1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
#pragma once
#include <optional>
#include <variant>
#include <vector>
#include "api/BoxCollider.h"
#include "api/CircleCollider.h"
#include "api/Event.h"
#include "api/Metadata.h"
#include "api/Rigidbody.h"
#include "api/Transform.h"
#include "api/Vector2.h"
#include "Collider.h"
#include "System.h"
namespace crepe {
//! A system responsible for detecting and handling collisions between colliders.
class CollisionSystem : public System {
public:
using System::System;
private:
//! Enum representing movement directions during collision resolution.
enum class Direction {
//! No movement required.
NONE,
//! Movement in the X direction.
X_DIRECTION,
//! Movement in the Y direction.
Y_DIRECTION,
//! Movement in both X and Y directions.
BOTH,
};
public:
//! Structure representing components of the collider
struct ColliderInfo {
Transform & transform;
Rigidbody & rigidbody;
Metadata & metadata;
};
/**
* \brief Structure representing detailed collision information between two colliders.
*
* Includes information about the colliding objects and the resolution data for handling the collision.
*/
struct CollisionInfo {
ColliderInfo self;
ColliderInfo other;
//! The resolution vector for the collision.
vec2 resolution;
//! The direction of movement for resolving the collision.
Direction resolution_direction = Direction::NONE;
CollisionInfo operator-() const;
};
private:
//! A variant type that can hold either a BoxCollider or a CircleCollider.
using collider_variant = std::variant<
std::reference_wrapper<BoxCollider>, std::reference_wrapper<CircleCollider>>;
//! Enum representing the types of collider pairs for collision detection.
enum class CollisionInternalType {
BOX_BOX,
CIRCLE_CIRCLE,
BOX_CIRCLE,
CIRCLE_BOX,
NONE,
};
/**
* \brief A structure to store the collision data of a single collider.
*
* This structure all components and id that are for needed within this system when calculating or handling collisions.
* The transform and rigidbody are mostly needed for location and rotation.
* In rigidbody additional info is written about what the body of the object is,
* and how it should respond on a collision.
*/
struct CollisionInternal {
game_object_id_t id = 0;
collider_variant collider;
ColliderInfo info;
vec2 resolution;
Direction resolution_direction = Direction::NONE;
};
//! Structure of a collider with additional components
template <typename ColliderType>
struct ColliderInternal {
ColliderType & collider;
Transform & transform;
Rigidbody & rigidbody;
};
//! Predefined BoxColliderInternal. (System is only made for this type)
using BoxColliderInternal = ColliderInternal<BoxCollider>;
//! Predefined CircleColliderInternal. (System is only made for this type)
using CircleColliderInternal = ColliderInternal<CircleCollider>;
public:
//! Updates the collision system by checking for collisions between colliders and handling them.
void fixed_update() override;
private:
/**
* \brief Determines the type of collider pair from two colliders.
*
* Uses std::holds_alternative to identify the types of the provided colliders.
*
* \param collider1 First collider variant (BoxCollider or CircleCollider).
* \param collider2 Second collider variant (BoxCollider or CircleCollider).
* \return The combined type of the two colliders.
*/
CollisionInternalType get_collider_type(
const collider_variant & collider1, const collider_variant & collider2
) const;
private:
/**
* \brief Converts internal collision data into user-accessible collision information.
*
* This function processes collision data from two colliding entities and packages it
* into a structured format that is accessible for further use,
* such as resolving collisions and triggering user-defined collision scripts.
*
* \param data1 Collision data for the first collider.
* \param data2 Collision data for the second collider.
*/
CollisionInfo
get_collision_info(const CollisionInternal & data1, const CollisionInternal & data2) const;
/**
* \brief Corrects the collision resolution vector and determines its direction.
*
* This function adjusts the provided resolution vector based on the
* rigidbody's linear velocity to ensure consistent collision correction. If the resolution
* vector has only one non-zero component (either x or y), the missing component is computed
* based on the rigidbody's velocity. If both components are non-zero, it indicates a corner
* collision. The function also identifies the direction of the resolution and returns it.
*
* \param resolution resolution vector that needs to be corrected
* \param rigidbody rigidbody data used to correct resolution
* \return A Direction indicating the resolution direction
*/
Direction resolution_correction(vec2 & resolution, const Rigidbody::Data & rigidbody);
/**
* \brief Determines the appropriate collision handler for a given collision event.
*
* This function identifies the correct collision resolution process based on the body types
* of the colliders involved in the collision. It delegates
* collision handling to specific handlers and calls collision event scripts
* as needed.
*
* \param info Collision information containing data about both colliders.
*/
void determine_collision_handler(const CollisionInfo & info);
/**
* \brief Calls both collision script
*
* Calls both collision script to let user add additonal handling or handle full collision.
*
* \param info Collision information containing data about both colliders.
*/
void call_collision_events(const CollisionInfo & info);
/**
* \brief Handles collisions involving static objects.
*
* This function resolves collisions between static and dynamic objects by adjusting
* the position of the static object and modifying the velocity of the dynamic object
* if elasticity is enabled. The position of the static object is corrected
* based on the collision resolution, and the dynamic object's velocity is adjusted
* accordingly to reflect the collision response.
*
* The handling includes stopping movement, applying bouncing based on the elasticity
* coefficient, and adjusting the position of the dynamic object if needed.
*
* \param info Collision information containing data about both colliders.
*/
void static_collision_handler(const CollisionInfo & info);
/**
* \brief Handles collisions involving dynamic objects.
*
* Resolves collisions between two dynamic objects by adjusting their positions and modifying
* their velocities based on the collision resolution. If elasticity is enabled,
* the velocity of both objects is reversed and scaled by the respective elasticity coefficient.
* The positions of the objects are adjusted based on the collision resolution.
*
* \param info Collision information containing data about both colliders.
*/
void dynamic_collision_handler(const CollisionInfo & info);
private:
/**
* \brief Checks for collisions between colliders.
*
* This function checks all active colliders and identifies pairs of colliding objects.
* For each identified collision, the appropriate collision data is returned as pairs for further processing.
*
* \param colliders A collection of all active colliders.
* \return A list of collision pairs with their associated data.
*/
std::vector<std::pair<CollisionInternal, CollisionInternal>>
gather_collisions(std::vector<CollisionInternal> & colliders);
/**
* \brief Checks if the settings allow collision
*
* This function checks if there is any collison layer where each object is located in.
* After checking the layers it checks the names and at last the tags.
* if in all three sets nothing is found collision can not happen.
*
* \param this_rigidbody Rigidbody of first object
* \param other_rigidbody Rigidbody of second collider
* \param this_metadata Rigidbody of first object
* \param other_metadata Rigidbody of second object
* \return Returns true if there is at least one comparison found.
*/
bool should_collide(
const CollisionInternal & self,
const CollisionInternal & other
) const; //done
/**
* \brief Checks for collision between two colliders.
*
* This function determines whether two colliders are colliding based on their types.
* It calls the appropriate collision detection function based on the collider pair type and stores the collision resolution data.
* If a collision is detected, it returns true, otherwise false.
*
* \param first_info Collision data for the first collider.
* \param second_info Collision data for the second collider.
* \param type The type of collider pair.
* \return True if a collision is detected, otherwise false.
*/
bool detect_collision(
CollisionInternal & first_info, CollisionInternal & second_info,
const CollisionInternalType & type
);
/**
* \brief Detects collisions between two BoxColliders.
*
* This function checks whether two `BoxCollider` are colliding based on their positions and scaled dimensions.
* If a collision is detected, it calculates the overlap along the X and Y axes and returns the resolution vector.
* If no collision is detected, it returns a vector with NaN values.
* \param box1 Information about the first BoxCollider.
* \param box2 Information about the second BoxCollider.
* \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}.
*/
vec2 get_box_box_detection(
const BoxColliderInternal & box1, const BoxColliderInternal & box2
) const;
/**
* \brief Check collision for box on circle collider
*
* This function detects if a collision occurs between a rectangular box and a circular collider.
* If a collision is detected, the function calculates the resolution vector to resolve the collision.
* If no collision is detected, it returns a vector with NaN values
*
* \param box1 Information about the BoxCollider.
* \param circle2 Information about the circleCollider.
* \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}.
*/
vec2 get_box_circle_detection(
const BoxColliderInternal & box1, const CircleColliderInternal & circle2
) const;
/**
* \brief Check collision for circle on circle collider
*
* This function detects if a collision occurs between two circular colliders.
* If a collision is detected, it calculates the resolution vector to resolve the collision.
* If no collision is detected, it returns a vector with NaN values.
*
* \param circle1 Information about the first circleCollider.
* \param circle2 Information about the second circleCollider.
* \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}.
*/
vec2 get_circle_circle_detection(
const CircleColliderInternal & circle1, const CircleColliderInternal & circle2
) const;
};
/**
* \brief Event triggered during a collision between objects.
*/
class CollisionEvent : public Event {
public:
crepe::CollisionSystem::CollisionInfo info;
CollisionEvent(const crepe::CollisionSystem::CollisionInfo & collisionInfo)
: info(collisionInfo) {}
};
} // namespace crepe
|