diff options
author | RSDuck <rsduck@users.noreply.github.com> | 2019-06-22 01:28:32 +0200 |
---|---|---|
committer | RSDuck <rsduck@users.noreply.github.com> | 2020-04-26 13:02:53 +0200 |
commit | c5c342c0091d9bf36500950a21585c5c98dd7d9d (patch) | |
tree | 79abf542c763cce60ffe650e300bfee31194ba8a /src/dolphin | |
parent | d2f05cd30fcd530655649549452c34dea1969281 (diff) |
JIT: base
all instructions are interpreted
Diffstat (limited to 'src/dolphin')
-rw-r--r-- | src/dolphin/Assert.h | 47 | ||||
-rw-r--r-- | src/dolphin/BitSet.h | 218 | ||||
-rw-r--r-- | src/dolphin/CPUDetect.h | 76 | ||||
-rw-r--r-- | src/dolphin/CodeBlock.h | 121 | ||||
-rw-r--r-- | src/dolphin/CommonFuncs.cpp | 52 | ||||
-rw-r--r-- | src/dolphin/CommonFuncs.h | 58 | ||||
-rw-r--r-- | src/dolphin/Intrinsics.h | 72 | ||||
-rw-r--r-- | src/dolphin/Log.h | 20 | ||||
-rw-r--r-- | src/dolphin/MemoryUtil.cpp | 193 | ||||
-rw-r--r-- | src/dolphin/MemoryUtil.h | 22 | ||||
-rw-r--r-- | src/dolphin/license_dolphin.txt | 339 | ||||
-rw-r--r-- | src/dolphin/x64ABI.cpp | 119 | ||||
-rw-r--r-- | src/dolphin/x64ABI.h | 57 | ||||
-rw-r--r-- | src/dolphin/x64CPUDetect.cpp | 274 | ||||
-rw-r--r-- | src/dolphin/x64Emitter.cpp | 3398 | ||||
-rw-r--r-- | src/dolphin/x64Emitter.h | 1180 | ||||
-rw-r--r-- | src/dolphin/x64Reg.h | 96 |
17 files changed, 6342 insertions, 0 deletions
diff --git a/src/dolphin/Assert.h b/src/dolphin/Assert.h new file mode 100644 index 0000000..4eb16e0 --- /dev/null +++ b/src/dolphin/Assert.h @@ -0,0 +1,47 @@ +// Copyright 2015 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +#include <assert.h> + +#define ASSERT_MSG(_t_, _a_, _fmt_, ...) \ + assert(_a_) \ + /*do \ + { \ + if (!(_a_)) \ + { \ + if (!PanicYesNo(_fmt_, ##__VA_ARGS__)) \ + Crash(); \ + } \ + } while (0)*/ + +#define DEBUG_ASSERT_MSG(_t_, _a_, _msg_, ...) \ + assert(_a_); \ + /*do \ + { \ + if (MAX_LOGLEVEL >= LogTypes::LOG_LEVELS::LDEBUG && !(_a_)) \ + { \ + ERROR_LOG(_t_, _msg_, ##__VA_ARGS__); \ + if (!PanicYesNo(_msg_, ##__VA_ARGS__)) \ + Crash(); \ + } \ + } while (0)*/ + +#define ASSERT(_a_) \ + assert(_a_) \ + /*do \ + { \ + ASSERT_MSG(MASTER_LOG, _a_, \ + _trans("An error occurred.\n\n Line: %d\n File: %s\n\nIgnore and continue?"), \ + __LINE__, __FILE__); \ + } while (0)*/ + +#define DEBUG_ASSERT(_a_) \ + assert(_a_) \ + /*do \ + { \ + if (MAX_LOGLEVEL >= LogTypes::LOG_LEVELS::LDEBUG) \ + ASSERT(_a_); \ + } while (0)*/ diff --git a/src/dolphin/BitSet.h b/src/dolphin/BitSet.h new file mode 100644 index 0000000..d32b020 --- /dev/null +++ b/src/dolphin/BitSet.h @@ -0,0 +1,218 @@ +// This file is under the public domain. + +#pragma once + +#include <cstddef> +#include <initializer_list> +#include <type_traits> +#include "../types.h" + +#ifdef _WIN32 + +#include <intrin.h> + +namespace Common +{ +template <typename T> +constexpr int CountSetBits(T v) +{ + // from https://graphics.stanford.edu/~seander/bithacks.html + // GCC has this built in, but MSVC's intrinsic will only emit the actual + // POPCNT instruction, which we're not depending on + v = v - ((v >> 1) & (T) ~(T)0 / 3); + v = (v & (T) ~(T)0 / 15 * 3) + ((v >> 2) & (T) ~(T)0 / 15 * 3); + v = (v + (v >> 4)) & (T) ~(T)0 / 255 * 15; + return (T)(v * ((T) ~(T)0 / 255)) >> (sizeof(T) - 1) * 8; +} +inline int LeastSignificantSetBit(u8 val) +{ + unsigned long index; + _BitScanForward(&index, val); + return (int)index; +} +inline int LeastSignificantSetBit(u16 val) +{ + unsigned long index; + _BitScanForward(&index, val); + return (int)index; +} +inline int LeastSignificantSetBit(u32 val) +{ + unsigned long index; + _BitScanForward(&index, val); + return (int)index; +} +inline int LeastSignificantSetBit(u64 val) +{ + unsigned long index; + _BitScanForward64(&index, val); + return (int)index; +} +#else +namespace Common +{ +constexpr int CountSetBits(u8 val) +{ + return __builtin_popcount(val); +} +constexpr int CountSetBits(u16 val) +{ + return __builtin_popcount(val); +} +constexpr int CountSetBits(u32 val) +{ + return __builtin_popcount(val); +} +constexpr int CountSetBits(u64 val) +{ + return __builtin_popcountll(val); +} +inline int LeastSignificantSetBit(u8 val) +{ + return __builtin_ctz(val); +} +inline int LeastSignificantSetBit(u16 val) +{ + return __builtin_ctz(val); +} +inline int LeastSignificantSetBit(u32 val) +{ + return __builtin_ctz(val); +} +inline int LeastSignificantSetBit(u64 val) +{ + return __builtin_ctzll(val); +} +#endif + +// Similar to std::bitset, this is a class which encapsulates a bitset, i.e. +// using the set bits of an integer to represent a set of integers. Like that +// class, it acts like an array of bools: +// BitSet32 bs; +// bs[1] = true; +// but also like the underlying integer ([0] = least significant bit): +// BitSet32 bs2 = ...; +// bs = (bs ^ bs2) & BitSet32(0xffff); +// The following additional functionality is provided: +// - Construction using an initializer list. +// BitSet bs { 1, 2, 4, 8 }; +// - Efficiently iterating through the set bits: +// for (int i : bs) +// [i is the *index* of a set bit] +// (This uses the appropriate CPU instruction to find the next set bit in one +// operation.) +// - Counting set bits using .Count() - see comment on that method. + +// TODO: use constexpr when MSVC gets out of the Dark Ages + +template <typename IntTy> +class BitSet +{ + static_assert(!std::is_signed<IntTy>::value, "BitSet should not be used with signed types"); + +public: + // A reference to a particular bit, returned from operator[]. + class Ref + { + public: + constexpr Ref(Ref&& other) : m_bs(other.m_bs), m_mask(other.m_mask) {} + constexpr Ref(BitSet* bs, IntTy mask) : m_bs(bs), m_mask(mask) {} + constexpr operator bool() const { return (m_bs->m_val & m_mask) != 0; } + bool operator=(bool set) + { + m_bs->m_val = (m_bs->m_val & ~m_mask) | (set ? m_mask : 0); + return set; + } + + private: + BitSet* m_bs; + IntTy m_mask; + }; + + // A STL-like iterator is required to be able to use range-based for loops. + class Iterator + { + public: + constexpr Iterator(const Iterator& other) : m_val(other.m_val), m_bit(other.m_bit) {} + constexpr Iterator(IntTy val, int bit) : m_val(val), m_bit(bit) {} + Iterator& operator=(Iterator other) + { + new (this) Iterator(other); + return *this; + } + Iterator& operator++() + { + if (m_val == 0) + { + m_bit = -1; + } + else + { + int bit = LeastSignificantSetBit(m_val); + m_val &= ~(1 << bit); + m_bit = bit; + } + return *this; + } + Iterator operator++(int) + { + Iterator other(*this); + ++*this; + return other; + } + constexpr int operator*() const { return m_bit; } + constexpr bool operator==(Iterator other) const { return m_bit == other.m_bit; } + constexpr bool operator!=(Iterator other) const { return m_bit != other.m_bit; } + + private: + IntTy m_val; + int m_bit; + }; + + constexpr BitSet() : m_val(0) {} + constexpr explicit BitSet(IntTy val) : m_val(val) {} + BitSet(std::initializer_list<int> init) + { + m_val = 0; + for (int bit : init) + m_val |= (IntTy)1 << bit; + } + + constexpr static BitSet AllTrue(size_t count) + { + return BitSet(count == sizeof(IntTy) * 8 ? ~(IntTy)0 : (((IntTy)1 << count) - 1)); + } + + Ref operator[](size_t bit) { return Ref(this, (IntTy)1 << bit); } + constexpr const Ref operator[](size_t bit) const { return (*const_cast<BitSet*>(this))[bit]; } + constexpr bool operator==(BitSet other) const { return m_val == other.m_val; } + constexpr bool operator!=(BitSet other) const { return m_val != other.m_val; } + constexpr bool operator<(BitSet other) const { return m_val < other.m_val; } + constexpr bool operator>(BitSet other) const { return m_val > other.m_val; } + constexpr BitSet operator|(BitSet other) const { return BitSet(m_val | other.m_val); } + constexpr BitSet operator&(BitSet other) const { return BitSet(m_val & other.m_val); } + constexpr BitSet operator^(BitSet other) const { return BitSet(m_val ^ other.m_val); } + constexpr BitSet operator~() const { return BitSet(~m_val); } + constexpr BitSet operator<<(IntTy shift) const { return BitSet(m_val << shift); } + constexpr BitSet operator>>(IntTy shift) const { return BitSet(m_val >> shift); } + constexpr explicit operator bool() const { return m_val != 0; } + BitSet& operator|=(BitSet other) { return *this = *this | other; } + BitSet& operator&=(BitSet other) { return *this = *this & other; } + BitSet& operator^=(BitSet other) { return *this = *this ^ other; } + BitSet& operator<<=(IntTy shift) { return *this = *this << shift; } + BitSet& operator>>=(IntTy shift) { return *this = *this >> shift; } + // Warning: Even though on modern CPUs this is a single fast instruction, + // Dolphin's official builds do not currently assume POPCNT support on x86, + // so slower explicit bit twiddling is generated. Still should generally + // be faster than a loop. + constexpr unsigned int Count() const { return CountSetBits(m_val); } + constexpr Iterator begin() const { return ++Iterator(m_val, 0); } + constexpr Iterator end() const { return Iterator(m_val, -1); } + IntTy m_val; +}; +} // namespace Common + +using BitSet8 = Common::BitSet<u8>; +using BitSet16 = Common::BitSet<u16>; +using BitSet32 = Common::BitSet<u32>; +using BitSet64 = Common::BitSet<u64>; diff --git a/src/dolphin/CPUDetect.h b/src/dolphin/CPUDetect.h new file mode 100644 index 0000000..bd4fd8d --- /dev/null +++ b/src/dolphin/CPUDetect.h @@ -0,0 +1,76 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +// Detect the CPU, so we'll know which optimizations to use +#pragma once + +#include <string> + +enum class CPUVendor +{ + Intel, + AMD, + ARM, + Other, +}; + +struct CPUInfo +{ + CPUVendor vendor = CPUVendor::Intel; + + char cpu_string[0x41] = {}; + char brand_string[0x21] = {}; + bool OS64bit = false; + bool CPU64bit = false; + bool Mode64bit = false; + + bool HTT = false; + int num_cores = 0; + int logical_cpu_count = 0; + + bool bSSE = false; + bool bSSE2 = false; + bool bSSE3 = false; + bool bSSSE3 = false; + bool bPOPCNT = false; + bool bSSE4_1 = false; + bool bSSE4_2 = false; + bool bLZCNT = false; + bool bSSE4A = false; + bool bAVX = false; + bool bAVX2 = false; + bool bBMI1 = false; + bool bBMI2 = false; + bool bFMA = false; + bool bFMA4 = false; + bool bAES = false; + // FXSAVE/FXRSTOR + bool bFXSR = false; + bool bMOVBE = false; + // This flag indicates that the hardware supports some mode + // in which denormal inputs _and_ outputs are automatically set to (signed) zero. + bool bFlushToZero = false; + bool bLAHFSAHF64 = false; + bool bLongMode = false; + bool bAtom = false; + + // ARMv8 specific + bool bFP = false; + bool bASIMD = false; + bool bCRC32 = false; + bool bSHA1 = false; + bool bSHA2 = false; + + // Call Detect() + explicit CPUInfo(); + + // Turn the CPU info into a string we can show + std::string Summarize(); + +private: + // Detects the various CPU features + void Detect(); +}; + +extern CPUInfo cpu_info; diff --git a/src/dolphin/CodeBlock.h b/src/dolphin/CodeBlock.h new file mode 100644 index 0000000..1434297 --- /dev/null +++ b/src/dolphin/CodeBlock.h @@ -0,0 +1,121 @@ +// Copyright 2014 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +#include <cstddef> +#include <vector> + +#include "Assert.h" +#include "../types.h" +#include "MemoryUtil.h" + +namespace Common +{ +// Everything that needs to generate code should inherit from this. +// You get memory management for free, plus, you can use all emitter functions without +// having to prefix them with gen-> or something similar. +// Example implementation: +// class JIT : public CodeBlock<ARMXEmitter> {} +template <class T> +class CodeBlock : public T +{ +private: + // A privately used function to set the executable RAM space to something invalid. + // For debugging usefulness it should be used to set the RAM to a host specific breakpoint + // instruction + virtual void PoisonMemory() = 0; + +protected: + u8* region = nullptr; + // Size of region we can use. + size_t region_size = 0; + // Original size of the region we allocated. + size_t total_region_size = 0; + + bool m_is_child = false; + std::vector<CodeBlock*> m_children; + +public: + CodeBlock() = default; + virtual ~CodeBlock() + { + if (region) + FreeCodeSpace(); + } + CodeBlock(const CodeBlock&) = delete; + CodeBlock& operator=(const CodeBlock&) = delete; + CodeBlock(CodeBlock&&) = delete; + CodeBlock& operator=(CodeBlock&&) = delete; + + // Call this before you generate any code. + void AllocCodeSpace(size_t size) + { + region_size = size; + total_region_size = size; + region = static_cast<u8*>(Common::AllocateExecutableMemory(total_region_size)); + T::SetCodePtr(region); + } + + // Always clear code space with breakpoints, so that if someone accidentally executes + // uninitialized, it just breaks into the debugger. + void ClearCodeSpace() + { + PoisonMemory(); + ResetCodePtr(); + } + + // Call this when shutting down. Don't rely on the destructor, even though it'll do the job. + void FreeCodeSpace() + { + ASSERT(!m_is_child); + Common::FreeMemoryPages(region, total_region_size); + region = nullptr; + region_size = 0; + total_region_size = 0; + for (CodeBlock* child : m_children) + { + child->region = nullptr; + child->region_size = 0; + child->total_region_size = 0; + } + } + + bool IsInSpace(const u8* ptr) const { return ptr >= region && ptr < (region + region_size); } + // Cannot currently be undone. Will write protect the entire code region. + // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()). + void WriteProtect() { Common::WriteProtectMemory(region, region_size, true); } + void ResetCodePtr() { T::SetCodePtr(region); } + size_t GetSpaceLeft() const + { + ASSERT(static_cast<size_t>(T::GetCodePtr() - region) < region_size); + return region_size - (T::GetCodePtr() - region); + } + + bool IsAlmostFull() const + { + // This should be bigger than the biggest block ever. + return GetSpaceLeft() < 0x10000; + } + + bool HasChildren() const { return region_size != total_region_size; } + u8* AllocChildCodeSpace(size_t child_size) + { + ASSERT_MSG(DYNA_REC, child_size < GetSpaceLeft(), "Insufficient space for child allocation."); + u8* child_region = region + region_size - child_size; + region_size -= child_size; + return child_region; + } + void AddChildCodeSpace(CodeBlock* child, size_t child_size) + { + u8* child_region = AllocChildCodeSpace(child_size); + child->m_is_child = true; + child->region = child_region; + child->region_size = child_size; + child->total_region_size = child_size; + child->ResetCodePtr(); + m_children.emplace_back(child); + } +}; +} // namespace Common diff --git a/src/dolphin/CommonFuncs.cpp b/src/dolphin/CommonFuncs.cpp new file mode 100644 index 0000000..f85051d --- /dev/null +++ b/src/dolphin/CommonFuncs.cpp @@ -0,0 +1,52 @@ +// Copyright 2009 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#include <cstddef> +#include <cstring> +#include <errno.h> +#include <type_traits> + +#include "CommonFuncs.h" + +#ifdef _WIN32 +#include <windows.h> +#define strerror_r(err, buf, len) strerror_s(buf, len, err) +#endif + +constexpr size_t BUFFER_SIZE = 256; + +// Wrapper function to get last strerror(errno) string. +// This function might change the error code. +std::string LastStrerrorString() +{ + char error_message[BUFFER_SIZE]; + + // There are two variants of strerror_r. The XSI version stores the message to the passed-in + // buffer and returns an int (0 on success). The GNU version returns a pointer to the message, + // which might have been stored in the passed-in buffer or might be a static string. + + // We check defines in order to figure out variant is in use, and we store the returned value + // to a variable so that we'll get a compile-time check that our assumption was correct. + +#if defined(__GLIBC__) && (_GNU_SOURCE || (_POSIX_C_SOURCE < 200112L && _XOPEN_SOURCE < 600)) + const char* str = strerror_r(errno, error_message, BUFFER_SIZE); + return std::string(str); +#else + int error_code = strerror_r(errno, error_message, BUFFER_SIZE); + return error_code == 0 ? std::string(error_message) : ""; +#endif +} + +#ifdef _WIN32 +// Wrapper function to get GetLastError() string. +// This function might change the error code. +std::string GetLastErrorString() +{ + char error_message[BUFFER_SIZE]; + + FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, GetLastError(), + MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), error_message, BUFFER_SIZE, nullptr); + return std::string(error_message); +} +#endif diff --git a/src/dolphin/CommonFuncs.h b/src/dolphin/CommonFuncs.h new file mode 100644 index 0000000..708fbc3 --- /dev/null +++ b/src/dolphin/CommonFuncs.h @@ -0,0 +1,58 @@ +// Copyright 2009 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +#include <cstddef> +#include <string> +#include "../types.h" + +// Will fail to compile on a non-array: +template <typename T, size_t N> +constexpr size_t ArraySize(T (&arr)[N]) +{ + return N; +} + +#ifndef _WIN32 + +// go to debugger mode +#define Crash() \ + { \ + __builtin_trap(); \ + } + +#else // WIN32 +// Function Cross-Compatibility +#define strcasecmp _stricmp +#define strncasecmp _strnicmp +#define unlink _unlink +#define vscprintf _vscprintf + +// 64 bit offsets for Windows +#define fseeko _fseeki64 +#define ftello _ftelli64 +#define atoll _atoi64 +#define stat _stat64 +#define fstat _fstat64 +#define fileno _fileno + +extern "C" { +__declspec(dllimport) void __stdcall DebugBreak(void); +} +#define Crash() \ + { \ + DebugBreak(); \ + } +#endif // WIN32 ndef + +// Wrapper function to get last strerror(errno) string. +// This function might change the error code. +std::string LastStrerrorString(); + +#ifdef _WIN32 +// Wrapper function to get GetLastError() string. +// This function might change the error code. +std::string GetLastErrorString(); +#endif diff --git a/src/dolphin/Intrinsics.h b/src/dolphin/Intrinsics.h new file mode 100644 index 0000000..483f219 --- /dev/null +++ b/src/dolphin/Intrinsics.h @@ -0,0 +1,72 @@ +// Copyright 2015 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +#if defined(_M_X86) + +/** + * It is assumed that all compilers used to build Dolphin support intrinsics up to and including + * SSE 4.2 on x86/x64. + */ + +#if defined(__GNUC__) || defined(__clang__) + +/** + * Due to limitations in GCC, SSE intrinsics are only available when compiling with the + * corresponding instruction set enabled. However, using the target attribute, we can compile + * single functions with a different target instruction set, while still creating a generic build. + * + * Since this instruction set is enabled per-function, any callers should verify that the + * instruction set is supported at runtime before calling it, and provide a fallback implementation + * when not supported. + * + * When building with -march=native, or enabling the instruction sets in the compile flags, permit + * usage of the instrinsics without any function attributes. If the command-line architecture does + * not support this instruction set, enable it via function targeting. + */ + +#include <x86intrin.h> +#ifndef __SSE4_2__ +#define FUNCTION_TARGET_SSE42 [[gnu::target("sse4.2")]] +#endif +#ifndef __SSE4_1__ +#define FUNCTION_TARGET_SSR41 [[gnu::target("sse4.1")]] +#endif +#ifndef __SSSE3__ +#define FUNCTION_TARGET_SSSE3 [[gnu::target("ssse3")]] +#endif +#ifndef __SSE3__ +#define FUNCTION_TARGET_SSE3 [[gnu::target("sse3")]] +#endif + +#elif defined(_MSC_VER) || defined(__INTEL_COMPILER) + +/** + * MSVC and ICC support intrinsics for any instruction set without any function attributes. + */ +#include <intrin.h> + +#endif // defined(_MSC_VER) || defined(__INTEL_COMPILER) + +#endif // _M_X86 + +/** + * Define the FUNCTION_TARGET macros to nothing if they are not needed, or not on an X86 platform. + * This way when a function is defined with FUNCTION_TARGET you don't need to define a second + * version without the macro around a #ifdef guard. Be careful when using intrinsics, as all use + * should still be placed around a #ifdef _M_X86 if the file is compiled on all architectures. + */ +#ifndef FUNCTION_TARGET_SSE42 +#define FUNCTION_TARGET_SSE42 +#endif +#ifndef FUNCTION_TARGET_SSR41 +#define FUNCTION_TARGET_SSR41 +#endif +#ifndef FUNCTION_TARGET_SSSE3 +#define FUNCTION_TARGET_SSSE3 +#endif +#ifndef FUNCTION_TARGET_SSE3 +#define FUNCTION_TARGET_SSE3 +#endif diff --git a/src/dolphin/Log.h b/src/dolphin/Log.h new file mode 100644 index 0000000..21e69a5 --- /dev/null +++ b/src/dolphin/Log.h @@ -0,0 +1,20 @@ +#pragma once + +#include "CommonFuncs.h" + +#include <stdio.h> + +#define PanicAlert(msg) \ + do \ + { \ + printf("%s\n", msg); \ + Crash(); \ + } while (false) + +#define DYNA_REC 0 + +#define ERROR_LOG(which, fmt, ...) \ + do \ + { \ + printf(fmt "\n", ## __VA_ARGS__); \ + } while (false) diff --git a/src/dolphin/MemoryUtil.cpp b/src/dolphin/MemoryUtil.cpp new file mode 100644 index 0000000..01cb897 --- /dev/null +++ b/src/dolphin/MemoryUtil.cpp @@ -0,0 +1,193 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#include <cstddef> +#include <cstdlib> +#include <string> + +#define PanicAlert(fmt, ...) \ + do \ + { \ + printf(fmt "\n", ## __VA_ARGS__); \ + abort(); \ + } while (false) + +#include "../types.h" +#include "CommonFuncs.h" + +#ifdef _WIN32 +#include <windows.h> +//#include "Common/StringUtil.h" +#else +#include <stdio.h> +#include <sys/mman.h> +#include <sys/types.h> +#if defined __APPLE__ || defined __FreeBSD__ || defined __OpenBSD__ +#include <sys/sysctl.h> +#elif defined __HAIKU__ +#include <OS.h> +#else +#include <sys/sysinfo.h> +#endif +#endif + +namespace Common +{ +// This is purposely not a full wrapper for virtualalloc/mmap, but it +// provides exactly the primitive operations that Dolphin needs. + +void* AllocateExecutableMemory(size_t size) +{ + printf("c\n"); + +#if defined(_WIN32) + void* ptr = VirtualAlloc(nullptr, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE); +#else + void* ptr = + mmap(nullptr, size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANON | MAP_PRIVATE, -1, 0); + + if (ptr == MAP_FAILED) + ptr = nullptr; +#endif + printf("a\n"); + + if (ptr == nullptr) + PanicAlert("Failed to allocate executable memory"); + + printf("b\n"); + + return ptr; +} + +void* AllocateMemoryPages(size_t size) +{ +#ifdef _WIN32 + void* ptr = VirtualAlloc(nullptr, size, MEM_COMMIT, PAGE_READWRITE); +#else + void* ptr = mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); + + if (ptr == MAP_FAILED) + ptr = nullptr; +#endif + + if (ptr == nullptr) + PanicAlert("Failed to allocate raw memory"); + + return ptr; +} + +void* AllocateAlignedMemory(size_t size, size_t alignment) +{ +#ifdef _WIN32 + void* ptr = _aligned_malloc(size, alignment); +#else + void* ptr = nullptr; + if (posix_memalign(&ptr, alignment, size) != 0) + ERROR_LOG(MEMMAP, "Failed to allocate aligned memory"); +#endif + + if (ptr == nullptr) + PanicAlert("Failed to allocate aligned memory"); + + return ptr; +} + +void FreeMemoryPages(void* ptr, size_t size) +{ + if (ptr) + { +#ifdef _WIN32 + if (!VirtualFree(ptr, 0, MEM_RELEASE)) + PanicAlert("FreeMemoryPages failed!\nVirtualFree: %s", GetLastErrorString().c_str()); +#else + if (munmap(ptr, size) != 0) + PanicAlert("FreeMemoryPages failed!\nmunmap: %s", LastStrerrorString().c_str()); +#endif + } +} + +void FreeAlignedMemory(void* ptr) +{ + if (ptr) + { +#ifdef _WIN32 + _aligned_free(ptr); +#else + free(ptr); +#endif + } +} + +void ReadProtectMemory(void* ptr, size_t size) +{ +#ifdef _WIN32 + DWORD oldValue; + if (!VirtualProtect(ptr, size, PAGE_NOACCESS, &oldValue)) + PanicAlert("ReadProtectMemory failed!\nVirtualProtect: %s", GetLastErrorString().c_str()); +#else + if (mprotect(ptr, size, PROT_NONE) != 0) + PanicAlert("ReadProtectMemory failed!\nmprotect: %s", LastStrerrorString().c_str()); +#endif +} + +void WriteProtectMemory(void* ptr, size_t size, bool allowExecute) +{ +#ifdef _WIN32 + DWORD oldValue; + if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READ : PAGE_READONLY, &oldValue)) + PanicAlert("WriteProtectMemory failed!\nVirtualProtect: %s", GetLastErrorString().c_str()); +#else + if (mprotect(ptr, size, allowExecute ? (PROT_READ | PROT_EXEC) : PROT_READ) != 0) + PanicAlert("WriteProtectMemory failed!\nmprotect: %s", LastStrerrorString().c_str()); +#endif +} + +void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute) +{ +#ifdef _WIN32 + DWORD oldValue; + if (!VirtualProtect(ptr, size, allowExecute ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE, &oldValue)) + PanicAlert("UnWriteProtectMemory failed!\nVirtualProtect: %s", GetLastErrorString().c_str()); +#else + if (mprotect(ptr, size, + allowExecute ? (PROT_READ | PROT_WRITE | PROT_EXEC) : PROT_WRITE | PROT_READ) != 0) + { + PanicAlert("UnWriteProtectMemory failed!\nmprotect: %s", LastStrerrorString().c_str()); + } +#endif +} + +size_t MemPhysical() +{ +#ifdef _WIN32 + MEMORYSTATUSEX memInfo; + memInfo.dwLength = sizeof(MEMORYSTATUSEX); + GlobalMemoryStatusEx(&memInfo); + return memInfo.ullTotalPhys; +#elif defined __APPLE__ || defined __FreeBSD__ || defined __OpenBSD__ + int mib[2]; + size_t physical_memory; + mib[0] = CTL_HW; +#ifdef __APPLE__ + mib[1] = HW_MEMSIZE; +#elif defined __FreeBSD__ + mib[1] = HW_REALMEM; +#elif defined __OpenBSD__ + mib[1] = HW_PHYSMEM; +#endif + size_t length = sizeof(size_t); + sysctl(mib, 2, &physical_memory, &length, NULL, 0); + return physical_memory; +#elif defined __HAIKU__ + system_info sysinfo; + get_system_info(&sysinfo); + return static_cast<size_t>(sysinfo.max_pages * B_PAGE_SIZE); +#else + struct sysinfo memInfo; + sysinfo(&memInfo); + return (size_t)memInfo.totalram * memInfo.mem_unit; +#endif +} + +} // namespace Common diff --git a/src/dolphin/MemoryUtil.h b/src/dolphin/MemoryUtil.h new file mode 100644 index 0000000..607b7a8 --- /dev/null +++ b/src/dolphin/MemoryUtil.h @@ -0,0 +1,22 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +#include <cstddef> +#include <string> + +namespace Common +{ +void* AllocateExecutableMemory(size_t size); +void* AllocateMemoryPages(size_t size); +void FreeMemoryPages(void* ptr, size_t size); +void* AllocateAlignedMemory(size_t size, size_t alignment); +void FreeAlignedMemory(void* ptr); +void ReadProtectMemory(void* ptr, size_t size); +void WriteProtectMemory(void* ptr, size_t size, bool executable = false); +void UnWriteProtectMemory(void* ptr, size_t size, bool allowExecute = false); +size_t MemPhysical(); + +} // namespace Common diff --git a/src/dolphin/license_dolphin.txt b/src/dolphin/license_dolphin.txt new file mode 100644 index 0000000..d511905 --- /dev/null +++ b/src/dolphin/license_dolphin.txt @@ -0,0 +1,339 @@ + GNU GENERAL PUBLIC LICENSE + Version 2, June 1991 + + Copyright (C) 1989, 1991 Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +License is intended to guarantee your freedom to share and change free +software--to make sure the software is free for all its users. This +General Public License applies to most of the Free Software +Foundation's software and to any other program whose authors commit to +using it. (Some other Free Software Foundation software is covered by +the GNU Lesser General Public License instead.) You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +this service if you wish), that you receive source code or can get it +if you want it, that you can change the software or use pieces of it +in new free programs; and that you know you can do these things. + + To protect your rights, we need to make restrictions that forbid +anyone to deny you these rights or to ask you to surrender the rights. +These restrictions translate to certain responsibilities for you if you +distribute copies of the software, or if you modify it. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must give the recipients all the rights that +you have. You must make sure that they, too, receive or can get the +source code. And you must show them these terms so they know their +rights. + + We protect your rights with two steps: (1) copyright the software, and +(2) offer you this license which gives you legal permission to copy, +distribute and/or modify the software. + + Also, for each author's protection and ours, we want to make certain +that everyone understands that there is no warranty for this free +software. If the software is modified by someone else and passed on, we +want its recipients to know that what they have is not the original, so +that any problems introduced by others will not reflect on the original +authors' reputations. + + Finally, any free program is threatened constantly by software +patents. We wish to avoid the danger that redistributors of a free +program will individually obtain patent licenses, in effect making the +program proprietary. To prevent this, we have made it clear that any +patent must be licensed for everyone's free use or not licensed at all. + + The precise terms and conditions for copying, distribution and +modification follow. + + GNU GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License applies to any program or other work which contains +a notice placed by the copyright holder saying it may be distributed +under the terms of this General Public License. The "Program", below, +refers to any such program or work, and a "work based on the Program" +means either the Program or any derivative work under copyright law: +that is to say, a work containing the Program or a portion of it, +either verbatim or with modifications and/or translated into another +language. (Hereinafter, translation is included without limitation in +the term "modification".) Each licensee is addressed as "you". + +Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running the Program is not restricted, and the output from the Program +is covered only if its contents constitute a work based on the +Program (independent of having been made by running the Program). +Whether that is true depends on what the Program does. + + 1. You may copy and distribute verbatim copies of the Program's +source code as you receive it, in any medium, provided that you +conspicuously and appropriately publish on each copy an appropriate +copyright notice and disclaimer of warranty; keep intact all the +notices that refer to this License and to the absence of any warranty; +and give any other recipients of the Program a copy of this License +along with the Program. + +You may charge a fee for the physical act of transferring a copy, and +you may at your option offer warranty protection in exchange for a fee. + + 2. You may modify your copy or copies of the Program or any portion +of it, thus forming a work based on the Program, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) You must cause the modified files to carry prominent notices + stating that you changed the files and the date of any change. + + b) You must cause any work that you distribute or publish, that in + whole or in part contains or is derived from the Program or any + part thereof, to be licensed as a whole at no charge to all third + parties under the terms of this License. + + c) If the modified program normally reads commands interactively + when run, you must cause it, when started running for such + interactive use in the most ordinary way, to print or display an + announcement including an appropriate copyright notice and a + notice that there is no warranty (or else, saying that you provide + a warranty) and that users may redistribute the program under + these conditions, and telling the user how to view a copy of this + License. (Exception: if the Program itself is interactive but + does not normally print such an announcement, your work based on + the Program is not required to print an announcement.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Program, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Program, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Program. + +In addition, mere aggregation of another work not based on the Program +with the Program (or with a work based on the Program) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may copy and distribute the Program (or a work based on it, +under Section 2) in object code or executable form under the terms of +Sections 1 and 2 above provided that you also do one of the following: + + a) Accompany it with the complete corresponding machine-readable + source code, which must be distributed under the terms of Sections + 1 and 2 above on a medium customarily used for software interchange; or, + + b) Accompany it with a written offer, valid for at least three + years, to give any third party, for a charge no more than your + cost of physically performing source distribution, a complete + machine-readable copy of the corresponding source code, to be + distributed under the terms of Sections 1 and 2 above on a medium + customarily used for software interchange; or, + + c) Accompany it with the information you received as to the offer + to distribute corresponding source code. (This alternative is + allowed only for noncommercial distribution and only if you + received the program in object code or executable form with such + an offer, in accord with Subsection b above.) + +The source code for a work means the preferred form of the work for +making modifications to it. For an executable work, complete source +code means all the source code for all modules it contains, plus any +associated interface definition files, plus the scripts used to +control compilation and installation of the executable. However, as a +special exception, the source code distributed need not include +anything that is normally distributed (in either source or binary +form) with the major components (compiler, kernel, and so on) of the +operating system on which the executable runs, unless that component +itself accompanies the executable. + +If distribution of executable or object code is made by offering +access to copy from a designated place, then offering equivalent +access to copy the source code from the same place counts as +distribution of the source code, even though third parties are not +compelled to copy the source along with the object code. + + 4. You may not copy, modify, sublicense, or distribute the Program +except as expressly provided under this License. Any attempt +otherwise to copy, modify, sublicense or distribute the Program is +void, and will automatically terminate your rights under this License. +However, parties who have received copies, or rights, from you under +this License will not have their licenses terminated so long as such +parties remain in full compliance. + + 5. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Program or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Program (or any work based on the +Program), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Program or works based on it. + + 6. Each time you redistribute the Program (or any work based on the +Program), the recipient automatically receives a license from the +original licensor to copy, distribute or modify the Program subject to +these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties to +this License. + + 7. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Program at all. For example, if a patent +license would not permit royalty-free redistribution of the Program by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Program. + +If any portion of this section is held invalid or unenforceable under +any particular circumstance, the balance of the section is intended to +apply and the section as a whole is intended to apply in other +circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system, which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 8. If the distribution and/or use of the Program is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Program under this License +may add an explicit geographical distribution limitation excluding +those countries, so that distribution is permitted only in or among +countries not thus excluded. In such case, this License incorporates +the limitation as if written in the body of this License. + + 9. The Free Software Foundation may publish revised and/or new versions +of the General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + +Each version is given a distinguishing version number. If the Program +specifies a version number of this License which applies to it and "any +later version", you have the option of following the terms and conditions +either of that version or of any later version published by the Free +Software Foundation. If the Program does not specify a version number of +this License, you may choose any version ever published by the Free Software +Foundation. + + 10. If you wish to incorporate parts of the Program into other free +programs whose distribution conditions are different, write to the author +to ask for permission. For software which is copyrighted by the Free +Software Foundation, write to the Free Software Foundation; we sometimes +make exceptions for this. Our decision will be guided by the two goals +of preserving the free status of all derivatives of our free software and +of promoting the sharing and reuse of software generally. + + NO WARRANTY + + 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY +FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN +OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES +PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED +OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS +TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE +PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, +REPAIR OR CORRECTION. + + 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR +REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, +INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING +OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED +TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY +YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER +PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE +POSSIBILITY OF SUCH DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + <one line to give the program's name and a brief idea of what it does.> + Copyright (C) <year> <name of author> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + +Also add information on how to contact you by electronic and paper mail. + +If the program is interactive, make it output a short notice like this +when it starts in an interactive mode: + + Gnomovision version 69, Copyright (C) year name of author + Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, the commands you use may +be called something other than `show w' and `show c'; they could even be +mouse-clicks or menu items--whatever suits your program. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the program, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the program + `Gnomovision' (which makes passes at compilers) written by James Hacker. + + <signature of Ty Coon>, 1 April 1989 + Ty Coon, President of Vice + +This General Public License does not permit incorporating your program into +proprietary programs. If your program is a subroutine library, you may +consider it more useful to permit linking proprietary applications with the +library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. diff --git a/src/dolphin/x64ABI.cpp b/src/dolphin/x64ABI.cpp new file mode 100644 index 0000000..d86a158 --- /dev/null +++ b/src/dolphin/x64ABI.cpp @@ -0,0 +1,119 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#include "../types.h" +#include "x64ABI.h" +#include "x64Emitter.h" + +using namespace Gen; + +// Shared code between Win64 and Unix64 + +void XEmitter::ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size, + size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp) +{ + size_t shadow = 0; +#if defined(_WIN32) + shadow = 0x20; +#endif + + int count = (mask & ABI_ALL_GPRS).Count(); + rsp_alignment -= count * 8; + size_t subtraction = 0; + int fpr_count = (mask & ABI_ALL_FPRS).Count(); + if (fpr_count) + { + // If we have any XMMs to save, we must align the stack here. + subtraction = rsp_alignment & 0xf; + } + subtraction += 16 * fpr_count; + size_t xmm_base_subtraction = subtraction; + subtraction += needed_frame_size; + subtraction += shadow; + // Final alignment. + rsp_alignment -= subtraction; + subtraction += rsp_alignment & 0xf; + + *shadowp = shadow; + *subtractionp = subtraction; + *xmm_offsetp = subtraction - xmm_base_subtraction; +} + +size_t XEmitter::ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, + size_t needed_frame_size) +{ + size_t shadow, subtraction, xmm_offset; + ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction, + &xmm_offset); + + for (int r : mask& ABI_ALL_GPRS) + PUSH((X64Reg)r); + + if (subtraction) + SUB(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction)); + + for (int x : mask& ABI_ALL_FPRS) + { + MOVAPD(MDisp(RSP, (int)xmm_offset), (X64Reg)(x - 16)); + xmm_offset += 16; + } + + return shadow; +} + +void XEmitter::ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, + size_t needed_frame_size) +{ + size_t shadow, subtraction, xmm_offset; + ABI_CalculateFrameSize(mask, rsp_alignment, needed_frame_size, &shadow, &subtraction, + &xmm_offset); + + for (int x : mask& ABI_ALL_FPRS) + { + MOVAPD((X64Reg)(x - 16), MDisp(RSP, (int)xmm_offset)); + xmm_offset += 16; + } + + if (subtraction) + ADD(64, R(RSP), subtraction >= 0x80 ? Imm32((u32)subtraction) : Imm8((u8)subtraction)); + + for (int r = 15; r >= 0; r--) + { + if (mask[r]) + POP((X64Reg)r); + } +} + +void XEmitter::MOVTwo(int bits, Gen::X64Reg dst1, Gen::X64Reg src1, s32 offset1, Gen::X64Reg dst2, + Gen::X64Reg src2) +{ + if (dst1 == src2 && dst2 == src1) + { + XCHG(bits, R(src1), R(src2)); + if (offset1) + ADD(bits, R(dst1), Imm32(offset1)); + } + else if (src2 != dst1) + { + if (dst1 != src1 && offset1) + LEA(bits, dst1, MDisp(src1, offset1)); + else if (dst1 != src1) + MOV(bits, R(dst1), R(src1)); + else if (offset1) + ADD(bits, R(dst1), Imm32(offset1)); + if (dst2 != src2) + MOV(bits, R(dst2), R(src2)); + } + else + { + if (dst2 != src2) + MOV(bits, R(dst2), R(src2)); + if (dst1 != src1 && offset1) + LEA(bits, dst1, MDisp(src1, offset1)); + else if (dst1 != src1) + MOV(bits, R(dst1), R(src1)); + else if (offset1) + ADD(bits, R(dst1), Imm32(offset1)); + } +} diff --git a/src/dolphin/x64ABI.h b/src/dolphin/x64ABI.h new file mode 100644 index 0000000..997782e --- /dev/null +++ b/src/dolphin/x64ABI.h @@ -0,0 +1,57 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +#include "BitSet.h" +#include "x64Reg.h" + +// x64 ABI:s, and helpers to help follow them when JIT-ing code. +// All convensions return values in EAX (+ possibly EDX). + +// Windows 64-bit +// * 4-reg "fastcall" variant, very new-skool stack handling +// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself +// calls_ +// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space. +// Scratch: RAX RCX RDX R8 R9 R10 R11 +// Callee-save: RBX RSI RDI RBP R12 R13 R14 R15 +// Parameters: RCX RDX R8 R9, further MOV-ed + +// Linux 64-bit +// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed) +// Scratch: RAX RCX RDX RSI RDI R8 R9 R10 R11 +// Callee-save: RBX RBP R12 R13 R14 R15 +// Parameters: RDI RSI RDX RCX R8 R9 + +#define ABI_ALL_FPRS BitSet32(0xffff0000) +#define ABI_ALL_GPRS BitSet32(0x0000ffff) + +#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention + +#define ABI_PARAM1 RCX +#define ABI_PARAM2 RDX +#define ABI_PARAM3 R8 +#define ABI_PARAM4 R9 + +// xmm0-xmm15 use the upper 16 bits in the functions that push/pop registers. +#define ABI_ALL_CALLER_SAVED \ + (BitSet32{RAX, RCX, RDX, R8, R9, R10, R11}) +#else // 64-bit Unix / OS X + +#define ABI_PARAM1 RDI +#define ABI_PARAM2 RSI +#define ABI_PARAM3 RDX +#define ABI_PARAM4 RCX +#define ABI_PARAM5 R8 +#define ABI_PARAM6 R9 + +// FIXME: avoid pushing all 16 XMM registers when possible? most functions we call probably +// don't actually clobber them. +#define ABI_ALL_CALLER_SAVED (BitSet32{RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11} | ABI_ALL_FPRS) +#endif // WIN32 + +#define ABI_ALL_CALLEE_SAVED (~ABI_ALL_CALLER_SAVED) + +#define ABI_RETURN RAX diff --git a/src/dolphin/x64CPUDetect.cpp b/src/dolphin/x64CPUDetect.cpp new file mode 100644 index 0000000..05ee11c --- /dev/null +++ b/src/dolphin/x64CPUDetect.cpp @@ -0,0 +1,274 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#include <cstring> +#include <string> + +#include "CPUDetect.h" +#include "../types.h" +#include "Intrinsics.h" + +#ifndef _MSVC_VER + +#ifdef __FreeBSD__ +#include <unistd.h> + +#include <machine/cpufunc.h> +#include <sys/types.h> +#endif + +static inline void __cpuidex(int info[4], int function_id, int subfunction_id) +{ +#ifdef __FreeBSD__ + // Despite the name, this is just do_cpuid() with ECX as second input. + cpuid_count((u_int)function_id, (u_int)subfunction_id, (u_int*)info); +#else + info[0] = function_id; // eax + info[2] = subfunction_id; // ecx + __asm__("cpuid" + : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) + : "a"(function_id), "c"(subfunction_id)); +#endif +} + +static inline void __cpuid(int info[4], int function_id) +{ + return __cpuidex(info, function_id, 0); +} + +#endif // ifndef _WIN32 + +#ifdef _MSVC_VER + +static u64 xgetbv(u32 index) +{ + return _xgetbv(index); +} +constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK; + +#else + +static u64 xgetbv(u32 index) +{ + u32 eax, edx; + __asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index)); + return ((u64)edx << 32) | eax; +} +constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0; +#endif // ifdef _WIN32 + +CPUInfo cpu_info; + +CPUInfo::CPUInfo() +{ + Detect(); +} + +// Detects the various CPU features +void CPUInfo::Detect() +{ +#ifdef _M_X86_64 + Mode64bit = true; + OS64bit = true; +#endif + num_cores = 1; + + // Set obvious defaults, for extra safety + if (Mode64bit) + { + bSSE = true; + bSSE2 = true; + bLongMode = true; + } + + // Assume CPU supports the CPUID instruction. Those that don't can barely + // boot modern OS:es anyway. + int cpu_id[4]; + + // Detect CPU's CPUID capabilities, and grab CPU string + __cpuid(cpu_id, 0x00000000); + u32 max_std_fn = cpu_id[0]; // EAX + std::memcpy(&brand_string[0], &cpu_id[1], sizeof(int)); + std::memcpy(&brand_string[4], &cpu_id[3], sizeof(int)); + std::memcpy(&brand_string[8], &cpu_id[2], sizeof(int)); + __cpuid(cpu_id, 0x80000000); + u32 max_ex_fn = cpu_id[0]; + if (!strcmp(brand_string, "GenuineIntel")) + vendor = CPUVendor::Intel; + else if (!strcmp(brand_string, "AuthenticAMD")) + vendor = CPUVendor::AMD; + else + vendor = CPUVendor::Other; + + // Set reasonable default brand string even if brand string not available. + strcpy(cpu_string, brand_string); + + // Detect family and other misc stuff. + bool ht = false; + HTT = ht; + logical_cpu_count = 1; + if (max_std_fn >= 1) + { + __cpuid(cpu_id, 0x00000001); + int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff); + int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0); + // Detect people unfortunate enough to be running Dolphin on an Atom + if (family == 6 && + (model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 || + model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D)) + bAtom = true; + logical_cpu_count = (cpu_id[1] >> 16) & 0xFF; + ht = (cpu_id[3] >> 28) & 1; + + if ((cpu_id[3] >> 25) & 1) + bSSE = true; + if ((cpu_id[3] >> 26) & 1) + bSSE2 = true; + if ((cpu_id[2]) & 1) + bSSE3 = true; + if ((cpu_id[2] >> 9) & 1) + bSSSE3 = true; + if ((cpu_id[2] >> 19) & 1) + bSSE4_1 = true; + if ((cpu_id[2] >> 20) & 1) + bSSE4_2 = true; + if ((cpu_id[2] >> 22) & 1) + bMOVBE = true; + if ((cpu_id[2] >> 25) & 1) + bAES = true; + + if ((cpu_id[3] >> 24) & 1) + { + // We can use FXSAVE. + bFXSR = true; + } + + // AVX support requires 3 separate checks: + // - Is the AVX bit set in CPUID? + // - Is the XSAVE bit set in CPUID? + // - XGETBV result has the XCR bit set. + if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1)) + { + if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) + { + bAVX = true; + if ((cpu_id[2] >> 12) & 1) + bFMA = true; + } + } + + if (max_std_fn >= 7) + { + __cpuidex(cpu_id, 0x00000007, 0x00000000); + // careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed + if ((cpu_id[1] >> 5) & 1) + bAVX2 = bAVX; + if ((cpu_id[1] >> 3) & 1) + bBMI1 = true; + if ((cpu_id[1] >> 8) & 1) + bBMI2 = true; + } + } + + bFlushToZero = bSSE; + + if (max_ex_fn >= 0x80000004) + { + // Extract CPU model string + __cpuid(cpu_id, 0x80000002); + memcpy(cpu_string, cpu_id, sizeof(cpu_id)); + __cpuid(cpu_id, 0x80000003); + memcpy(cpu_string + 16, cpu_id, sizeof(cpu_id)); + __cpuid(cpu_id, 0x80000004); + memcpy(cpu_string + 32, cpu_id, sizeof(cpu_id)); + } + if (max_ex_fn >= 0x80000001) + { + // Check for more features. + __cpuid(cpu_id, 0x80000001); + if (cpu_id[2] & 1) + bLAHFSAHF64 = true; + if ((cpu_id[2] >> 5) & 1) + bLZCNT = true; + if ((cpu_id[2] >> 16) & 1) + bFMA4 = true; + if ((cpu_id[3] >> 29) & 1) + bLongMode = true; + } + + num_cores = (logical_cpu_count == 0) ? 1 : logical_cpu_count; + + if (max_ex_fn >= 0x80000008) + { + // Get number of cores. This is a bit complicated. Following AMD manual here. + __cpuid(cpu_id, 0x80000008); + int apic_id_core_id_size = (cpu_id[2] >> 12) & 0xF; + if (apic_id_core_id_size == 0) + { + if (ht) + { + // New mechanism for modern Intel CPUs. + if (vendor == CPUVendor::Intel) + { + __cpuidex(cpu_id, 0x00000004, 0x00000000); + int cores_x_package = ((cpu_id[0] >> 26) & 0x3F) + 1; + HTT = (cores_x_package < logical_cpu_count); + cores_x_package = ((logical_cpu_count % cores_x_package) == 0) ? cores_x_package : 1; + num_cores = (cores_x_package > 1) ? cores_x_package : num_cores; + logical_cpu_count /= cores_x_package; + } + } + } + else + { + // Use AMD's new method. + num_cores = (cpu_id[2] & 0xFF) + 1; + } + } +} + +// Turn the CPU info into a string we can show +std::string CPUInfo::Summarize() +{ + std::string sum(cpu_string); + sum += " ("; + sum += brand_string; + sum += ")"; + + if (bSSE) + sum += ", SSE"; + if (bSSE2) + { + sum += ", SSE2"; + if (!bFlushToZero) + sum += " (but not DAZ!)"; + } + if (bSSE3) + sum += ", SSE3"; + if (bSSSE3) + sum += ", SSSE3"; + if (bSSE4_1) + sum += ", SSE4.1"; + if (bSSE4_2) + sum += ", SSE4.2"; + if (HTT) + sum += ", HTT"; + if (bAVX) + sum += ", AVX"; + if (bAVX2) + sum += ", AVX2"; + if (bBMI1) + sum += ", BMI1"; + if (bBMI2) + sum += ", BMI2"; + if (bFMA) + sum += ", FMA"; + if (bAES) + sum += ", AES"; + if (bMOVBE) + sum += ", MOVBE"; + if (bLongMode) + sum += ", 64-bit support"; + return sum; +} diff --git a/src/dolphin/x64Emitter.cpp b/src/dolphin/x64Emitter.cpp new file mode 100644 index 0000000..7849624 --- /dev/null +++ b/src/dolphin/x64Emitter.cpp @@ -0,0 +1,3398 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#include <cinttypes> +#include <cstring> + +#include "CPUDetect.h" +#include "../types.h" +#include "Log.h" +#include "x64Emitter.h" +#include "x64Reg.h" + +namespace Gen +{ +// TODO(ector): Add EAX special casing, for ever so slightly smaller code. +struct NormalOpDef +{ + u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; +}; + +// 0xCC is code for invalid combination of immediates +static const NormalOpDef normalops[11] = { + {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD + {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC + + {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB + {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB + + {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND + {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR + + {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR + {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV + + {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from) + {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP + + {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG +}; + +enum NormalSSEOps +{ + sseCMP = 0xC2, + sseADD = 0x58, // ADD + sseSUB = 0x5C, // SUB + sseAND = 0x54, // AND + sseANDN = 0x55, // ANDN + sseOR = 0x56, + sseXOR = 0x57, + sseMUL = 0x59, // MUL + sseDIV = 0x5E, // DIV + sseMIN = 0x5D, // MIN + sseMAX = 0x5F, // MAX + sseCOMIS = 0x2F, // COMIS + sseUCOMIS = 0x2E, // UCOMIS + sseSQRT = 0x51, // SQRT + sseRCP = 0x53, // RCP + sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!) + sseMOVAPfromRM = 0x28, // MOVAP from RM + sseMOVAPtoRM = 0x29, // MOVAP to RM + sseMOVUPfromRM = 0x10, // MOVUP from RM + sseMOVUPtoRM = 0x11, // MOVUP to RM + sseMOVLPfromRM = 0x12, + sseMOVLPtoRM = 0x13, + sseMOVHPfromRM = 0x16, + sseMOVHPtoRM = 0x17, + sseMOVHLPS = 0x12, + sseMOVLHPS = 0x16, + sseMOVDQfromRM = 0x6F, + sseMOVDQtoRM = 0x7F, + sseMASKMOVDQU = 0xF7, + sseLDDQU = 0xF0, + sseSHUF = 0xC6, + sseMOVNTDQ = 0xE7, + sseMOVNTP = 0x2B, +}; + +enum class NormalOp +{ + ADD, + ADC, + SUB, + SBB, + AND, + OR, + XOR, + MOV, + TEST, + CMP, + XCHG, +}; + +enum class FloatOp +{ + LD = 0, + ST = 2, + STP = 3, + LD80 = 5, + STP80 = 7, + + Invalid = -1, +}; + +void XEmitter::SetCodePtr(u8* ptr) +{ + code = ptr; +} + +const u8* XEmitter::GetCodePtr() const +{ + return code; +} + +u8* XEmitter::GetWritableCodePtr() +{ + return code; +} + +void XEmitter::Write8(u8 value) +{ + *code++ = value; +} + +void XEmitter::Write16(u16 value) +{ + std::memcpy(code, &value, sizeof(u16)); + code += sizeof(u16); +} + +void XEmitter::Write32(u32 value) +{ + std::memcpy(code, &value, sizeof(u32)); + code += sizeof(u32); +} + +void XEmitter::Write64(u64 value) +{ + std::memcpy(code, &value, sizeof(u64)); + code += sizeof(u64); +} + +void XEmitter::ReserveCodeSpace(int bytes) +{ + for (int i = 0; i < bytes; i++) + *code++ = 0xCC; +} + +u8* XEmitter::AlignCodeTo(size_t alignment) +{ + ASSERT_MSG(DYNA_REC, alignment != 0 && (alignment & (alignment - 1)) == 0, + "Alignment must be power of two"); + u64 c = reinterpret_cast<u64>(code) & (alignment - 1); + if (c) + ReserveCodeSpace(static_cast<int>(alignment - c)); + return code; +} + +u8* XEmitter::AlignCode4() +{ + return AlignCodeTo(4); +} + +u8* XEmitter::AlignCode16() +{ + return AlignCodeTo(16); +} + +u8* XEmitter::AlignCodePage() +{ + return AlignCodeTo(4096); +} + +// This operation modifies flags; check to see the flags are locked. +// If the flags are locked, we should immediately and loudly fail before +// causing a subtle JIT bug. +void XEmitter::CheckFlags() +{ + ASSERT_MSG(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!"); +} + +void XEmitter::WriteModRM(int mod, int reg, int rm) +{ + Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); +} + +void XEmitter::WriteSIB(int scale, int index, int base) +{ + Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); +} + +void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const +{ + if (customOp == -1) + customOp = operandReg; + u8 op = 0x40; + // REX.W (whether operation is a 64-bit operation) + if (opBits == 64) + op |= 8; + // REX.R (whether ModR/M reg field refers to R8-R15. + if (customOp & 8) + op |= 4; + // REX.X (whether ModR/M SIB index field refers to R8-R15) + if (indexReg & 8) + op |= 2; + // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) + if (offsetOrBaseReg & 8) + op |= 1; + // Write REX if wr have REX bits to write, or if the operation accesses + // SIL, DIL, BPL, or SPL. + if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || + (opBits == 8 && (customOp & 0x10c) == 4)) + { + emit->Write8(op); + // Check the operation doesn't access AH, BH, CH, or DH. + DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0); + DEBUG_ASSERT((customOp & 0x100) == 0); + } +} + +void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, + int W) const +{ + int R = !(regOp1 & 8); + int X = !(indexReg & 8); + int B = !(offsetOrBaseReg & 8); + + int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); + + // do we need any VEX fields that only appear in the three-byte form? + if (X == 1 && B == 1 && W == 0 && mmmmm == 1) + { + u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp; + emit->Write8(0xC5); + emit->Write8(RvvvvLpp); + } + else + { + u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; + u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp; + emit->Write8(0xC4); + emit->Write8(RXBmmmmm); + emit->Write8(WvvvvLpp); + } +} + +void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg, + bool warn_64bit_offset) const +{ + if (_operandReg == INVALID_REG) + _operandReg = (X64Reg)this->operandReg; + int mod = 0; + int ireg = indexReg; + bool SIB = false; + int _offsetOrBaseReg = this->offsetOrBaseReg; + + if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address + { + // Oh, RIP addressing. + _offsetOrBaseReg = 5; + emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); + // TODO : add some checks + u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; + s64 distance = (s64)offset - (s64)ripAddr; + ASSERT_MSG(DYNA_REC, + (distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset, + "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset); + s32 offs = (s32)distance; + emit->Write32((u32)offs); + return; + } + + if (scale == 0) + { + // Oh, no memory, Just a reg. + mod = 3; // 11 + } + else + { + // Ah good, no scaling. + if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) + { + // Okay, we're good. No SIB necessary. + int ioff = (int)offset; + if (ioff == 0) + { + mod = 0; + } + else if (ioff < -128 || ioff > 127) + { + mod = 2; // 32-bit displacement + } + else + { + mod = 1; // 8-bit displacement + } + } + else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) + { + SIB = true; + mod = 0; + _offsetOrBaseReg = 5; + } + else + { + if ((_offsetOrBaseReg & 7) == 4) // this would occupy the SIB encoding :( + { + // So we have to fake it with SIB encoding :( + SIB = true; + } + + if (scale >= SCALE_1 && scale < SCALE_ATREG) + { + SIB = true; + } + + if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) + { + SIB = true; + ireg = _offsetOrBaseReg; + } + + // Okay, we're fine. Just disp encoding. + // We need displacement. Which size? + int ioff = (int)(s64)offset; + if (ioff < -128 || ioff > 127) + { + mod = 2; // 32-bit displacement + } + else + { + mod = 1; // 8-bit displacement + } + } + } + + // Okay. Time to do the actual writing + // ModRM byte: + int oreg = _offsetOrBaseReg; + if (SIB) + oreg = 4; + + emit->WriteModRM(mod, _operandReg & 7, oreg & 7); + + if (SIB) + { + // SIB byte + int ss; + switch (scale) + { + case SCALE_NONE: + _offsetOrBaseReg = 4; + ss = 0; + break; // RSP + case SCALE_1: + ss = 0; + break; + case SCALE_2: + ss = 1; + break; + case SCALE_4: + ss = 2; + break; + case SCALE_8: + ss = 3; + break; + case SCALE_NOBASE_2: + ss = 1; + break; + case SCALE_NOBASE_4: + ss = 2; + break; + case SCALE_NOBASE_8: + ss = 3; + break; + case SCALE_ATREG: + ss = 0; + break; + default: + ASSERT_MSG(DYNA_REC, 0, "Invalid scale for SIB byte"); + ss = 0; + break; + } + emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7))); + } + + if (mod == 1) // 8-bit disp + { + emit->Write8((u8)(s8)(s32)offset); + } + else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp + { + emit->Write32((u32)offset); + } +} + +// W = operand extended width (1 if 64-bit) +// R = register# upper bit +// X = scale amnt upper bit +// B = base register# upper bit +void XEmitter::Rex(int w, int r, int x, int b) +{ + w = w ? 1 : 0; + r = r ? 1 : 0; + x = x ? 1 : 0; + b = b ? 1 : 0; + u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); + if (rx != 0x40) + Write8(rx); +} + +void XEmitter::JMP(const u8* addr, bool force5Bytes) +{ + u64 fn = (u64)addr; + if (!force5Bytes) + { + s64 distance = (s64)(fn - ((u64)code + 2)); + ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80, + "Jump target too far away, needs force5Bytes = true"); + // 8 bits will do + Write8(0xEB); + Write8((u8)(s8)distance); + } + else + { + s64 distance = (s64)(fn - ((u64)code + 5)); + + ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, + "Jump target too far away, needs indirect register"); + Write8(0xE9); + Write32((u32)(s32)distance); + } +} + +void XEmitter::JMPptr(const OpArg& arg2) +{ + OpArg arg = arg2; + if (arg.IsImm()) + ASSERT_MSG(DYNA_REC, 0, "JMPptr - Imm argument"); + arg.operandReg = 4; + arg.WriteREX(this, 0, 0); + Write8(0xFF); + arg.WriteRest(this); +} + +// Can be used to trap other processors, before overwriting their code +// not used in Dolphin +void XEmitter::JMPself() +{ + Write8(0xEB); + Write8(0xFE); +} + +void XEmitter::CALLptr(OpArg arg) +{ + if (arg.IsImm()) + ASSERT_MSG(DYNA_REC, 0, "CALLptr - Imm argument"); + arg.operandReg = 2; + arg.WriteREX(this, 0, 0); + Write8(0xFF); + arg.WriteRest(this); +} + +void XEmitter::CALL(const void* fnptr) +{ + u64 distance = u64(fnptr) - (u64(code) + 5); + ASSERT_MSG(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL, + "CALL out of range (%p calls %p)", code, fnptr); + Write8(0xE8); + Write32(u32(distance)); +} + +FixupBranch XEmitter::CALL() +{ + FixupBranch branch; + branch.type = FixupBranch::Type::Branch32Bit; + branch.ptr = code + 5; + Write8(0xE8); + Write32(0); + return branch; +} + +FixupBranch XEmitter::J(bool force5bytes) +{ + FixupBranch branch; + branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit; + branch.ptr = code + (force5bytes ? 5 : 2); + if (!force5bytes) + { + // 8 bits will do + Write8(0xEB); + Write8(0); + } + else + { + Write8(0xE9); + Write32(0); + } + return branch; +} + +FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) +{ + FixupBranch branch; + branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit; + branch.ptr = code + (force5bytes ? 6 : 2); + if (!force5bytes) + { + // 8 bits will do + Write8(0x70 + conditionCode); + Write8(0); + } + else + { + Write8(0x0F); + Write8(0x80 + conditionCode); + Write32(0); + } + return branch; +} + +void XEmitter::J_CC(CCFlags conditionCode, const u8* addr) +{ + u64 fn = (u64)addr; + s64 distance = (s64)(fn - ((u64)code + 2)); + if (distance < -0x80 || distance >= 0x80) + { + distance = (s64)(fn - ((u64)code + 6)); + ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, + "Jump target too far away, needs indirect register"); + Write8(0x0F); + Write8(0x80 + conditionCode); + Write32((u32)(s32)distance); + } + else + { + Write8(0x70 + conditionCode); + Write8((u8)(s8)distance); + } +} + +void XEmitter::SetJumpTarget(const FixupBranch& branch) +{ + if (branch.type == FixupBranch::Type::Branch8Bit) + { + s64 distance = (s64)(code - branch.ptr); + if (!(distance >= -0x80 && distance < 0x80)) + { + printf("miauz\n"); + } + ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80, + "Jump target too far away, needs force5Bytes = true"); + branch.ptr[-1] = (u8)(s8)distance; + } + else if (branch.type == FixupBranch::Type::Branch32Bit) + { + s64 distance = (s64)(code - branch.ptr); + ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, + "Jump target too far away, needs indirect register"); + + s32 valid_distance = static_cast<s32>(distance); + std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32)); + } +} + +// Single byte opcodes +// There is no PUSHAD/POPAD in 64-bit mode. +void XEmitter::INT3() +{ + Write8(0xCC); +} +void XEmitter::RET() +{ + Write8(0xC3); +} +void XEmitter::RET_FAST() +{ + Write8(0xF3); + Write8(0xC3); +} // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to + // a ret + +// The first sign of decadence: optimized NOPs. +void XEmitter::NOP(size_t size) +{ + DEBUG_ASSERT((int)size > 0); + while (true) + { + switch (size) + { + case 0: + return; + case 1: + Write8(0x90); + return; + case 2: + Write8(0x66); + Write8(0x90); + return; + case 3: + Write8(0x0F); + Write8(0x1F); + Write8(0x00); + return; + case 4: + Write8(0x0F); + Write8(0x1F); + Write8(0x40); + Write8(0x00); + return; + case 5: + Write8(0x0F); + Write8(0x1F); + Write8(0x44); + Write8(0x00); + Write8(0x00); + return; + case 6: + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x44); + Write8(0x00); + Write8(0x00); + return; + case 7: + Write8(0x0F); + Write8(0x1F); + Write8(0x80); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + case 8: + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + case 9: + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + case 10: + Write8(0x66); + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + default: + // Even though x86 instructions are allowed to be up to 15 bytes long, + // AMD advises against using NOPs longer than 11 bytes because they + // carry a performance penalty on CPUs older than AMD family 16h. + Write8(0x66); + Write8(0x66); + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + size -= 11; + continue; + } + } +} + +void XEmitter::PAUSE() +{ + Write8(0xF3); + NOP(); +} // use in tight spinloops for energy saving on some CPU +void XEmitter::CLC() +{ + CheckFlags(); + Write8(0xF8); +} // clear carry +void XEmitter::CMC() +{ + CheckFlags(); + Write8(0xF5); +} // flip carry +void XEmitter::STC() +{ + CheckFlags(); + Write8(0xF9); +} // set carry + +// TODO: xchg ah, al ??? +void XEmitter::XCHG_AHAL() +{ + Write8(0x86); + Write8(0xe0); + // alt. 86 c4 +} + +// These two can not be executed on early Intel 64-bit CPU:s, only on AMD! +void XEmitter::LAHF() +{ + Write8(0x9F); +} +void XEmitter::SAHF() +{ + CheckFlags(); + Write8(0x9E); +} + +void XEmitter::PUSHF() +{ + Write8(0x9C); +} +void XEmitter::POPF() +{ + CheckFlags(); + Write8(0x9D); +} + +void XEmitter::LFENCE() +{ + Write8(0x0F); + Write8(0xAE); + Write8(0xE8); +} +void XEmitter::MFENCE() +{ + Write8(0x0F); + Write8(0xAE); + Write8(0xF0); +} +void XEmitter::SFENCE() +{ + Write8(0x0F); + Write8(0xAE); + Write8(0xF8); +} + +void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) +{ + if (bits == 16) + Write8(0x66); + Rex(bits == 64, 0, 0, (int)reg >> 3); + Write8(byte + ((int)reg & 7)); +} + +void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) +{ + if (bits == 16) + Write8(0x66); + Rex(bits == 64, 0, 0, (int)reg >> 3); + Write8(byte1); + Write8(byte2 + ((int)reg & 7)); +} + +void XEmitter::CWD(int bits) +{ + if (bits == 16) + Write8(0x66); + Rex(bits == 64, 0, 0, 0); + Write8(0x99); +} + +void XEmitter::CBW(int bits) +{ + if (bits == 8) + Write8(0x66); + Rex(bits == 32, 0, 0, 0); + Write8(0x98); +} + +// Simple opcodes + +// push/pop do not need wide to be 64-bit +void XEmitter::PUSH(X64Reg reg) +{ + WriteSimple1Byte(32, 0x50, reg); +} +void XEmitter::POP(X64Reg reg) +{ + WriteSimple1Byte(32, 0x58, reg); +} + +void XEmitter::PUSH(int bits, const OpArg& reg) +{ + if (reg.IsSimpleReg()) + PUSH(reg.GetSimpleReg()); + else if (reg.IsImm()) + { + switch (reg.GetImmBits()) + { + case 8: + Write8(0x6A); + Write8((u8)(s8)reg.offset); + break; + case 16: + Write8(0x66); + Write8(0x68); + Write16((u16)(s16)(s32)reg.offset); + break; + case 32: + Write8(0x68); + Write32((u32)reg.offset); + break; + default: + ASSERT_MSG(DYNA_REC, 0, "PUSH - Bad imm bits"); + break; + } + } + else + { + if (bits == 16) + Write8(0x66); + reg.WriteREX(this, bits, bits); + Write8(0xFF); + reg.WriteRest(this, 0, (X64Reg)6); + } +} + +void XEmitter::POP(int /*bits*/, const OpArg& reg) +{ + if (reg.IsSimpleReg()) + POP(reg.GetSimpleReg()); + else + ASSERT_MSG(DYNA_REC, 0, "POP - Unsupported encoding"); +} + +void XEmitter::BSWAP(int bits, X64Reg reg) +{ + if (bits >= 32) + { + WriteSimple2Byte(bits, 0x0F, 0xC8, reg); + } + else if (bits == 16) + { + ROL(16, R(reg), Imm8(8)); + } + else if (bits == 8) + { + // Do nothing - can't bswap a single byte... + } + else + { + ASSERT_MSG(DYNA_REC, 0, "BSWAP - Wrong number of bits"); + } +} + +// Undefined opcode - reserved +// If we ever need a way to always cause a non-breakpoint hard exception... +void XEmitter::UD2() +{ + Write8(0x0F); + Write8(0x0B); +} + +void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) +{ + ASSERT_MSG(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument"); + arg.operandReg = (u8)level; + arg.WriteREX(this, 0, 0); + Write8(0x0F); + Write8(0x18); + arg.WriteRest(this); +} + +void XEmitter::SETcc(CCFlags flag, OpArg dest) +{ + ASSERT_MSG(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument"); + dest.operandReg = 0; + dest.WriteREX(this, 0, 8); + Write8(0x0F); + Write8(0x90 + (u8)flag); + dest.WriteRest(this); +} + +void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument"); + ASSERT_MSG(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported"); + if (bits == 16) + Write8(0x66); + src.operandReg = dest; + src.WriteREX(this, bits, bits); + Write8(0x0F); + Write8(0x40 + (u8)flag); + src.WriteRest(this); +} + +void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument"); + CheckFlags(); + src.operandReg = ext; + if (bits == 16) + Write8(0x66); + src.WriteREX(this, bits, bits, 0); + if (bits == 8) + { + Write8(0xF6); + } + else + { + Write8(0xF7); + } + src.WriteRest(this); +} + +void XEmitter::MUL(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 4); +} +void XEmitter::DIV(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 6); +} +void XEmitter::IMUL(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 5); +} +void XEmitter::IDIV(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 7); +} +void XEmitter::NEG(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 3); +} +void XEmitter::NOT(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 2); +} + +void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument"); + CheckFlags(); + src.operandReg = (u8)dest; + if (bits == 16) + Write8(0x66); + if (rep) + Write8(0xF3); + src.WriteREX(this, bits, bits); + Write8(0x0F); + Write8(byte2); + src.WriteRest(this); +} + +void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src) +{ + if (bits <= 16) + ASSERT_MSG(DYNA_REC, 0, "MOVNTI - bits<=16"); + WriteBitSearchType(bits, src, dest, 0xC3); +} + +void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) +{ + WriteBitSearchType(bits, dest, src, 0xBC); +} // Bottom bit to top bit +void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) +{ + WriteBitSearchType(bits, dest, src, 0xBD); +} // Top bit to bottom bit + +void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src) +{ + CheckFlags(); + if (!cpu_info.bBMI1) + PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); + WriteBitSearchType(bits, dest, src, 0xBC, true); +} +void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src) +{ + CheckFlags(); + if (!cpu_info.bLZCNT) + PanicAlert("Trying to use LZCNT on a system that doesn't support it. Bad programmer."); + WriteBitSearchType(bits, dest, src, 0xBD, true); +} + +void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument"); + if (dbits == sbits) + { + MOV(dbits, R(dest), src); + return; + } + src.operandReg = (u8)dest; + if (dbits == 16) + Write8(0x66); + src.WriteREX(this, dbits, sbits); + if (sbits == 8) + { + Write8(0x0F); + Write8(0xBE); + } + else if (sbits == 16) + { + Write8(0x0F); + Write8(0xBF); + } + else if (sbits == 32 && dbits == 64) + { + Write8(0x63); + } + else + { + Crash(); + } + src.WriteRest(this); +} + +void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument"); + if (dbits == sbits) + { + MOV(dbits, R(dest), src); + return; + } + src.operandReg = (u8)dest; + if (dbits == 16) + Write8(0x66); + // the 32bit result is automatically zero extended to 64bit + src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits); + if (sbits == 8) + { + Write8(0x0F); + Write8(0xB6); + } + else if (sbits == 16) + { + Write8(0x0F); + Write8(0xB7); + } + else if (sbits == 32 && dbits == 64) + { + Write8(0x8B); + } + else + { + ASSERT_MSG(DYNA_REC, 0, "MOVZX - Invalid size"); + } + src.WriteRest(this); +} + +void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg) +{ + ASSERT_MSG(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it."); + if (bits == 8) + { + MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg); + return; + } + if (bits == 16) + Write8(0x66); + ASSERT_MSG(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!"); + arg.WriteREX(this, bits, bits, reg); + Write8(0x0F); + Write8(0x38); + Write8(op); + arg.WriteRest(this, 0, reg); +} +void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src) +{ + WriteMOVBE(bits, 0xF0, dest, src); +} +void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src) +{ + WriteMOVBE(bits, 0xF1, src, dest); +} + +void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend, MovInfo* info) +{ + if (info) + { + info->address = GetWritableCodePtr(); + info->nonAtomicSwapStore = false; + } + + switch (size) + { + case 8: + if (sign_extend) + MOVSX(32, 8, dst, src); + else + MOVZX(32, 8, dst, src); + break; + case 16: + MOVZX(32, 16, dst, src); + if (sign_extend) + { + BSWAP(32, dst); + SAR(32, R(dst), Imm8(16)); + } + else + { + ROL(16, R(dst), Imm8(8)); + } + break; + case 32: + case 64: + if (cpu_info.bMOVBE) + { + MOVBE(size, dst, src); + } + else + { + MOV(size, R(dst), src); + BSWAP(size, dst); + } + break; + } +} + +void XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info) +{ + if (cpu_info.bMOVBE) + { + if (info) + { + info->address = GetWritableCodePtr(); + info->nonAtomicSwapStore = false; + } + MOVBE(size, dst, src); + } + else + { + BSWAP(size, src); + if (info) + { + info->address = GetWritableCodePtr(); + info->nonAtomicSwapStore = true; + info->nonAtomicSwapStoreSrc = src; + } + MOV(size, dst, R(src)); + } +} + +void XEmitter::LEA(int bits, X64Reg dest, OpArg src) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "LEA - Imm argument"); + src.operandReg = (u8)dest; + if (bits == 16) + Write8(0x66); // TODO: performance warning + src.WriteREX(this, bits, bits); + Write8(0x8D); + src.WriteRest(this, 0, INVALID_REG, bits == 64); +} + +// shift can be either imm8 or cl +void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext) +{ + CheckFlags(); + bool writeImm = false; + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "WriteShift - can't shift imms"); + } + if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || + (shift.IsImm() && shift.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "WriteShift - illegal argument"); + } + dest.operandReg = ext; + if (bits == 16) + Write8(0x66); + dest.WriteREX(this, bits, bits, 0); + if (shift.GetImmBits() == 8) + { + // ok an imm + u8 imm = (u8)shift.offset; + if (imm == 1) + { + Write8(bits == 8 ? 0xD0 : 0xD1); + } + else + { + writeImm = true; + Write8(bits == 8 ? 0xC0 : 0xC1); + } + } + else + { + Write8(bits == 8 ? 0xD2 : 0xD3); + } + dest.WriteRest(this, writeImm ? 1 : 0); + if (writeImm) + Write8((u8)shift.offset); +} + +// large rotates and shift are slower on Intel than AMD +// Intel likes to rotate by 1, and the op is smaller too +void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 0); +} +void XEmitter::ROR_(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 1); +} +void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 2); +} +void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 3); +} +void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 4); +} +void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 5); +} +void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 7); +} + +// index can be either imm8 or register, don't use memory destination because it's slow +void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext) +{ + CheckFlags(); + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - can't test imms"); + } + if ((index.IsImm() && index.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - illegal argument"); + } + if (bits == 16) + Write8(0x66); + if (index.IsImm()) + { + dest.WriteREX(this, bits, bits); + Write8(0x0F); + Write8(0xBA); + dest.WriteRest(this, 1, (X64Reg)ext); + Write8((u8)index.offset); + } + else + { + X64Reg operand = index.GetSimpleReg(); + dest.WriteREX(this, bits, bits, operand); + Write8(0x0F); + Write8(0x83 + 8 * ext); + dest.WriteRest(this, 1, operand); + } +} + +void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 4); +} +void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 5); +} +void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 6); +} +void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 7); +} + +// shift can be either imm8 or cl +void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) +{ + CheckFlags(); + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "SHRD - can't use imms as destination"); + } + if (!src.IsSimpleReg()) + { + ASSERT_MSG(DYNA_REC, 0, "SHRD - must use simple register as source"); + } + if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || + (shift.IsImm() && shift.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "SHRD - illegal shift"); + } + if (bits == 16) + Write8(0x66); + X64Reg operand = src.GetSimpleReg(); + dest.WriteREX(this, bits, bits, operand); + if (shift.GetImmBits() == 8) + { + Write8(0x0F); + Write8(0xAC); + dest.WriteRest(this, 1, operand); + Write8((u8)shift.offset); + } + else + { + Write8(0x0F); + Write8(0xAD); + dest.WriteRest(this, 0, operand); + } +} + +void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) +{ + CheckFlags(); + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "SHLD - can't use imms as destination"); + } + if (!src.IsSimpleReg()) + { + ASSERT_MSG(DYNA_REC, 0, "SHLD - must use simple register as source"); + } + if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || + (shift.IsImm() && shift.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "SHLD - illegal shift"); + } + if (bits == 16) + Write8(0x66); + X64Reg operand = src.GetSimpleReg(); + dest.WriteREX(this, bits, bits, operand); + if (shift.GetImmBits() == 8) + { + Write8(0x0F); + Write8(0xA4); + dest.WriteRest(this, 1, operand); + Write8((u8)shift.offset); + } + else + { + Write8(0x0F); + Write8(0xA5); + dest.WriteRest(this, 0, operand); + } +} + +void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits) +{ + if (bits == 16) + emit->Write8(0x66); + + this->operandReg = (u8)_operandReg; + WriteREX(emit, bits, bits); + emit->Write8(op); + WriteRest(emit); +} + +// operand can either be immediate or register +void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, + int bits) const +{ + X64Reg _operandReg; + if (IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order"); + } + + if (bits == 16) + emit->Write8(0x66); + + int immToWrite = 0; + const NormalOpDef& op_def = normalops[static_cast<int>(op)]; + + if (operand.IsImm()) + { + WriteREX(emit, bits, bits); + + if (!toRM) + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)"); + } + + if (operand.scale == SCALE_IMM8 && bits == 8) + { + // op al, imm8 + if (!scale && offsetOrBaseReg == AL && op_def.eaximm8 != 0xCC) + { + emit->Write8(op_def.eaximm8); + emit->Write8((u8)operand.offset); + return; + } + // mov reg, imm8 + if (!scale && op == NormalOp::MOV) + { + emit->Write8(0xB0 + (offsetOrBaseReg & 7)); + emit->Write8((u8)operand.offset); + return; + } + // op r/m8, imm8 + emit->Write8(op_def.imm8); + immToWrite = 8; + } + else if ((operand.scale == SCALE_IMM16 && bits == 16) || + (operand.scale == SCALE_IMM32 && bits == 32) || + (operand.scale == SCALE_IMM32 && bits == 64)) + { + // Try to save immediate size if we can, but first check to see + // if the instruction supports simm8. + // op r/m, imm8 + if (op_def.simm8 != 0xCC && + ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || + (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) + { + emit->Write8(op_def.simm8); + immToWrite = 8; + } + else + { + // mov reg, imm + if (!scale && op == NormalOp::MOV && bits != 64) + { + emit->Write8(0xB8 + (offsetOrBaseReg & 7)); + if (bits == 16) + emit->Write16((u16)operand.offset); + else + emit->Write32((u32)operand.offset); + return; + } + // op eax, imm + if (!scale && offsetOrBaseReg == EAX && op_def.eaximm32 != 0xCC) + { + emit->Write8(op_def.eaximm32); + if (bits == 16) + emit->Write16((u16)operand.offset); + else + emit->Write32((u32)operand.offset); + return; + } + // op r/m, imm + emit->Write8(op_def.imm32); + immToWrite = bits == 16 ? 16 : 32; + } + } + else if ((operand.scale == SCALE_IMM8 && bits == 16) || + (operand.scale == SCALE_IMM8 && bits == 32) || + (operand.scale == SCALE_IMM8 && bits == 64)) + { + // op r/m, imm8 + emit->Write8(op_def.simm8); + immToWrite = 8; + } + else if (operand.scale == SCALE_IMM64 && bits == 64) + { + if (scale) + { + ASSERT_MSG(DYNA_REC, 0, + "WriteNormalOp - MOV with 64-bit imm requires register destination"); + } + // mov reg64, imm64 + else if (op == NormalOp::MOV) + { + // movabs reg64, imm64 (10 bytes) + if (static_cast<s64>(operand.offset) != static_cast<s32>(operand.offset)) + { + emit->Write8(0xB8 + (offsetOrBaseReg & 7)); + emit->Write64(operand.offset); + return; + } + // mov reg64, simm32 (7 bytes) + emit->Write8(op_def.imm32); + immToWrite = 32; + } + else + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm"); + } + } + else + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case %d %d", operand.scale, bits); + } + + // pass extension in REG of ModRM + _operandReg = static_cast<X64Reg>(op_def.ext); + } + else + { + _operandReg = (X64Reg)operand.offsetOrBaseReg; + WriteREX(emit, bits, bits, _operandReg); + // op r/m, reg + if (toRM) + { + emit->Write8(bits == 8 ? op_def.toRm8 : op_def.toRm32); + } + // op reg, r/m + else + { + emit->Write8(bits == 8 ? op_def.fromRm8 : op_def.fromRm32); + } + } + WriteRest(emit, immToWrite >> 3, _operandReg); + switch (immToWrite) + { + case 0: + break; + case 8: + emit->Write8((u8)operand.offset); + break; + case 16: + emit->Write16((u16)operand.offset); + break; + case 32: + emit->Write32((u32)operand.offset); + break; + default: + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case"); + } +} + +void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2) +{ + if (a1.IsImm()) + { + // Booh! Can't write to an imm + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm"); + return; + } + if (a2.IsImm()) + { + a1.WriteNormalOp(this, true, op, a2, bits); + } + else + { + if (a1.IsSimpleReg()) + { + a2.WriteNormalOp(this, false, op, a1, bits); + } + else + { + ASSERT_MSG(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(), + "WriteNormalOp - a1 and a2 cannot both be memory"); + a1.WriteNormalOp(this, true, op, a2, bits); + } + } +} + +void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::ADD, a1, a2); +} +void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::ADC, a1, a2); +} +void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::SUB, a1, a2); +} +void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::SBB, a1, a2); +} +void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::AND, a1, a2); +} +void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::OR, a1, a2); +} +void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::XOR, a1, a2); +} +void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2) +{ + if (bits == 64 && a1.IsSimpleReg() && a2.scale == SCALE_IMM64 && + a2.offset == static_cast<u32>(a2.offset)) + { + WriteNormalOp(32, NormalOp::MOV, a1, a2.AsImm32()); + return; + } + if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) + { + ERROR_LOG(DYNA_REC, "Redundant MOV @ %p - bug in JIT?", code); + } + WriteNormalOp(bits, NormalOp::MOV, a1, a2); +} +void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::TEST, a1, a2); +} +void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::CMP, a1, a2); +} +void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) +{ + WriteNormalOp(bits, NormalOp::XCHG, a1, a2); +} +void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + if (a1.IsSimpleReg() && a2.IsZero()) // turn 'CMP reg, 0' into shorter 'TEST reg, reg' + { + WriteNormalOp(bits, NormalOp::TEST, a1, a1); + } + else + { + WriteNormalOp(bits, NormalOp::CMP, a1, a2); + } +} + +void XEmitter::MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2) +{ + // This stomps on flags, so ensure they aren't locked + DEBUG_ASSERT(!flags_locked); + + // Zero shortcuts (note that this can generate no code in the case where a1 == dest && a2 == zero + // or a2 == dest && a1 == zero) + if (a1.IsZero()) + { + if (!a2.IsSimpleReg() || a2.GetSimpleReg() != dest) + { + MOV(bits, R(dest), a2); + } + return; + } + if (a2.IsZero()) + { + if (!a1.IsSimpleReg() || a1.GetSimpleReg() != dest) + { + MOV(bits, R(dest), a1); + } + return; + } + + // If dest == a1 or dest == a2 we can simplify this + if (a1.IsSimpleReg() && a1.GetSimpleReg() == dest) + { + ADD(bits, R(dest), a2); + return; + } + + if (a2.IsSimpleReg() && a2.GetSimpleReg() == dest) + { + ADD(bits, R(dest), a1); + return; + } + + // TODO: 32-bit optimizations may apply to other bit sizes (confirm) + if (bits == 32) + { + if (a1.IsImm() && a2.IsImm()) + { + MOV(32, R(dest), Imm32(a1.Imm32() + a2.Imm32())); + return; + } + + if (a1.IsSimpleReg() && a2.IsSimpleReg()) + { + LEA(32, dest, MRegSum(a1.GetSimpleReg(), a2.GetSimpleReg())); + return; + } + + if (a1.IsSimpleReg() && a2.IsImm()) + { + LEA(32, dest, MDisp(a1.GetSimpleReg(), a2.Imm32())); + return; + } + + if (a1.IsImm() && a2.IsSimpleReg()) + { + LEA(32, dest, MDisp(a2.GetSimpleReg(), a1.Imm32())); + return; + } + } + + // Fallback + MOV(bits, R(dest), a1); + ADD(bits, R(dest), a2); +} + +void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + if (bits == 8) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!"); + return; + } + + if (a1.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - second arg cannot be imm!"); + return; + } + + if (!a2.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - third arg must be imm!"); + return; + } + + if (bits == 16) + Write8(0x66); + a1.WriteREX(this, bits, bits, regOp); + + if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || + (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) + { + Write8(0x6B); + a1.WriteRest(this, 1, regOp); + Write8((u8)a2.offset); + } + else + { + Write8(0x69); + if (a2.GetImmBits() == 16 && bits == 16) + { + a1.WriteRest(this, 2, regOp); + Write16((u16)a2.offset); + } + else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) + { + a1.WriteRest(this, 4, regOp); + Write32((u32)a2.offset); + } + else + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - unhandled case!"); + } + } +} + +void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a) +{ + CheckFlags(); + if (bits == 8) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!"); + return; + } + + if (a.IsImm()) + { + IMUL(bits, regOp, R(regOp), a); + return; + } + + if (bits == 16) + Write8(0x66); + a.WriteREX(this, bits, bits, regOp); + Write8(0x0F); + Write8(0xAF); + a.WriteRest(this, 0, regOp); +} + +void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) +{ + if (opPrefix) + Write8(opPrefix); + arg.operandReg = regOp; + arg.WriteREX(this, 0, 0); + Write8(0x0F); + if (op > 0xFF) + Write8((op >> 8) & 0xFF); + Write8(op & 0xFF); + arg.WriteRest(this, extrabytes); +} + +static int GetVEXmmmmm(u16 op) +{ + // Currently, only 0x38 and 0x3A are used as secondary escape byte. + if ((op >> 8) == 0x3A) + return 3; + else if ((op >> 8) == 0x38) + return 2; + else + return 1; +} + +static int GetVEXpp(u8 opPrefix) +{ + if (opPrefix == 0x66) + return 1; + else if (opPrefix == 0xF3) + return 2; + else if (opPrefix == 0xF2) + return 3; + else + return 0; +} + +void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int W, int extrabytes) +{ + int mmmmm = GetVEXmmmmm(op); + int pp = GetVEXpp(opPrefix); + // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here + arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W); + Write8(op & 0xFF); + arg.WriteRest(this, extrabytes, regOp1); +} + +void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + X64Reg regOp3, int W) +{ + WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1); + Write8((u8)regOp3 << 4); +} + +void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int W, int extrabytes) +{ + if (!cpu_info.bAVX) + PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer."); + WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes); +} + +void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + X64Reg regOp3, int W) +{ + if (!cpu_info.bAVX) + PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer."); + WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W); +} + +void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W) +{ + if (!cpu_info.bFMA) + PanicAlert("Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd."); + WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W); +} + +void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int W) +{ + if (!cpu_info.bFMA4) + PanicAlert("Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd."); + WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W); +} + +void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, + const OpArg& arg, int extrabytes) +{ + if (arg.IsImm()) + PanicAlert("BMI1/2 instructions don't support immediate operands."); + if (size != 32 && size != 64) + PanicAlert("BMI1/2 instructions only support 32-bit and 64-bit modes!"); + int W = size == 64; + WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes); +} + +void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, + const OpArg& arg, int extrabytes) +{ + CheckFlags(); + if (!cpu_info.bBMI1) + PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); + WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); +} + +void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, + const OpArg& arg, int extrabytes) +{ + if (!cpu_info.bBMI2) + PanicAlert("Trying to use BMI2 on a system that doesn't support it. Bad programmer."); + WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); +} + +void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x6E, dest, arg, 0); +} +void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src) +{ + WriteSSEOp(0x66, 0x7E, src, arg, 0); +} + +void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) +{ + // Alternate encoding + // This does not display correctly in MSVC's debugger, it thinks it's a MOVD + arg.operandReg = dest; + Write8(0x66); + arg.WriteREX(this, 64, 0); + Write8(0x0f); + Write8(0x6E); + arg.WriteRest(this, 0); +} + +void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) +{ + if (src > 7 || arg.IsSimpleReg()) + { + // Alternate encoding + // This does not display correctly in MSVC's debugger, it thinks it's a MOVD + arg.operandReg = src; + Write8(0x66); + arg.WriteREX(this, 64, 0); + Write8(0x0f); + Write8(0x7E); + arg.WriteRest(this, 0); + } + else + { + arg.operandReg = src; + arg.WriteREX(this, 0, 0); + Write8(0x66); + Write8(0x0f); + Write8(0xD6); + arg.WriteRest(this, 0); + } +} + +void XEmitter::WriteMXCSR(OpArg arg, int ext) +{ + if (arg.IsImm() || arg.IsSimpleReg()) + ASSERT_MSG(DYNA_REC, 0, "MXCSR - invalid operand"); + + arg.operandReg = ext; + arg.WriteREX(this, 0, 0); + Write8(0x0F); + Write8(0xAE); + arg.WriteRest(this); +} + +void XEmitter::STMXCSR(const OpArg& memloc) +{ + WriteMXCSR(memloc, 3); +} +void XEmitter::LDMXCSR(const OpArg& memloc) +{ + WriteMXCSR(memloc, 2); +} + +void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg); +} +void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVNTP, regOp, arg); +} +void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVNTP, regOp, arg); +} + +void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseADD, regOp, arg); +} +void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseADD, regOp, arg); +} +void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseSUB, regOp, arg); +} +void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseSUB, regOp, arg); +} +void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMUL, regOp, arg); +} +void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMUL, regOp, arg); +} +void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseDIV, regOp, arg); +} +void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseDIV, regOp, arg); +} +void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMIN, regOp, arg); +} +void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMIN, regOp, arg); +} +void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMAX, regOp, arg); +} +void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMAX, regOp, arg); +} +void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseSQRT, regOp, arg); +} +void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseSQRT, regOp, arg); +} +void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseRCP, regOp, arg); +} +void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseRSQRT, regOp, arg); +} + +void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseADD, regOp, arg); +} +void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseADD, regOp, arg); +} +void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseSUB, regOp, arg); +} +void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseSUB, regOp, arg); +} +void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0x00, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0x66, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseAND, regOp, arg); +} +void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseAND, regOp, arg); +} +void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseANDN, regOp, arg); +} +void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseANDN, regOp, arg); +} +void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseOR, regOp, arg); +} +void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseOR, regOp, arg); +} +void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseXOR, regOp, arg); +} +void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseXOR, regOp, arg); +} +void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMUL, regOp, arg); +} +void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMUL, regOp, arg); +} +void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseDIV, regOp, arg); +} +void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseDIV, regOp, arg); +} +void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMIN, regOp, arg); +} +void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMIN, regOp, arg); +} +void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMAX, regOp, arg); +} +void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMAX, regOp, arg); +} +void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseSQRT, regOp, arg); +} +void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseSQRT, regOp, arg); +} +void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseRCP, regOp, arg); +} +void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseRSQRT, regOp, arg); +} +void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0x00, sseSHUF, regOp, arg, 1); + Write8(shuffle); +} +void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0x66, sseSHUF, regOp, arg, 1); + Write8(shuffle); +} + +void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseCOMIS, regOp, arg); +} // weird that these should be packed +void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseCOMIS, regOp, arg); +} // ordered +void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseUCOMIS, regOp, arg); +} // unordered +void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseUCOMIS, regOp, arg); +} + +void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg); +} +void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg); +} +void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg); +} +void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg); +} + +void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg); +} +void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg); +} + +void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg); +} +void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg); +} +void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg); +} +void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg); +} + +void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg); +} +void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg); +} + +void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); +} +void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); +} +void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); +} +void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); +} + +void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); +} +void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); +} +void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); +} +void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); +} + +void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) +{ + WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2)); +} +void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) +{ + WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2)); +} + +void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x5A, regOp, arg); +} +void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x5A, regOp, arg); +} + +void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x5A, regOp, arg); +} +void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x5A, regOp, arg); +} +void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x2D, regOp, arg); +} +void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x2D, regOp, arg); +} +void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x2A, regOp, arg); +} +void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x2A, regOp, arg); +} + +void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0xE6, regOp, arg); +} +void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x5B, regOp, arg); +} +void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0xE6, regOp, arg); +} +void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x5B, regOp, arg); +} + +void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x2C, regOp, arg); +} +void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x2C, regOp, arg); +} +void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x5B, regOp, arg); +} +void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE6, regOp, arg); +} + +void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) +{ + WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src)); +} + +void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x50, dest, arg); +} +void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x50, dest, arg); +} + +void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseLDDQU, dest, arg); +} // For integer data only + +void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x14, dest, arg); +} +void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x15, dest, arg); +} +void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x14, dest, arg); +} +void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x15, dest, arg); +} + +// Pretty much every x86 CPU nowadays supports SSE3, +// but the SSE2 fallbacks are easy. +void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg) +{ + if (cpu_info.bSSE3) + { + WriteSSEOp(0xF3, 0x12, regOp, arg); + } + else + { + if (!arg.IsSimpleReg(regOp)) + MOVAPD(regOp, arg); + UNPCKLPS(regOp, R(regOp)); + } +} +void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg) +{ + if (cpu_info.bSSE3) + { + WriteSSEOp(0xF3, 0x16, regOp, arg); + } + else + { + if (!arg.IsSimpleReg(regOp)) + MOVAPD(regOp, arg); + UNPCKHPS(regOp, R(regOp)); + } +} +void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg) +{ + if (cpu_info.bSSE3) + { + WriteSSEOp(0xF2, 0x12, regOp, arg); + } + else + { + if (!arg.IsSimpleReg(regOp)) + MOVSD(regOp, arg); + UNPCKLPD(regOp, R(regOp)); + } +} + +// There are a few more left + +// Also some integer instructions are missing +void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x6B, dest, arg); +} +void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x63, dest, arg); +} +void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x67, dest, arg); +} + +void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x60, dest, arg); +} +void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x61, dest, arg); +} +void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x62, dest, arg); +} +void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x6C, dest, arg); +} + +void XEmitter::PSRLW(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg)); + Write8(shift); +} + +void XEmitter::PSRLD(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg)); + Write8(shift); +} + +void XEmitter::PSRLQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg)); + Write8(shift); +} + +void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xd3, reg, arg); +} + +void XEmitter::PSRLDQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLW(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLD(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLDQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg)); + Write8(shift); +} + +// WARNING not REX compatible +void XEmitter::PSRAW(X64Reg reg, int shift) +{ + if (reg > 7) + PanicAlert("The PSRAW-emitter does not support regs above 7"); + Write8(0x66); + Write8(0x0f); + Write8(0x71); + Write8(0xE0 | reg); + Write8(shift); +} + +// WARNING not REX compatible +void XEmitter::PSRAD(X64Reg reg, int shift) +{ + if (reg > 7) + PanicAlert("The PSRAD-emitter does not support regs above 7"); + Write8(0x66); + Write8(0x0f); + Write8(0x72); + Write8(0xE0 | reg); + Write8(shift); +} + +void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) +{ + if (!cpu_info.bSSSE3) + PanicAlert("Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); + WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); +} + +void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) +{ + if (!cpu_info.bSSE4_1) + PanicAlert("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); + WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); +} + +void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) +{ + WriteSSSE3Op(0x66, 0x3800, dest, arg); +} +void XEmitter::PTEST(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3817, dest, arg); +} +void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x382b, dest, arg); +} + +void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3820, dest, arg); +} +void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3821, dest, arg); +} +void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3822, dest, arg); +} +void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3823, dest, arg); +} +void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3824, dest, arg); +} +void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3825, dest, arg); +} +void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3830, dest, arg); +} +void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3831, dest, arg); +} +void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3832, dest, arg); +} +void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3833, dest, arg); +} +void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3834, dest, arg); +} +void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3835, dest, arg); +} + +void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3810, dest, arg); +} +void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3814, dest, arg); +} +void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3815, dest, arg); +} +void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) +{ + WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); + Write8(blend); +} +void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) +{ + WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); + Write8(blend); +} + +void XEmitter::PAND(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDB, dest, arg); +} +void XEmitter::PANDN(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDF, dest, arg); +} +void XEmitter::PXOR(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEF, dest, arg); +} +void XEmitter::POR(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEB, dest, arg); +} + +void XEmitter::PADDB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFC, dest, arg); +} +void XEmitter::PADDW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFD, dest, arg); +} +void XEmitter::PADDD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFE, dest, arg); +} +void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD4, dest, arg); +} + +void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEC, dest, arg); +} +void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xED, dest, arg); +} +void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDC, dest, arg); +} +void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDD, dest, arg); +} + +void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF8, dest, arg); +} +void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF9, dest, arg); +} +void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFA, dest, arg); +} +void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFB, dest, arg); +} + +void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE8, dest, arg); +} +void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE9, dest, arg); +} +void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD8, dest, arg); +} +void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD9, dest, arg); +} + +void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE0, dest, arg); +} +void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE3, dest, arg); +} + +void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x74, dest, arg); +} +void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x75, dest, arg); +} +void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x76, dest, arg); +} + +void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x64, dest, arg); +} +void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x65, dest, arg); +} +void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x66, dest, arg); +} + +void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) +{ + WriteSSEOp(0x66, 0xC5, dest, arg); + Write8(subreg); +} +void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) +{ + WriteSSEOp(0x66, 0xC4, dest, arg); + Write8(subreg); +} +void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg) +{ + WriteSSE41Op(0x66, 0x3A22, dest, arg); + Write8(subreg); +} + +void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF5, dest, arg); +} +void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF6, dest, arg); +} + +void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEE, dest, arg); +} +void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDE, dest, arg); +} +void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEA, dest, arg); +} +void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDA, dest, arg); +} + +void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD7, dest, arg); +} +void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0x66, 0x70, regOp, arg, 1); + Write8(shuffle); +} +void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0xF2, 0x70, regOp, arg, 1); + Write8(shuffle); +} +void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0xF3, 0x70, regOp, arg, 1); + Write8(shuffle); +} + +// VEX +void XEmitter::VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg); +} +void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare) +{ + WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1); + Write8(compare); +} +void XEmitter::VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) +{ + WriteAVXOp(0x00, sseSHUF, regOp1, regOp2, arg, 0, 1); + Write8(shuffle); +} +void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) +{ + WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1); + Write8(shuffle); +} +void XEmitter::VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, 0x14, regOp1, regOp2, arg); +} +void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg); +} +void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg); +} +void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3) +{ + WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3); +} +void XEmitter::VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend) +{ + WriteAVXOp(0x66, 0x3A0C, regOp1, regOp2, arg, 0, 1); + Write8(blend); +} +void XEmitter::VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend) +{ + WriteAVXOp(0x66, 0x3A0D, regOp1, regOp2, arg, 0, 1); + Write8(blend); +} + +void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); +} +void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); +} +void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); +} +void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); +} +void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); +} +void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); +} +void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); +} +void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); +} + +void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); +} +void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); +} +void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); +} +void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); +} + +void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x98, regOp1, regOp2, arg); +} +void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA8, regOp1, regOp2, arg); +} +void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB8, regOp1, regOp2, arg); +} +void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x98, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x99, regOp1, regOp2, arg); +} +void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA9, regOp1, regOp2, arg); +} +void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB9, regOp1, regOp2, arg); +} +void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x99, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9A, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAA, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBA, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9B, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAB, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBB, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9C, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAC, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBC, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9D, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAD, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBD, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9E, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAE, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBE, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9F, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAF, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBF, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x96, regOp1, regOp2, arg); +} +void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA6, regOp1, regOp2, arg); +} +void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB6, regOp1, regOp2, arg); +} +void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x96, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x97, regOp1, regOp2, arg); +} +void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA7, regOp1, regOp2, arg); +} +void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB7, regOp1, regOp2, arg); +} +void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x97, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1); +} + +#define FMA4(name, op) \ + void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) \ + { \ + WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1); \ + } \ + void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) \ + { \ + WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0); \ + } + +FMA4(VFMADDSUBPS, 0x5C) +FMA4(VFMADDSUBPD, 0x5D) +FMA4(VFMSUBADDPS, 0x5E) +FMA4(VFMSUBADDPD, 0x5F) +FMA4(VFMADDPS, 0x68) +FMA4(VFMADDPD, 0x69) +FMA4(VFMADDSS, 0x6A) +FMA4(VFMADDSD, 0x6B) +FMA4(VFMSUBPS, 0x6C) +FMA4(VFMSUBPD, 0x6D) +FMA4(VFMSUBSS, 0x6E) +FMA4(VFMSUBSD, 0x6F) +FMA4(VFNMADDPS, 0x78) +FMA4(VFNMADDPD, 0x79) +FMA4(VFNMADDSS, 0x7A) +FMA4(VFNMADDSD, 0x7B) +FMA4(VFNMSUBPS, 0x7C) +FMA4(VFNMSUBPD, 0x7D) +FMA4(VFNMSUBSS, 0x7E) +FMA4(VFNMSUBSD, 0x7F) +#undef FMA4 + +void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) +{ + WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); + Write8(rotate); +} +void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg); +} +void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg); +} +void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg); +} +void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + CheckFlags(); + WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg); +} +void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg); +} +void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg); +} +void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg); +} +void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg); +} + +// Prefixes + +void XEmitter::LOCK() +{ + Write8(0xF0); +} +void XEmitter::REP() +{ + Write8(0xF3); +} +void XEmitter::REPNE() +{ + Write8(0xF2); +} +void XEmitter::FSOverride() +{ + Write8(0x64); +} +void XEmitter::GSOverride() +{ + Write8(0x65); +} + +void XEmitter::FWAIT() +{ + Write8(0x9B); +} + +// TODO: make this more generic +void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg) +{ + int mf = 0; + ASSERT_MSG(DYNA_REC, !(bits == 80 && op_80b == FloatOp::Invalid), + "WriteFloatLoadStore: 80 bits not supported for this instruction"); + switch (bits) + { + case 32: + mf = 0; + break; + case 64: + mf = 4; + break; + case 80: + mf = 2; + break; + default: + ASSERT_MSG(DYNA_REC, 0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)"); + } + Write8(0xd9 | mf); + // x87 instructions use the reg field of the ModR/M byte as opcode: + if (bits == 80) + op = op_80b; + arg.WriteRest(this, 0, static_cast<X64Reg>(op)); +} + +void XEmitter::FLD(int bits, const OpArg& src) +{ + WriteFloatLoadStore(bits, FloatOp::LD, FloatOp::LD80, src); +} +void XEmitter::FST(int bits, const OpArg& dest) +{ + WriteFloatLoadStore(bits, FloatOp::ST, FloatOp::Invalid, dest); +} +void XEmitter::FSTP(int bits, const OpArg& dest) +{ + WriteFloatLoadStore(bits, FloatOp::STP, FloatOp::STP80, dest); +} +void XEmitter::FNSTSW_AX() +{ + Write8(0xDF); + Write8(0xE0); +} + +void XEmitter::RDTSC() +{ + Write8(0x0F); + Write8(0x31); +} +} diff --git a/src/dolphin/x64Emitter.h b/src/dolphin/x64Emitter.h new file mode 100644 index 0000000..122850d --- /dev/null +++ b/src/dolphin/x64Emitter.h @@ -0,0 +1,1180 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!! + +#pragma once + +#include <cstddef> +#include <cstring> +#include <functional> +#include <tuple> +#include <type_traits> + +#include "Assert.h" +#include "BitSet.h" +#include "CodeBlock.h" +#include "../types.h" +#include "x64ABI.h" + +namespace Gen +{ +enum CCFlags +{ + CC_O = 0, + CC_NO = 1, + CC_B = 2, + CC_C = 2, + CC_NAE = 2, + CC_NB = 3, + CC_NC = 3, + CC_AE = 3, + CC_Z = 4, + CC_E = 4, + CC_NZ = 5, + CC_NE = 5, + CC_BE = 6, + CC_NA = 6, + CC_NBE = 7, + CC_A = 7, + CC_S = 8, + CC_NS = 9, + CC_P = 0xA, + CC_PE = 0xA, + CC_NP = 0xB, + CC_PO = 0xB, + CC_L = 0xC, + CC_NGE = 0xC, + CC_NL = 0xD, + CC_GE = 0xD, + CC_LE = 0xE, + CC_NG = 0xE, + CC_NLE = 0xF, + CC_G = 0xF +}; + +enum +{ + NUMGPRs = 16, + NUMXMMs = 16, +}; + +enum +{ + SCALE_NONE = 0, + SCALE_1 = 1, + SCALE_2 = 2, + SCALE_4 = 4, + SCALE_8 = 8, + SCALE_ATREG = 16, + // SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG + SCALE_NOBASE_2 = 34, + SCALE_NOBASE_4 = 36, + SCALE_NOBASE_8 = 40, + SCALE_RIP = 0xFF, + SCALE_IMM8 = 0xF0, + SCALE_IMM16 = 0xF1, + SCALE_IMM32 = 0xF2, + SCALE_IMM64 = 0xF3, +}; + +enum SSECompare +{ + CMP_EQ = 0, + CMP_LT = 1, + CMP_LE = 2, + CMP_UNORD = 3, + CMP_NEQ = 4, + CMP_NLT = 5, + CMP_NLE = 6, + CMP_ORD = 7, +}; + +class XEmitter; +enum class FloatOp; +enum class NormalOp; + +// Information about a generated MOV op +struct MovInfo final +{ + u8* address; + bool nonAtomicSwapStore; + // valid iff nonAtomicSwapStore is true + X64Reg nonAtomicSwapStoreSrc; +}; + +// RIP addressing does not benefit from micro op fusion on Core arch +struct OpArg +{ + // For accessing offset and operandReg. + // This also allows us to keep the op writing functions private. + friend class XEmitter; + + // dummy op arg, used for storage + constexpr OpArg() = default; + constexpr OpArg(u64 offset_, int scale_, X64Reg rm_reg = RAX, X64Reg scaled_reg = RAX) + : scale{static_cast<u8>(scale_)}, offsetOrBaseReg{static_cast<u16>(rm_reg)}, + indexReg{static_cast<u16>(scaled_reg)}, offset{offset_} + { + } + constexpr bool operator==(const OpArg& b) const + { + // TODO: Use std::tie here once Dolphin requires C++17. (We can't do it immediately, + // (because we still support some older versions of GCC where std::tie is not constexpr.) + return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg && + indexReg == b.indexReg && offset == b.offset; + } + constexpr bool operator!=(const OpArg& b) const { return !operator==(b); } + u64 Imm64() const + { + DEBUG_ASSERT(scale == SCALE_IMM64); + return (u64)offset; + } + u32 Imm32() const + { + DEBUG_ASSERT(scale == SCALE_IMM32); + return (u32)offset; + } + u16 Imm16() const + { + DEBUG_ASSERT(scale == SCALE_IMM16); + return (u16)offset; + } + u8 Imm8() const + { + DEBUG_ASSERT(scale == SCALE_IMM8); + return (u8)offset; + } + + s64 SImm64() const + { + DEBUG_ASSERT(scale == SCALE_IMM64); + return (s64)offset; + } + s32 SImm32() const + { + DEBUG_ASSERT(scale == SCALE_IMM32); + return (s32)offset; + } + s16 SImm16() const + { + DEBUG_ASSERT(scale == SCALE_IMM16); + return (s16)offset; + } + s8 SImm8() const + { + DEBUG_ASSERT(scale == SCALE_IMM8); + return (s8)offset; + } + + OpArg AsImm64() const + { + DEBUG_ASSERT(IsImm()); + return OpArg((u64)offset, SCALE_IMM64); + } + OpArg AsImm32() const + { + DEBUG_ASSERT(IsImm()); + return OpArg((u32)offset, SCALE_IMM32); + } + OpArg AsImm16() const + { + DEBUG_ASSERT(IsImm()); + return OpArg((u16)offset, SCALE_IMM16); + } + OpArg AsImm8() const + { + DEBUG_ASSERT(IsImm()); + return OpArg((u8)offset, SCALE_IMM8); + } + + constexpr bool IsImm() const + { + return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || + scale == SCALE_IMM64; + } + constexpr bool IsSimpleReg() const { return scale == SCALE_NONE; } + constexpr bool IsSimpleReg(X64Reg reg) const { return IsSimpleReg() && GetSimpleReg() == reg; } + constexpr bool IsZero() const { return IsImm() && offset == 0; } + constexpr int GetImmBits() const + { + switch (scale) + { + case SCALE_IMM8: + return 8; + case SCALE_IMM16: + return 16; + case SCALE_IMM32: + return 32; + case SCALE_IMM64: + return 64; + default: + return -1; + } + } + + constexpr X64Reg GetSimpleReg() const + { + if (scale == SCALE_NONE) + return static_cast<X64Reg>(offsetOrBaseReg); + + return INVALID_REG; + } + + void AddMemOffset(int val) + { + DEBUG_ASSERT_MSG(DYNA_REC, scale == SCALE_RIP || (scale <= SCALE_ATREG && scale > SCALE_NONE), + "Tried to increment an OpArg which doesn't have an offset"); + offset += val; + } + +private: + void WriteREX(XEmitter* emit, int opBits, int bits, int customOp = -1) const; + void WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, + int W = 0) const; + void WriteRest(XEmitter* emit, int extraBytes = 0, X64Reg operandReg = INVALID_REG, + bool warn_64bit_offset = true) const; + void WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg operandReg, int bits); + void WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const; + + u8 scale = 0; + u16 offsetOrBaseReg = 0; + u16 indexReg = 0; + u64 offset = 0; // Also used to store immediates. + u16 operandReg = 0; +}; + +template <typename T> +inline OpArg M(const T* ptr) +{ + return OpArg((u64)(const void*)ptr, (int)SCALE_RIP); +} +constexpr OpArg R(X64Reg value) +{ + return OpArg(0, SCALE_NONE, value); +} +constexpr OpArg MatR(X64Reg value) +{ + return OpArg(0, SCALE_ATREG, value); +} + +constexpr OpArg MDisp(X64Reg value, int offset) +{ + return OpArg(static_cast<u32>(offset), SCALE_ATREG, value); +} + +constexpr OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) +{ + return OpArg(offset, scale, base, scaled); +} + +constexpr OpArg MScaled(X64Reg scaled, int scale, int offset) +{ + if (scale == SCALE_1) + return OpArg(offset, SCALE_ATREG, scaled); + + return OpArg(offset, scale | 0x20, RAX, scaled); +} + +constexpr OpArg MRegSum(X64Reg base, X64Reg offset) +{ + return MComplex(base, offset, 1, 0); +} + +constexpr OpArg Imm8(u8 imm) +{ + return OpArg(imm, SCALE_IMM8); +} +constexpr OpArg Imm16(u16 imm) +{ + return OpArg(imm, SCALE_IMM16); +} // rarely used +constexpr OpArg Imm32(u32 imm) +{ + return OpArg(imm, SCALE_IMM32); +} +constexpr OpArg Imm64(u64 imm) +{ + return OpArg(imm, SCALE_IMM64); +} +inline OpArg ImmPtr(const void* imm) +{ + return Imm64(reinterpret_cast<u64>(imm)); +} + +inline u32 PtrOffset(const void* ptr, const void* base = nullptr) +{ + s64 distance = (s64)ptr - (s64)base; + if (distance >= 0x80000000LL || distance < -0x80000000LL) + { + ASSERT_MSG(DYNA_REC, 0, "pointer offset out of range"); + return 0; + } + + return (u32)distance; +} + +// usage: int a[]; ARRAY_OFFSET(a,10) +#define ARRAY_OFFSET(array, index) ((u32)((u64) & (array)[index] - (u64) & (array)[0])) +// usage: struct {int e;} s; STRUCT_OFFSET(s,e) +#define STRUCT_OFFSET(str, elem) ((u32)((u64) & (str).elem - (u64) & (str))) + +struct FixupBranch +{ + enum class Type + { + Branch8Bit, + Branch32Bit + }; + + u8* ptr; + Type type; +}; + +class XEmitter +{ + friend struct OpArg; // for Write8 etc +private: + u8* code = nullptr; + bool flags_locked = false; + + void CheckFlags(); + + void Rex(int w, int r, int x, int b); + void WriteModRM(int mod, int reg, int rm); + void WriteSIB(int scale, int index, int base); + void WriteSimple1Byte(int bits, u8 byte, X64Reg reg); + void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg); + void WriteMulDivType(int bits, OpArg src, int ext); + void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false); + void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext); + void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext); + void WriteMXCSR(OpArg arg, int ext); + void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); + void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); + void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); + void WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0, + int extrabytes = 0); + void WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + X64Reg regOp3, int W = 0); + void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0, + int extrabytes = 0); + void WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + X64Reg regOp3, int W = 0); + void WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0); + void WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W = 0); + void WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int extrabytes = 0); + void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int extrabytes = 0); + void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int extrabytes = 0); + void WriteMOVBE(int bits, u8 op, X64Reg regOp, const OpArg& arg); + void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg); + void WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2); + + void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size, + size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp); + +protected: + void Write8(u8 value); + void Write16(u16 value); + void Write32(u32 value); + void Write64(u64 value); + +public: + XEmitter() = default; + explicit XEmitter(u8* code_ptr) : code{code_ptr} {} + virtual ~XEmitter() = default; + void SetCodePtr(u8* ptr); + void ReserveCodeSpace(int bytes); + u8* AlignCodeTo(size_t alignment); + u8* AlignCode4(); + u8* AlignCode16(); + u8* AlignCodePage(); + const u8* GetCodePtr() const; + u8* GetWritableCodePtr(); + + void LockFlags() { flags_locked = true; } + void UnlockFlags() { flags_locked = false; } + // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU + // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other + // string instr., + // INC and DEC are slow on Intel Core, but not on AMD. They create a + // false flag dependency because they only update a subset of the flags. + // XCHG is SLOW and should be avoided. + + // Debug breakpoint + void INT3(); + + // Do nothing + void NOP(size_t count = 1); + + // Save energy in wait-loops on P4 only. Probably not too useful. + void PAUSE(); + + // Flag control + void STC(); + void CLC(); + void CMC(); + + // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and + // AMD! + void LAHF(); // 3 cycle vector path + void SAHF(); // direct path fast + + // Stack control + void PUSH(X64Reg reg); + void POP(X64Reg reg); + void PUSH(int bits, const OpArg& reg); + void POP(int bits, const OpArg& reg); + void PUSHF(); + void POPF(); + + // Flow control + void RET(); + void RET_FAST(); + void UD2(); + FixupBranch J(bool force5bytes = false); + + void JMP(const u8* addr, bool force5Bytes = false); + void JMPptr(const OpArg& arg); + void JMPself(); // infinite loop! +#ifdef CALL +#undef CALL +#endif + void CALL(const void* fnptr); + FixupBranch CALL(); + void CALLptr(OpArg arg); + + FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false); + void J_CC(CCFlags conditionCode, const u8* addr); + + void SetJumpTarget(const FixupBranch& branch); + + void SETcc(CCFlags flag, OpArg dest); + // Note: CMOV brings small if any benefit on current CPUs. + void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag); + + // Fences + void LFENCE(); + void MFENCE(); + void SFENCE(); + + // Bit scan + void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit + void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit + + // Cache control + enum PrefetchLevel + { + PF_NTA, // Non-temporal (data used once and only once) + PF_T0, // All cache levels + PF_T1, // Levels 2+ (aliased to T0 on AMD) + PF_T2, // Levels 3+ (aliased to T0 on AMD) + }; + void PREFETCH(PrefetchLevel level, OpArg arg); + void MOVNTI(int bits, const OpArg& dest, X64Reg src); + void MOVNTDQ(const OpArg& arg, X64Reg regOp); + void MOVNTPS(const OpArg& arg, X64Reg regOp); + void MOVNTPD(const OpArg& arg, X64Reg regOp); + + // Multiplication / division + void MUL(int bits, const OpArg& src); // UNSIGNED + void IMUL(int bits, const OpArg& src); // SIGNED + void IMUL(int bits, X64Reg regOp, const OpArg& src); + void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm); + void DIV(int bits, const OpArg& src); + void IDIV(int bits, const OpArg& src); + + // Shift + void ROL(int bits, const OpArg& dest, const OpArg& shift); + void ROR_(int bits, const OpArg& dest, const OpArg& shift); + void RCL(int bits, const OpArg& dest, const OpArg& shift); + void RCR(int bits, const OpArg& dest, const OpArg& shift); + void SHL(int bits, const OpArg& dest, const OpArg& shift); + void SHR(int bits, const OpArg& dest, const OpArg& shift); + void SAR(int bits, const OpArg& dest, const OpArg& shift); + + // Bit Test + void BT(int bits, const OpArg& dest, const OpArg& index); + void BTS(int bits, const OpArg& dest, const OpArg& index); + void BTR(int bits, const OpArg& dest, const OpArg& index); + void BTC(int bits, const OpArg& dest, const OpArg& index); + + // Double-Precision Shift + void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift); + void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift); + + // Extend EAX into EDX in various ways + void CWD(int bits = 16); + inline void CDQ() { CWD(32); } + inline void CQO() { CWD(64); } + void CBW(int bits = 8); + inline void CWDE() { CBW(16); } + inline void CDQE() { CBW(32); } + // Load effective address + void LEA(int bits, X64Reg dest, OpArg src); + + // Integer arithmetic + void NEG(int bits, const OpArg& src); + void ADD(int bits, const OpArg& a1, const OpArg& a2); + void ADC(int bits, const OpArg& a1, const OpArg& a2); + void SUB(int bits, const OpArg& a1, const OpArg& a2); + void SBB(int bits, const OpArg& a1, const OpArg& a2); + void AND(int bits, const OpArg& a1, const OpArg& a2); + void CMP(int bits, const OpArg& a1, const OpArg& a2); + + // Bit operations + void NOT(int bits, const OpArg& src); + void OR(int bits, const OpArg& a1, const OpArg& a2); + void XOR(int bits, const OpArg& a1, const OpArg& a2); + void MOV(int bits, const OpArg& a1, const OpArg& a2); + void TEST(int bits, const OpArg& a1, const OpArg& a2); + + void CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2); + void MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2); + + // Are these useful at all? Consider removing. + void XCHG(int bits, const OpArg& a1, const OpArg& a2); + void XCHG_AHAL(); + + // Byte swapping (32 and 64-bit only). + void BSWAP(int bits, X64Reg reg); + + // Sign/zero extension + void MOVSX(int dbits, int sbits, X64Reg dest, + OpArg src); // automatically uses MOVSXD if necessary + void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src); + + // Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE. + void MOVBE(int bits, X64Reg dest, const OpArg& src); + void MOVBE(int bits, const OpArg& dest, X64Reg src); + void LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend = false, + MovInfo* info = nullptr); + void SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info = nullptr); + + // Available only on AMD >= Phenom or Intel >= Haswell + void LZCNT(int bits, X64Reg dest, const OpArg& src); + // Note: this one is actually part of BMI1 + void TZCNT(int bits, X64Reg dest, const OpArg& src); + + // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64) + void STMXCSR(const OpArg& memloc); + void LDMXCSR(const OpArg& memloc); + + // Prefixes + void LOCK(); + void REP(); + void REPNE(); + void FSOverride(); + void GSOverride(); + + // x87 + enum x87StatusWordBits + { + x87_InvalidOperation = 0x1, + x87_DenormalizedOperand = 0x2, + x87_DivisionByZero = 0x4, + x87_Overflow = 0x8, + x87_Underflow = 0x10, + x87_Precision = 0x20, + x87_StackFault = 0x40, + x87_ErrorSummary = 0x80, + x87_C0 = 0x100, + x87_C1 = 0x200, + x87_C2 = 0x400, + x87_TopOfStack = 0x2000 | 0x1000 | 0x800, + x87_C3 = 0x4000, + x87_FPUBusy = 0x8000, + }; + + void FLD(int bits, const OpArg& src); + void FST(int bits, const OpArg& dest); + void FSTP(int bits, const OpArg& dest); + void FNSTSW_AX(); + void FWAIT(); + + // SSE/SSE2: Floating point arithmetic + void ADDSS(X64Reg regOp, const OpArg& arg); + void ADDSD(X64Reg regOp, const OpArg& arg); + void SUBSS(X64Reg regOp, const OpArg& arg); + void SUBSD(X64Reg regOp, const OpArg& arg); + void MULSS(X64Reg regOp, const OpArg& arg); + void MULSD(X64Reg regOp, const OpArg& arg); + void DIVSS(X64Reg regOp, const OpArg& arg); + void DIVSD(X64Reg regOp, const OpArg& arg); + void MINSS(X64Reg regOp, const OpArg& arg); + void MINSD(X64Reg regOp, const OpArg& arg); + void MAXSS(X64Reg regOp, const OpArg& arg); + void MAXSD(X64Reg regOp, const OpArg& arg); + void SQRTSS(X64Reg regOp, const OpArg& arg); + void SQRTSD(X64Reg regOp, const OpArg& arg); + void RCPSS(X64Reg regOp, const OpArg& arg); + void RSQRTSS(X64Reg regOp, const OpArg& arg); + + // SSE/SSE2: Floating point bitwise (yes) + void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare); + void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare); + + // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double) + void ADDPS(X64Reg regOp, const OpArg& arg); + void ADDPD(X64Reg regOp, const OpArg& arg); + void SUBPS(X64Reg regOp, const OpArg& arg); + void SUBPD(X64Reg regOp, const OpArg& arg); + void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare); + void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare); + void MULPS(X64Reg regOp, const OpArg& arg); + void MULPD(X64Reg regOp, const OpArg& arg); + void DIVPS(X64Reg regOp, const OpArg& arg); + void DIVPD(X64Reg regOp, const OpArg& arg); + void MINPS(X64Reg regOp, const OpArg& arg); + void MINPD(X64Reg regOp, const OpArg& arg); + void MAXPS(X64Reg regOp, const OpArg& arg); + void MAXPD(X64Reg regOp, const OpArg& arg); + void SQRTPS(X64Reg regOp, const OpArg& arg); + void SQRTPD(X64Reg regOp, const OpArg& arg); + void RCPPS(X64Reg regOp, const OpArg& arg); + void RSQRTPS(X64Reg regOp, const OpArg& arg); + + // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double) + void ANDPS(X64Reg regOp, const OpArg& arg); + void ANDPD(X64Reg regOp, const OpArg& arg); + void ANDNPS(X64Reg regOp, const OpArg& arg); + void ANDNPD(X64Reg regOp, const OpArg& arg); + void ORPS(X64Reg regOp, const OpArg& arg); + void ORPD(X64Reg regOp, const OpArg& arg); + void XORPS(X64Reg regOp, const OpArg& arg); + void XORPD(X64Reg regOp, const OpArg& arg); + + // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation. + void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle); + void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle); + + // SSE3 + void MOVSLDUP(X64Reg regOp, const OpArg& arg); + void MOVSHDUP(X64Reg regOp, const OpArg& arg); + void MOVDDUP(X64Reg regOp, const OpArg& arg); + + // SSE/SSE2: Useful alternative to shuffle in some cases. + void UNPCKLPS(X64Reg dest, const OpArg& src); + void UNPCKHPS(X64Reg dest, const OpArg& src); + void UNPCKLPD(X64Reg dest, const OpArg& src); + void UNPCKHPD(X64Reg dest, const OpArg& src); + + // SSE/SSE2: Compares. + void COMISS(X64Reg regOp, const OpArg& arg); + void COMISD(X64Reg regOp, const OpArg& arg); + void UCOMISS(X64Reg regOp, const OpArg& arg); + void UCOMISD(X64Reg regOp, const OpArg& arg); + + // SSE/SSE2: Moves. Use the right data type for your data, in most cases. + void MOVAPS(X64Reg regOp, const OpArg& arg); + void MOVAPD(X64Reg regOp, const OpArg& arg); + void MOVAPS(const OpArg& arg, X64Reg regOp); + void MOVAPD(const OpArg& arg, X64Reg regOp); + + void MOVUPS(X64Reg regOp, const OpArg& arg); + void MOVUPD(X64Reg regOp, const OpArg& arg); + void MOVUPS(const OpArg& arg, X64Reg regOp); + void MOVUPD(const OpArg& arg, X64Reg regOp); + + void MOVDQA(X64Reg regOp, const OpArg& arg); + void MOVDQA(const OpArg& arg, X64Reg regOp); + void MOVDQU(X64Reg regOp, const OpArg& arg); + void MOVDQU(const OpArg& arg, X64Reg regOp); + + void MOVSS(X64Reg regOp, const OpArg& arg); + void MOVSD(X64Reg regOp, const OpArg& arg); + void MOVSS(const OpArg& arg, X64Reg regOp); + void MOVSD(const OpArg& arg, X64Reg regOp); + + void MOVLPS(X64Reg regOp, const OpArg& arg); + void MOVLPD(X64Reg regOp, const OpArg& arg); + void MOVLPS(const OpArg& arg, X64Reg regOp); + void MOVLPD(const OpArg& arg, X64Reg regOp); + + void MOVHPS(X64Reg regOp, const OpArg& arg); + void MOVHPD(X64Reg regOp, const OpArg& arg); + void MOVHPS(const OpArg& arg, X64Reg regOp); + void MOVHPD(const OpArg& arg, X64Reg regOp); + + void MOVHLPS(X64Reg regOp1, X64Reg regOp2); + void MOVLHPS(X64Reg regOp1, X64Reg regOp2); + + // Be careful when using these overloads for reg <--> xmm moves. + // The one you cast to OpArg with R(reg) is the x86 reg, the other + // one is the xmm reg. + // ie: "MOVD_xmm(eax, R(xmm1))" generates incorrect code (movd xmm0, rcx) + // use "MOVD_xmm(R(eax), xmm1)" instead. + void MOVD_xmm(X64Reg dest, const OpArg& arg); + void MOVQ_xmm(X64Reg dest, OpArg arg); + void MOVD_xmm(const OpArg& arg, X64Reg src); + void MOVQ_xmm(OpArg arg, X64Reg src); + + // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in + // question. + void MOVMSKPS(X64Reg dest, const OpArg& arg); + void MOVMSKPD(X64Reg dest, const OpArg& arg); + + // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a + // weird one. + void MASKMOVDQU(X64Reg dest, X64Reg src); + void LDDQU(X64Reg dest, const OpArg& src); + + // SSE/SSE2: Data type conversions. + void CVTPS2PD(X64Reg dest, const OpArg& src); + void CVTPD2PS(X64Reg dest, const OpArg& src); + void CVTSS2SD(X64Reg dest, const OpArg& src); + void CVTSI2SS(X64Reg dest, const OpArg& src); + void CVTSD2SS(X64Reg dest, const OpArg& src); + void CVTSI2SD(X64Reg dest, const OpArg& src); + void CVTDQ2PD(X64Reg regOp, const OpArg& arg); + void CVTPD2DQ(X64Reg regOp, const OpArg& arg); + void CVTDQ2PS(X64Reg regOp, const OpArg& arg); + void CVTPS2DQ(X64Reg regOp, const OpArg& arg); + + void CVTTPS2DQ(X64Reg regOp, const OpArg& arg); + void CVTTPD2DQ(X64Reg regOp, const OpArg& arg); + + // Destinations are X64 regs (rax, rbx, ...) for these instructions. + void CVTSS2SI(X64Reg xregdest, const OpArg& src); + void CVTSD2SI(X64Reg xregdest, const OpArg& src); + void CVTTSS2SI(X64Reg xregdest, const OpArg& arg); + void CVTTSD2SI(X64Reg xregdest, const OpArg& arg); + + // SSE2: Packed integer instructions + void PACKSSDW(X64Reg dest, const OpArg& arg); + void PACKSSWB(X64Reg dest, const OpArg& arg); + void PACKUSDW(X64Reg dest, const OpArg& arg); + void PACKUSWB(X64Reg dest, const OpArg& arg); + + void PUNPCKLBW(X64Reg dest, const OpArg& arg); + void PUNPCKLWD(X64Reg dest, const OpArg& arg); + void PUNPCKLDQ(X64Reg dest, const OpArg& arg); + void PUNPCKLQDQ(X64Reg dest, const OpArg& arg); + + void PTEST(X64Reg dest, const OpArg& arg); + void PAND(X64Reg dest, const OpArg& arg); + void PANDN(X64Reg dest, const OpArg& arg); + void PXOR(X64Reg dest, const OpArg& arg); + void POR(X64Reg dest, const OpArg& arg); + + void PADDB(X64Reg dest, const OpArg& arg); + void PADDW(X64Reg dest, const OpArg& arg); + void PADDD(X64Reg dest, const OpArg& arg); + void PADDQ(X64Reg dest, const OpArg& arg); + + void PADDSB(X64Reg dest, const OpArg& arg); + void PADDSW(X64Reg dest, const OpArg& arg); + void PADDUSB(X64Reg dest, const OpArg& arg); + void PADDUSW(X64Reg dest, const OpArg& arg); + + void PSUBB(X64Reg dest, const OpArg& arg); + void PSUBW(X64Reg dest, const OpArg& arg); + void PSUBD(X64Reg dest, const OpArg& arg); + void PSUBQ(X64Reg dest, const OpArg& arg); + + void PSUBSB(X64Reg dest, const OpArg& arg); + void PSUBSW(X64Reg dest, const OpArg& arg); + void PSUBUSB(X64Reg dest, const OpArg& arg); + void PSUBUSW(X64Reg dest, const OpArg& arg); + + void PAVGB(X64Reg dest, const OpArg& arg); + void PAVGW(X64Reg dest, const OpArg& arg); + + void PCMPEQB(X64Reg dest, const OpArg& arg); + void PCMPEQW(X64Reg dest, const OpArg& arg); + void PCMPEQD(X64Reg dest, const OpArg& arg); + + void PCMPGTB(X64Reg dest, const OpArg& arg); + void PCMPGTW(X64Reg dest, const OpArg& arg); + void PCMPGTD(X64Reg dest, const OpArg& arg); + + void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg); + void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg); + void PINSRD(X64Reg dest, const OpArg& arg, u8 subreg); + + void PMADDWD(X64Reg dest, const OpArg& arg); + void PSADBW(X64Reg dest, const OpArg& arg); + + void PMAXSW(X64Reg dest, const OpArg& arg); + void PMAXUB(X64Reg dest, const OpArg& arg); + void PMINSW(X64Reg dest, const OpArg& arg); + void PMINUB(X64Reg dest, const OpArg& arg); + + void PMOVMSKB(X64Reg dest, const OpArg& arg); + void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle); + void PSHUFB(X64Reg dest, const OpArg& arg); + + void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle); + void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle); + + void PSRLW(X64Reg reg, int shift); + void PSRLD(X64Reg reg, int shift); + void PSRLQ(X64Reg reg, int shift); + void PSRLQ(X64Reg reg, const OpArg& arg); + void PSRLDQ(X64Reg reg, int shift); + + void PSLLW(X64Reg reg, int shift); + void PSLLD(X64Reg reg, int shift); + void PSLLQ(X64Reg reg, int shift); + void PSLLDQ(X64Reg reg, int shift); + + void PSRAW(X64Reg reg, int shift); + void PSRAD(X64Reg reg, int shift); + + // SSE4: data type conversions + void PMOVSXBW(X64Reg dest, const OpArg& arg); + void PMOVSXBD(X64Reg dest, const OpArg& arg); + void PMOVSXBQ(X64Reg dest, const OpArg& arg); + void PMOVSXWD(X64Reg dest, const OpArg& arg); + void PMOVSXWQ(X64Reg dest, const OpArg& arg); + void PMOVSXDQ(X64Reg dest, const OpArg& arg); + void PMOVZXBW(X64Reg dest, const OpArg& arg); + void PMOVZXBD(X64Reg dest, const OpArg& arg); + void PMOVZXBQ(X64Reg dest, const OpArg& arg); + void PMOVZXWD(X64Reg dest, const OpArg& arg); + void PMOVZXWQ(X64Reg dest, const OpArg& arg); + void PMOVZXDQ(X64Reg dest, const OpArg& arg); + + // SSE4: blend instructions + void PBLENDVB(X64Reg dest, const OpArg& arg); + void BLENDVPS(X64Reg dest, const OpArg& arg); + void BLENDVPD(X64Reg dest, const OpArg& arg); + void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend); + void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend); + + // AVX + void VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare); + void VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle); + void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle); + void VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg mask); + void VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend); + void VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend); + + void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + + void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + + // FMA3 + void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + +#define FMA4(name) \ + void name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); \ + void name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + + FMA4(VFMADDSUBPS) + FMA4(VFMADDSUBPD) + FMA4(VFMSUBADDPS) + FMA4(VFMSUBADDPD) + FMA4(VFMADDPS) + FMA4(VFMADDPD) + FMA4(VFMADDSS) + FMA4(VFMADDSD) + FMA4(VFMSUBPS) + FMA4(VFMSUBPD) + FMA4(VFMSUBSS) + FMA4(VFMSUBSD) + FMA4(VFNMADDPS) + FMA4(VFNMADDPD) + FMA4(VFNMADDSS) + FMA4(VFNMADDSD) + FMA4(VFNMSUBPS) + FMA4(VFNMSUBPD) + FMA4(VFNMSUBSS) + FMA4(VFNMSUBSD) +#undef FMA4 + + // VEX GPR instructions + void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate); + void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void BLSR(int bits, X64Reg regOp, const OpArg& arg); + void BLSMSK(int bits, X64Reg regOp, const OpArg& arg); + void BLSI(int bits, X64Reg regOp, const OpArg& arg); + void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + + void RDTSC(); + + // Utility functions + // The difference between this and CALL is that this aligns the stack + // where appropriate. + template <typename FunctionPointer> + void ABI_CallFunction(FunctionPointer func) + { + static_assert(std::is_pointer<FunctionPointer>() && + std::is_function<std::remove_pointer_t<FunctionPointer>>(), + "Supplied type must be a function pointer."); + + const void* ptr = reinterpret_cast<const void*>(func); + const u64 address = reinterpret_cast<u64>(ptr); + const u64 distance = address - (reinterpret_cast<u64>(code) + 5); + + if (distance >= 0x0000000080000000ULL && distance < 0xFFFFFFFF80000000ULL) + { + // Far call + MOV(64, R(RAX), Imm64(address)); + CALLptr(R(RAX)); + } + else + { + CALL(ptr); + } + } + + template <typename FunctionPointer> + void ABI_CallFunctionC16(FunctionPointer func, u16 param1) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionCC16(FunctionPointer func, u32 param1, u16 param2) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionC(FunctionPointer func, u32 param1) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionCC(FunctionPointer func, u32 param1, u32 param2) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionCP(FunctionPointer func, u32 param1, const void* param2) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2))); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionCCC(FunctionPointer func, u32 param1, u32 param2, u32 param3) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + MOV(32, R(ABI_PARAM3), Imm32(param3)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionCCP(FunctionPointer func, u32 param1, u32 param2, const void* param3) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + MOV(64, R(ABI_PARAM3), Imm64(reinterpret_cast<u64>(param3))); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionCCCP(FunctionPointer func, u32 param1, u32 param2, u32 param3, + const void* param4) + { + MOV(32, R(ABI_PARAM1), Imm32(param1)); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + MOV(32, R(ABI_PARAM3), Imm32(param3)); + MOV(64, R(ABI_PARAM4), Imm64(reinterpret_cast<u64>(param4))); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionPC(FunctionPointer func, const void* param1, u32 param2) + { + MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1))); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionPPC(FunctionPointer func, const void* param1, const void* param2, u32 param3) + { + MOV(64, R(ABI_PARAM1), Imm64(reinterpret_cast<u64>(param1))); + MOV(64, R(ABI_PARAM2), Imm64(reinterpret_cast<u64>(param2))); + MOV(32, R(ABI_PARAM3), Imm32(param3)); + ABI_CallFunction(func); + } + + // Pass a register as a parameter. + template <typename FunctionPointer> + void ABI_CallFunctionR(FunctionPointer func, X64Reg reg1) + { + if (reg1 != ABI_PARAM1) + MOV(32, R(ABI_PARAM1), R(reg1)); + ABI_CallFunction(func); + } + + // Pass two registers as parameters. + template <typename FunctionPointer> + void ABI_CallFunctionRR(FunctionPointer func, X64Reg reg1, X64Reg reg2) + { + MOVTwo(64, ABI_PARAM1, reg1, 0, ABI_PARAM2, reg2); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionAC(int bits, FunctionPointer func, const Gen::OpArg& arg1, u32 param2) + { + if (!arg1.IsSimpleReg(ABI_PARAM1)) + MOV(bits, R(ABI_PARAM1), arg1); + MOV(32, R(ABI_PARAM2), Imm32(param2)); + ABI_CallFunction(func); + } + + template <typename FunctionPointer> + void ABI_CallFunctionA(int bits, FunctionPointer func, const Gen::OpArg& arg1) + { + if (!arg1.IsSimpleReg(ABI_PARAM1)) + MOV(bits, R(ABI_PARAM1), arg1); + ABI_CallFunction(func); + } + + // Helper method for ABI functions related to calling functions. May be used by itself as well. + void MOVTwo(int bits, X64Reg dst1, X64Reg src1, s32 offset, X64Reg dst2, X64Reg src2); + + // Saves/restores the registers and adjusts the stack to be aligned as + // required by the ABI, where the previous alignment was as specified. + // Push returns the size of the shadow space, i.e. the offset of the frame. + size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, + size_t needed_frame_size = 0); + void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment, + size_t needed_frame_size = 0); + + // Utility to generate a call to a std::function object. + // + // Unfortunately, calling operator() directly is undefined behavior in C++ + // (this method might be a thunk in the case of multi-inheritance) so we + // have to go through a trampoline function. + template <typename T, typename... Args> + static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args) + { + return (*f)(args...); + } + + template <typename T, typename... Args> + void ABI_CallLambdaC(const std::function<T(Args...)>* f, u32 p1) + { + auto trampoline = &XEmitter::CallLambdaTrampoline<T, Args...>; + ABI_CallFunctionPC(trampoline, reinterpret_cast<const void*>(f), p1); + } +}; // class XEmitter + +class X64CodeBlock : public Common::CodeBlock<XEmitter> +{ +private: + void PoisonMemory() override + { + // x86/64: 0xCC = breakpoint + memset(region, 0xCC, region_size); + } +}; + +} // namespace diff --git a/src/dolphin/x64Reg.h b/src/dolphin/x64Reg.h new file mode 100644 index 0000000..a92e024 --- /dev/null +++ b/src/dolphin/x64Reg.h @@ -0,0 +1,96 @@ +// Copyright 2016 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#pragma once + +namespace Gen +{ +enum X64Reg +{ + EAX = 0, + EBX = 3, + ECX = 1, + EDX = 2, + ESI = 6, + EDI = 7, + EBP = 5, + ESP = 4, + + RAX = 0, + RBX = 3, + RCX = 1, + RDX = 2, + RSI = 6, + RDI = 7, + RBP = 5, + RSP = 4, + R8 = 8, + R9 = 9, + R10 = 10, + R11 = 11, + R12 = 12, + R13 = 13, + R14 = 14, + R15 = 15, + + AL = 0, + BL = 3, + CL = 1, + DL = 2, + SIL = 6, + DIL = 7, + BPL = 5, + SPL = 4, + AH = 0x104, + BH = 0x107, + CH = 0x105, + DH = 0x106, + + AX = 0, + BX = 3, + CX = 1, + DX = 2, + SI = 6, + DI = 7, + BP = 5, + SP = 4, + + XMM0 = 0, + XMM1, + XMM2, + XMM3, + XMM4, + XMM5, + XMM6, + XMM7, + XMM8, + XMM9, + XMM10, + XMM11, + XMM12, + XMM13, + XMM14, + XMM15, + + YMM0 = 0, + YMM1, + YMM2, + YMM3, + YMM4, + YMM5, + YMM6, + YMM7, + YMM8, + YMM9, + YMM10, + YMM11, + YMM12, + YMM13, + YMM14, + YMM15, + + INVALID_REG = 0xFFFFFFFF +}; + +} // namespace Gen |