1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
#include <cmath>
#include <algorithm>
#include <cstddef>
#include <variant>
#include "CollisionSystem.h"
#include "../ComponentManager.h"
#include "../api/BoxCollider.h"
#include "../api/CircleCollider.h"
#include "../api/Vector2.h"
#include "../api/Rigidbody.h"
#include "../api/Transform.h"
#include "Collider.h"
#include "iostream"
using namespace crepe;
CollisionSystem::CollisionSystem() {}
void CollisionSystem::update() {
ComponentManager & mgr = ComponentManager::get_instance();
std::vector<std::reference_wrapper<BoxCollider>> boxcolliders = mgr.get_components_by_type<BoxCollider>();
std::vector<std::reference_wrapper<CircleCollider>> circlecolliders = mgr.get_components_by_type<CircleCollider>();
std::vector<std::pair<CollisionSystem::collider_stor, CollisionSystem::collider_stor>> collided = check_collisions(boxcolliders,circlecolliders);
std::cout << "DEBUG INFO" << std::endl;
for (const std::pair<CollisionSystem::collider_stor, CollisionSystem::collider_stor>& collision : collided) {
if (const BoxCollider* box_collider1 = std::get_if<BoxCollider>(&collision.first)) {
std::cout << "Processing a BoxCollider\n";
if (const BoxCollider* box_collider2 = std::get_if<BoxCollider>(&collision.second)) {
std::cout << "Processing a BoxCollider\n";
} else if (const CircleCollider* circle_collider2 = std::get_if<CircleCollider>(&collision.first)) {
std::cout << "Processing a CircleCollider\n";
}
} else if (const CircleCollider* circle_collider1 = std::get_if<CircleCollider>(&collision.first)) {
std::cout << "Processing a CircleCollider\n";
if (const BoxCollider* box_collider2 = std::get_if<BoxCollider>(&collision.first)) {
std::cout << "Processing a BoxCollider\n";
} else if (const CircleCollider* circle_collider2 = std::get_if<CircleCollider>(&collision.first)) {
std::cout << "Processing a CircleCollider\n";
}
}
}
if(collided.empty()) {
std::cout << "No objects collided" << std::endl;
}
}
void CollisionSystem::call_collision_handler(const Rigidbody& rigidbody1,const Rigidbody& rigidbody2){
}
std::vector<std::pair<CollisionSystem::collider_stor, CollisionSystem::collider_stor>> CollisionSystem::check_collisions(const std::vector<std::reference_wrapper<BoxCollider>>& boxcolliders, const std::vector<std::reference_wrapper<CircleCollider>>& circlecolliders) {
ComponentManager & mgr = ComponentManager::get_instance();
std::vector<std::pair<collider_stor, collider_stor>> collisions_ret;
//if no colliders skip
//check if colliders has rigibocdy if not skip
//if amount is higer than lets say 16 for now use quadtree otwerwise skip
//quadtree code
//quadtree is placed over the input vector
// Check collisions
for (size_t i = 0; i < boxcolliders.size(); ++i) {
// Fetch components for the first box collider
if(!boxcolliders[i].get().active) continue;
int game_object_id_1 = boxcolliders[i].get().game_object_id;
Transform& transform1 = mgr.get_components_by_id<Transform>(game_object_id_1).front().get();
Rigidbody& rigidbody1 = mgr.get_components_by_id<Rigidbody>(game_object_id_1).front().get();
// Check CircleCollider vs CircleCollider
for (size_t j = i + 1; j < boxcolliders.size(); ++j) {
if(!boxcolliders[j].get().active) continue;
// Skip self collision
int game_object_id_2 = boxcolliders[j].get().game_object_id;
if (game_object_id_1 == game_object_id_2) continue;
// Fetch components for the second box collider
Transform & transform2 = mgr.get_components_by_id<Transform>(boxcolliders[j].get().game_object_id).front().get();
Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(boxcolliders[j].get().game_object_id).front().get();
// Check collision
if (check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
collisions_ret.emplace_back(boxcolliders[i], boxcolliders[j]);
}
}
// Check BoxCollider vs CircleCollider
for (size_t j = 0; j < circlecolliders.size(); ++j) {
if(!circlecolliders[j].get().active) continue;
// Skip self collision
int game_object_id_2 = circlecolliders[j].get().game_object_id;
if (game_object_id_1 == game_object_id_2) continue;
// Fetch components for the second collider (circle)
Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
// Check collision
if (check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
collisions_ret.emplace_back(boxcolliders[i], circlecolliders[j]);
}
}
}
// Check CircleCollider vs CircleCollider
for (size_t i = 0; i < circlecolliders.size(); ++i) {
if(!circlecolliders[i].get().active) continue;
// Fetch components for the first circle collider
int game_object_id_1 = circlecolliders[i].get().game_object_id;
Transform & transform1 = mgr.get_components_by_id<Transform>(circlecolliders[i].get().game_object_id).front().get();
Rigidbody & rigidbody1 = mgr.get_components_by_id<Rigidbody>(circlecolliders[i].get().game_object_id).front().get();
for (size_t j = i + 1; j < circlecolliders.size(); ++j) {
if(!circlecolliders[j].get().active) continue;
// Skip self collision
int game_object_id_2 = circlecolliders[j].get().game_object_id;
if (game_object_id_1 == game_object_id_2) continue;
// Fetch components for the second circle collider
Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
// Check collision
if (check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
collisions_ret.emplace_back(circlecolliders[i], circlecolliders[j]);
}
}
}
return collisions_ret;
}
bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2)
{
// Get current positions of colliders
Vector2 final_position1 = current_position(box1,transform1,rigidbody1);
Vector2 final_position2 = current_position(box2,transform2,rigidbody2);
// Log final positions for debugging purposes
std::cout << "Final Position of Box 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl;
std::cout << "Final Position of Box 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl;
// Log rotation values for debugging
std::cout << "Rotation of Box 1: " << transform1.rotation << " degrees" << std::endl;
std::cout << "Rotation of Box 2: " << transform2.rotation << " degrees" << std::endl;
// Calculate half-extents (half width and half height)
double half_width1 = box1.width / 2.0;
double half_height1 = box1.height / 2.0;
double half_width2 = box2.width / 2.0;
double half_height2 = box2.height / 2.0;
// Check if the boxes overlap along the X and Y axes
return !(final_position1.x + half_width1 < final_position2.x - half_width2 || // box1 is left of box2
final_position1.x - half_width1 > final_position2.x + half_width2 || // box1 is right of box2
final_position1.y + half_height1 < final_position2.y - half_height2 || // box1 is above box2
final_position1.y - half_height1 > final_position2.y + half_height2); // box1 is below box2
}
bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
// Get current positions of colliders
Vector2 final_position1 = current_position(box1, transform1, rigidbody1);
Vector2 final_position2 = current_position(circle2, transform2, rigidbody2);
// Log final positions for debugging purposes
std::cout << "Final Position of Box: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl;
std::cout << "Final Position of Circle: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl;
// Calculate box half-extents
double half_width = box1.width / 2.0;
double half_height = box1.height / 2.0;
// Find the closest point on the box to the circle's center
double closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width));
double closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height));
// Calculate the distance squared between the circle's center and the closest point on the box
double distance_x = final_position2.x - closest_x;
double distance_y = final_position2.y - closest_y;
double distance_squared = distance_x * distance_x + distance_y * distance_y;
// Compare distance squared with the square of the circle's radius
return distance_squared <= circle2.radius * circle2.radius;
}
bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
// Get current positions of colliders
Vector2 final_position1 = current_position(circle1,transform1,rigidbody1);
Vector2 final_position2 = current_position(circle2,transform2,rigidbody2);
// Log final positions for debugging purposes
std::cout << "Final Position of Circle 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl;
std::cout << "Final Position of Circle 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl;
// Log rotation values for debugging (circles do not rotate, so this might not be needed for circles)
std::cout << "Rotation of Circle 1: " << transform1.rotation << " degrees" << std::endl;
std::cout << "Rotation of Circle 2: " << transform2.rotation << " degrees" << std::endl;
double distance_x = final_position1.x - final_position2.x;
double distance_y = final_position1.y - final_position2.y;
double distance_squared = distance_x * distance_x + distance_y * distance_y;
// Calculate the sum of the radii
double radius_sum = circle1.radius + circle2.radius;
// Check if the distance between the centers is less than or equal to the sum of the radii
return distance_squared <= radius_sum * radius_sum;
}
Vector2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) {
// Function to convert degrees to radians
auto degrees_to_radians = [](double degrees) {
return degrees * (M_PI / 180.0);
};
// Get the rotation in radians
double radians1 = degrees_to_radians(transform.rotation);
// Calculate total offset with scale
Vector2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale;
// Rotate
double rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
double rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1);
// Final positions considering scaling and rotation
return(transform.position + Vector2(rotated_total_offset_x1, rotated_total_offset_y1));
}
|