+ void PMOVMSKB(X64Reg dest, const OpArg& arg);
+ void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle);
+ void PSHUFB(X64Reg dest, const OpArg& arg);
+
+ void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle);
+ void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle);
+
+ void PSRLW(X64Reg reg, int shift);
+ void PSRLD(X64Reg reg, int shift);
+ void PSRLQ(X64Reg reg, int shift);
+ void PSRLQ(X64Reg reg, const OpArg& arg);
+ void PSRLDQ(X64Reg reg, int shift);
+
+ void PSLLW(X64Reg reg, int shift);
+ void PSLLD(X64Reg reg, int shift);
+ void PSLLQ(X64Reg reg, int shift);
+ void PSLLDQ(X64Reg reg, int shift);
+
+ void PSRAW(X64Reg reg, int shift);
+ void PSRAD(X64Reg reg, int shift);
+
+ // SSE4: data type conversions
+ void PMOVSXBW(X64Reg dest, const OpArg& arg);
+ void PMOVSXBD(X64Reg dest, const OpArg& arg);
+ void PMOVSXBQ(X64Reg dest, const OpArg& arg);
+ void PMOVSXWD(X64Reg dest, const OpArg& arg);
+ void PMOVSXWQ(X64Reg dest, const OpArg& arg);
+ void PMOVSXDQ(X64Reg dest, const OpArg& arg);
+ void PMOVZXBW(X64Reg dest, const OpArg& arg);
+ void PMOVZXBD(X64Reg dest, const OpArg& arg);
+ void PMOVZXBQ(X64Reg dest, const OpArg& arg);
+ void PMOVZXWD(X64Reg dest, const OpArg& arg);
+ void PMOVZXWQ(X64Reg dest, const OpArg& arg);
+ void PMOVZXDQ(X64Reg dest, const OpArg& arg);
+
+ // SSE4: blend instructions
+ void PBLENDVB(X64Reg dest, const OpArg& arg);
+ void BLENDVPS(X64Reg dest, const OpArg& arg);
+ void BLENDVPD(X64Reg dest, const OpArg& arg);
+ void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
+ void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
+
+ // AVX
+ void VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare);
+ void VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
+ void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
+ void VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg mask);
+ void VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend);
+ void VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend);
+
+ void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+
+ void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+
+ // FMA3
+ void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+
+#define FMA4(name) \
+ void name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); \
+ void name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+
+ FMA4(VFMADDSUBPS)
+ FMA4(VFMADDSUBPD)
+ FMA4(VFMSUBADDPS)
+ FMA4(VFMSUBADDPD)
+ FMA4(VFMADDPS)
+ FMA4(VFMADDPD)
+ FMA4(VFMADDSS)
+ FMA4(VFMADDSD)
+ FMA4(VFMSUBPS)
+ FMA4(VFMSUBPD)
+ FMA4(VFMSUBSS)
+ FMA4(VFMSUBSD)
+ FMA4(VFNMADDPS)
+ FMA4(VFNMADDPD)
+ FMA4(VFNMADDSS)
+ FMA4(VFNMADDSD)
+ FMA4(VFNMSUBPS)
+ FMA4(VFNMSUBPD)
+ FMA4(VFNMSUBSS)
+ FMA4(VFNMSUBSD)
+#undef FMA4
+
+ // VEX GPR instructions
+ void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate);
+ void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+ void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void BLSR(int bits, X64Reg regOp, const OpArg& arg);
+ void BLSMSK(int bits, X64Reg regOp, const OpArg& arg);
+ void BLSI(int bits, X64Reg regOp, const OpArg& arg);
+ void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
+ void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
+
+ void RDTSC();
+
+ // Utility functions
+ // The difference between this and CALL is that this aligns the stack
+ // where appropriate.
+ template <typename FunctionPointer>
+ void ABI_CallFunction(FunctionPointer func)
+ {
+ static_assert(std::is_pointer<FunctionPointer>() &&
+ std::is_function<std::remove_pointer_t<FunctionPointer>>(),
+ "Supplied type must be a function pointer.");
+
+ const void* ptr = reinterpret_cast<const void*>(func);
+ const u64 address = reinterpret_cast<u64>(ptr);
+ const u64 distance = address - (reinterpret_cast<u64>(code) + 5);
+
+ if (distance >= 0x0000000080000000ULL && distance < 0xFFFFFFFF80000000ULL)
+ {
+ // Far call
+ MOV(64, R(RAX), Imm64(address));
+ CALLptr(R(RAX));
+ }
+ else
+ {
+ CALL(ptr);
+ }
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionC16(FunctionPointer func, u16 param1)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionCC16(FunctionPointer func, u32 param1, u16 param2)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionC(FunctionPointer func, u32 param1)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionCC(FunctionPointer func, u32 param1, u32 param2)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionCP(FunctionPointer func, u32 param1, const void* param2)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2)));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionCCC(FunctionPointer func, u32 param1, u32 param2, u32 param3)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(32, R(ABI_PARAM3), Imm32(param3));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionCCP(FunctionPointer func, u32 param1, u32 param2, const void* param3)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(64, R(ABI_PARAM3), Imm64(reinterpret_cast<u64>(param3)));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionCCCP(FunctionPointer func, u32 param1, u32 param2, u32 param3,
+ const void* param4)
+ {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(32, R(ABI_PARAM3), Imm32(param3));
+ MOV(64, R(ABI_PARAM4), Imm64(reinterpret_cast<u64>(param4)));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionPC(FunctionPointer func, const void* param1, u32 param2)
+ {
+ MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionPPC(FunctionPointer func, const void* param1, const void* param2, u32 param3)
+ {
+ MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1)));
+ MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2)));
+ MOV(32, R(ABI_PARAM3), Imm32(param3));
+ ABI_CallFunction(func);
+ }
+
+ // Pass a register as a parameter.
+ template <typename FunctionPointer>
+ void ABI_CallFunctionR(FunctionPointer func, X64Reg reg1)
+ {
+ if (reg1 != ABI_PARAM1)
+ MOV(32, R(ABI_PARAM1), R(reg1));
+ ABI_CallFunction(func);
+ }
+
+ // Pass two registers as parameters.
+ template <typename FunctionPointer>
+ void ABI_CallFunctionRR(FunctionPointer func, X64Reg reg1, X64Reg reg2)
+ {
+ MOVTwo(64, ABI_PARAM1, reg1, 0, ABI_PARAM2, reg2);
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionAC(int bits, FunctionPointer func, const Gen::OpArg& arg1, u32 param2)
+ {
+ if (!arg1.IsSimpleReg(ABI_PARAM1))
+ MOV(bits, R(ABI_PARAM1), arg1);
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ ABI_CallFunction(func);
+ }
+
+ template <typename FunctionPointer>
+ void ABI_CallFunctionA(int bits, FunctionPointer func, const Gen::OpArg& arg1)
+ {
+ if (!arg1.IsSimpleReg(ABI_PARAM1))
+ MOV(bits, R(ABI_PARAM1), arg1);
+ ABI_CallFunction(func);
+ }
+
+ // Helper method for ABI functions related to calling functions. May be used by itself as well.
+ void MOVTwo(int bits, X64Reg dst1, X64Reg src1, s32 offset, X64Reg dst2, X64Reg src2);
+
+ // Saves/restores the registers and adjusts the stack to be aligned as
+ // required by the ABI, where the previous alignment was as specified.
+ // Push returns the size of the shadow space, i.e. the offset of the frame.
+ size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
+ size_t needed_frame_size = 0);
+ void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
+ size_t needed_frame_size = 0);
+
+ // Utility to generate a call to a std::function object.
+ //
+ // Unfortunately, calling operator() directly is undefined behavior in C++
+ // (this method might be a thunk in the case of multi-inheritance) so we
+ // have to go through a trampoline function.
+ template <typename T, typename... Args>
+ static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args)
+ {
+ return (*f)(args...);
+ }
+
+ template <typename T, typename... Args>
+ void ABI_CallLambdaC(const std::function<T(Args...)>* f, u32 p1)
+ {
+ auto trampoline = &XEmitter::CallLambdaTrampoline<T, Args...>;
+ ABI_CallFunctionPC(trampoline, reinterpret_cast<const void*>(f), p1);
+ }
+}; // class XEmitter
+
+class X64CodeBlock : public Common::CodeBlock<XEmitter>
+{
+private:
+ void PoisonMemory() override
+ {
+ // x86/64: 0xCC = breakpoint
+ memset(region, 0xCC, region_size);
+ }
+};
+
+} // namespace
diff --git a/src/dolphin/x64Reg.h b/src/dolphin/x64Reg.h
new file mode 100644
index 0000000..a92e024
--- /dev/null
+++ b/src/dolphin/x64Reg.h
@@ -0,0 +1,96 @@
+// Copyright 2016 Dolphin Emulator Project
+// Licensed under GPLv2+
+// Refer to the license_dolphin.txt file included.
+
+#pragma once
+
+namespace Gen
+{
+enum X64Reg
+{
+ EAX = 0,
+ EBX = 3,
+ ECX = 1,
+ EDX = 2,
+ ESI = 6,
+ EDI = 7,
+ EBP = 5,
+ ESP = 4,
+
+ RAX = 0,
+ RBX = 3,
+ RCX = 1,
+ RDX = 2,
+ RSI = 6,
+ RDI = 7,
+ RBP = 5,
+ RSP = 4,
+ R8 = 8,
+ R9 = 9,
+ R10 = 10,
+ R11 = 11,
+ R12 = 12,
+ R13 = 13,
+ R14 = 14,
+ R15 = 15,
+
+ AL = 0,
+ BL = 3,
+ CL = 1,
+ DL = 2,
+ SIL = 6,
+ DIL = 7,
+ BPL = 5,
+ SPL = 4,
+ AH = 0x104,
+ BH = 0x107,
+ CH = 0x105,
+ DH = 0x106,
+
+ AX = 0,
+ BX = 3,
+ CX = 1,
+ DX = 2,
+ SI = 6,
+ DI = 7,
+ BP = 5,
+ SP = 4,
+
+ XMM0 = 0,
+ XMM1,
+ XMM2,
+ XMM3,
+ XMM4,
+ XMM5,
+ XMM6,
+ XMM7,
+ XMM8,
+ XMM9,
+ XMM10,
+ XMM11,
+ XMM12,
+ XMM13,
+ XMM14,
+ XMM15,
+
+ YMM0 = 0,
+ YMM1,
+ YMM2,
+ YMM3,
+ YMM4,
+ YMM5,
+ YMM6,
+ YMM7,
+ YMM8,
+ YMM9,
+ YMM10,
+ YMM11,
+ YMM12,
+ YMM13,
+ YMM14,
+ YMM15,
+
+ INVALID_REG = 0xFFFFFFFF
+};
+
+} // namespace Gen