1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
#include <cmath>
#include <algorithm>
#include <cstddef>
#include <functional>
#include <utility>
#include <variant>
#include <optional>
#include "api/Event.h"
#include "api/EventManager.h"
#include "api/BoxCollider.h"
#include "api/CircleCollider.h"
#include "api/Vector2.h"
#include "api/Rigidbody.h"
#include "api/Transform.h"
#include "ComponentManager.h"
#include "CollisionSystem.h"
#include "Collider.h"
#include "types.h"
#include "util/OptionalRef.h"
using namespace crepe;
void CollisionSystem::update() {
// Get collider components and keep them seperate
ComponentManager & mgr = this->component_manager;
std::vector<std::reference_wrapper<BoxCollider>> boxcolliders = mgr.get_components_by_type<BoxCollider>();
std::vector<std::reference_wrapper<CircleCollider>> circlecolliders = mgr.get_components_by_type<CircleCollider>();
std::vector<collider_variant> all_colliders;
// Add BoxCollider references
for (auto& box : boxcolliders) {
all_colliders.push_back(collider_variant{box});
}
// Add CircleCollider references
for (auto& circle : circlecolliders) {
all_colliders.push_back(collider_variant{circle});
}
// Check between all colliders if there is a collision
std::vector<std::pair<CollisionInternal,CollisionInternal>> collided = check_collisions(all_colliders);
// For both objects call the collision handler
for (auto& collision_pair : collided) {
collision_handler_request(collision_pair.first,collision_pair.second);
collision_handler_request(collision_pair.second,collision_pair.first);
}
}
void CollisionSystem::collision_handler_request(CollisionInternal& data1,CollisionInternal& data2){
CollisionInternalType type = check_collider_type(data1.collider,data2.collider);
std::pair<vec2,CollisionSystem::Direction> resolution_data = collision_handler(data1,data2,type);
OptionalRef<Collider> collider1;
OptionalRef<Collider> collider2;
switch (type) {
case CollisionInternalType::BOX_BOX:{
collider1 = std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
collider2 = std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
break;
}
case CollisionInternalType::BOX_CIRCLE:{
collider1 = std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
collider2 = std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
break;
}
case CollisionInternalType::CIRCLE_BOX:{
collider1 = std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
collider2 = std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
break;
}
case CollisionInternalType::CIRCLE_CIRCLE:{
collider1 = std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
collider2 = std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
break;
}
}
// collision info
crepe::CollisionSystem::CollisionInfo collision_info{
.first_collider = collider1,
.first_transform = data1.transform,
.first_rigidbody = data1.rigidbody,
.second_collider = collider2,
.second_transform = data2.transform,
.second_rigidbody = data2.rigidbody,
.resolution = resolution_data.first,
.resolution_direction = resolution_data.second,
};
// Determine if static needs to be called
determine_collision_handler(collision_info);
}
std::pair<vec2,CollisionSystem::Direction> CollisionSystem::collision_handler(CollisionInternal& data1,CollisionInternal& data2,CollisionInternalType type) {
vec2 resolution;
switch (type) {
case CollisionInternalType::BOX_BOX: {
const BoxCollider & collider1 = std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
const BoxCollider & collider2 = std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
vec2 collider_pos1 = current_position(collider1.offset, data1.transform, data1.rigidbody);
vec2 collider_pos2 = current_position(collider2.offset, data2.transform, data2.rigidbody);
resolution = box_box_resolution(collider1,collider2,collider_pos1,collider_pos2);
break;
}
case CollisionInternalType::BOX_CIRCLE: {
const BoxCollider & collider1 = std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
const CircleCollider & collider2 = std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
vec2 collider_pos1 = current_position(collider1.offset, data1.transform, data1.rigidbody);
vec2 collider_pos2 = current_position(collider2.offset, data2.transform, data2.rigidbody);
resolution = circle_box_resolution(collider2,collider1,collider_pos2,collider_pos1);
break;
}
case CollisionInternalType::CIRCLE_CIRCLE: {
const CircleCollider & collider1 = std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
const CircleCollider & collider2 = std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
vec2 collider_pos1 = current_position(collider1.offset, data1.transform, data1.rigidbody);
vec2 collider_pos2 = current_position(collider2.offset, data2.transform, data2.rigidbody);
resolution = circle_circle_resolution(collider1,collider2,collider_pos1,collider_pos2);
break;
}
case CollisionInternalType::CIRCLE_BOX: {
const CircleCollider & collider1 = std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
const BoxCollider & collider2 = std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
vec2 collider_pos1 = current_position(collider1.offset, data1.transform, data1.rigidbody);
vec2 collider_pos2 = current_position(collider2.offset, data2.transform, data2.rigidbody);
resolution = circle_box_resolution(collider1,collider2,collider_pos1,collider_pos2);
break;
}
}
Direction resolution_direction = Direction::NONE;
if(resolution.x != 0 && resolution.y > 0) {
resolution_direction = Direction::BOTH;
} else if (resolution.x != 0) {
resolution_direction = Direction::X_DIRECTION;
if(data1.rigidbody.data.linear_velocity.y != 0)
resolution.y = data1.rigidbody.data.linear_velocity.y * (resolution.x/data1.rigidbody.data.linear_velocity.x);
} else if (resolution.y != 0) {
resolution_direction = Direction::Y_DIRECTION;
if(data1.rigidbody.data.linear_velocity.x != 0)
resolution.x = data1.rigidbody.data.linear_velocity.x * (resolution.y/data1.rigidbody.data.linear_velocity.y);
}
return {resolution,resolution_direction};
}
vec2 CollisionSystem::box_box_resolution(const BoxCollider& box_collider1,const BoxCollider& box_collider2,vec2 final_position1,vec2 final_position2)
{
vec2 resolution; // Default resolution vector
vec2 delta = final_position2 - final_position1;
// Compute half-dimensions of the boxes
float half_width1 = box_collider1.width / 2.0;
float half_height1 = box_collider1.height / 2.0;
float half_width2 = box_collider2.width / 2.0;
float half_height2 = box_collider2.height / 2.0;
// Calculate overlaps along X and Y axes
float overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
float overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
// Check if there is a collision should always be true
if (overlap_x > 0 && overlap_y > 0) {
// Determine the direction of resolution
if (overlap_x < overlap_y) {
// Resolve along the X-axis (smallest overlap)
resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
} else if (overlap_y < overlap_x) {
// Resolve along the Y-axis (smallest overlap)
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
} else {
// Equal overlap, resolve both directions with preference
resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
}
}
return resolution;
}
vec2 CollisionSystem::circle_circle_resolution(const CircleCollider& circle_collider1, const CircleCollider& circle_collider2, vec2 final_position1, vec2 final_position2)
{
vec2 delta = final_position2 - final_position1;
// Compute the distance between the two circle centers
float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y);
// Compute the combined radii of the two circles
float combined_radius = circle_collider1.radius + circle_collider2.radius;
// Compute the penetration depth
float penetration_depth = combined_radius - distance;
// Normalize the delta vector to get the collision direction
vec2 collision_normal = delta / distance;
// Compute the resolution vector
vec2 resolution = collision_normal * penetration_depth;
return resolution;
}
vec2 CollisionSystem::circle_box_resolution(const CircleCollider& circle_collider, const BoxCollider& box_collider, vec2 circle_position, vec2 box_position)
{
vec2 delta = circle_position - box_position;
// Compute half-dimensions of the box
float half_width = box_collider.width / 2.0f;
float half_height = box_collider.height / 2.0f;
// Clamp circle center to the nearest point on the box
vec2 closest_point;
closest_point.x = std::clamp(delta.x, -half_width, half_width);
closest_point.y = std::clamp(delta.y, -half_height, half_height);
// Find the vector from the circle center to the closest point
vec2 closest_delta = delta - closest_point;
// Normalize the delta to get the collision direction
float distance = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y);
vec2 collision_normal = closest_delta / distance;
// Compute penetration depth
float penetration_depth = circle_collider.radius - distance;
// Compute the resolution vector
vec2 resolution = collision_normal * penetration_depth;
return resolution;
}
void CollisionSystem::determine_collision_handler(CollisionInfo& info){
// Check rigidbody type for static
if(info.first_rigidbody.data.body_type != Rigidbody::BodyType::STATIC)
{
// If second body is static perform the static collision handler in this system
if(info.second_rigidbody.data.body_type == Rigidbody::BodyType::STATIC){
static_collision_handler(info);
};
// Call collision event for user
CollisionEvent data(info);
EventManager::get_instance().trigger_event<CollisionEvent>(data, info.first_collider.game_object_id);
}
}
void CollisionSystem::static_collision_handler(CollisionInfo& info){
// Move object back using calculate move back value
info.first_transform.position += info.resolution;
// If bounce is enabled mirror velocity
if(info.first_rigidbody.data.bounce) {
if(info.resolution_direction == Direction::BOTH)
{
info.first_rigidbody.data.linear_velocity.y = -info.first_rigidbody.data.linear_velocity.y * info.first_rigidbody.data.elastisity;
info.first_rigidbody.data.linear_velocity.x = -info.first_rigidbody.data.linear_velocity.x * info.first_rigidbody.data.elastisity;
}
else if(info.resolution_direction == Direction::Y_DIRECTION) {
info.first_rigidbody.data.linear_velocity.y = -info.first_rigidbody.data.linear_velocity.y * info.first_rigidbody.data.elastisity;
}
else if(info.resolution_direction == Direction::X_DIRECTION){
info.first_rigidbody.data.linear_velocity.x = -info.first_rigidbody.data.linear_velocity.x * info.first_rigidbody.data.elastisity;
}
}
// Stop movement if bounce is disabled
else {
info.first_rigidbody.data.linear_velocity = {0,0};
}
}
std::vector<std::pair<CollisionSystem::CollisionInternal,CollisionSystem::CollisionInternal>> CollisionSystem::check_collisions(std::vector<collider_variant> & colliders) {
// TODO:
// If no colliders skip
// Check if colliders has rigidbody if not skip
// TODO:
// If amount is higer than lets say 16 for now use quadtree otwerwise skip
// Quadtree code
// Quadtree is placed over the input vector
// Return data of collided colliders which are variants
std::vector<std::pair<CollisionInternal,CollisionInternal>> collisions_ret;
//using visit to visit the variant to access the active and id.
for (size_t i = 0; i < colliders.size(); ++i) {
std::visit([&](auto& inner_collider_ref) {
// Return from visit if collider or components are not active
if (!inner_collider_ref.get().active) return;
auto inner_components = get_active_transform_and_rigidbody(inner_collider_ref.get().game_object_id);
if (!inner_components) return;
for (size_t j = i + 1; j < colliders.size(); ++j) {
std::visit([&](auto& outer_collider_ref) {
// Return from visit if collider or components are not active and if they have the same id.
if (!outer_collider_ref.get().active) return;
if (inner_collider_ref.get().game_object_id == outer_collider_ref.get().game_object_id) return;
auto outer_components = get_active_transform_and_rigidbody(outer_collider_ref.get().game_object_id);
if (!outer_components) return;
// Get collision type form variant colliders
CollisionInternalType type = check_collider_type(colliders[i],colliders[j]);
if(!check_collision({
.collider = colliders[i],
.transform = inner_components->first,
.rigidbody = inner_components->second,
},
{
.collider = colliders[j],
.transform = outer_components->first,
.rigidbody = outer_components->second,
},
type)) return;
collisions_ret.emplace_back(
CollisionInternal{colliders[i], inner_components->first.get(), inner_components->second.get()},
CollisionInternal{colliders[j], outer_components->first.get(), outer_components->second.get()}
);
}, colliders[j]);
}
}, colliders[i]);
}
return collisions_ret;
}
std::optional<std::pair<std::reference_wrapper<Transform>, std::reference_wrapper<Rigidbody>>>
CollisionSystem::get_active_transform_and_rigidbody(game_object_id_t game_object_id) {
RefVector<Transform> transforms = this->component_manager.get_components_by_id<Transform>(game_object_id);
if (transforms.empty()) return std::nullopt;
RefVector<Rigidbody> rigidbodies = this->component_manager.get_components_by_id<Rigidbody>(game_object_id);
if (rigidbodies.empty()) return std::nullopt;
Transform& transform = transforms.front().get();
if (!transform.active) return std::nullopt;
Rigidbody& rigidbody = rigidbodies.front().get();
if (!rigidbody.active) return std::nullopt;
// Return the active components
return std::make_pair(std::ref(transform), std::ref(rigidbody));
}
CollisionSystem::CollisionInternalType CollisionSystem::check_collider_type(const collider_variant& collider1,const collider_variant& collider2) const{
if(std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)){
if(std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2))
{
return CollisionInternalType::CIRCLE_CIRCLE;
}
else {
return CollisionInternalType::CIRCLE_BOX;
}
}
else {
if(std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2))
{
return CollisionInternalType::BOX_CIRCLE;
}
else {
return CollisionInternalType::BOX_BOX;
}
}
}
bool CollisionSystem::check_collision(const CollisionInternal& first_info,const CollisionInternal& second_info, CollisionInternalType type){
switch (type) {
case CollisionInternalType::BOX_BOX: {
const BoxCollider & box_collider1 = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider);
const BoxCollider & box_collider2 = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider);
return check_box_box_collision(box_collider1,box_collider2,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody);
}
case CollisionInternalType::BOX_CIRCLE: {
const BoxCollider & box_collider = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider);
const CircleCollider & circle_collider = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider);
return check_box_circle_collision(box_collider,circle_collider,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody);
}
case CollisionInternalType::CIRCLE_CIRCLE: {
const CircleCollider & circle_collider1 = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider);
const CircleCollider & circle_collider2 = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider);
return check_circle_circle_collision(circle_collider1,circle_collider2,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody);
}
case CollisionInternalType::CIRCLE_BOX: {
const CircleCollider & circle_collider = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider);
const BoxCollider & box_collider = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider);
return check_box_circle_collision(box_collider,circle_collider,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody);
}
}
return false;
}
bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2)
{
// Get current positions of colliders
vec2 final_position1 = current_position(box1.offset,transform1,rigidbody1);
vec2 final_position2 = current_position(box2.offset,transform2,rigidbody2);
// Calculate half-extents (half width and half height)
float half_width1 = box1.width / 2.0;
float half_height1 = box1.height / 2.0;
float half_width2 = box2.width / 2.0;
float half_height2 = box2.height / 2.0;
// Check if the boxes overlap along the X and Y axes
return (final_position1.x + half_width1 > final_position2.x - half_width2 && // not left
final_position1.x - half_width1 < final_position2.x + half_width2 && // not right
final_position1.y + half_height1 > final_position2.y - half_height2 && // not above
final_position1.y - half_height1 < final_position2.y + half_height2); // not below
}
bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
// Get current positions of colliders
vec2 final_position1 = current_position(box1.offset, transform1, rigidbody1);
vec2 final_position2 = current_position(circle2.offset, transform2, rigidbody2);
// Calculate box half-extents
float half_width = box1.width / 2.0;
float half_height = box1.height / 2.0;
// Find the closest point on the box to the circle's center
float closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width));
float closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height));
// Calculate the distance squared between the circle's center and the closest point on the box
float distance_x = final_position2.x - closest_x;
float distance_y = final_position2.y - closest_y;
float distance_squared = distance_x * distance_x + distance_y * distance_y;
// Compare distance squared with the square of the circle's radius
return distance_squared <= circle2.radius * circle2.radius;
}
bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
// Get current positions of colliders
vec2 final_position1 = current_position(circle1.offset,transform1,rigidbody1);
vec2 final_position2 = current_position(circle2.offset,transform2,rigidbody2);
float distance_x = final_position1.x - final_position2.x;
float distance_y = final_position1.y - final_position2.y;
float distance_squared = distance_x * distance_x + distance_y * distance_y;
// Calculate the sum of the radii
float radius_sum = circle1.radius + circle2.radius;
// Check if the distance between the centers is less than or equal to the sum of the radii
return distance_squared <= radius_sum * radius_sum;
}
vec2 CollisionSystem::current_position(vec2 collider_offset, const Transform& transform, const Rigidbody& rigidbody) {
// Get the rotation in radians
float radians1 = transform.rotation * (M_PI / 180.0);
// Calculate total offset with scale
vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale;
// Rotate
float rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
float rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1);
// Final positions considering scaling and rotation
return(transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1));
}
|