1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <functional>
#include <optional>
#include <utility>
#include <variant>
#include "../manager/ComponentManager.h"
#include "../manager/EventManager.h"
#include "api/BoxCollider.h"
#include "api/CircleCollider.h"
#include "api/Event.h"
#include "api/Metadata.h"
#include "api/Rigidbody.h"
#include "api/Transform.h"
#include "api/Vector2.h"
#include "Collider.h"
#include "CollisionSystem.h"
#include "types.h"
#include "util/OptionalRef.h"
using namespace crepe;
void CollisionSystem::update() {
std::vector<CollisionInternal> all_colliders;
game_object_id_t id = 0;
ComponentManager & mgr = this->mediator.component_manager;
RefVector<Rigidbody> rigidbodies = mgr.get_components_by_type<Rigidbody>();
// Collisions can only happen on object with a rigidbody
for (Rigidbody & rigidbody : rigidbodies) {
if (!rigidbody.active) continue;
id = rigidbody.game_object_id;
Transform & transform = mgr.get_components_by_id<Transform>(id).front().get();
// Check if the boxcollider is active and has the same id as the rigidbody.
RefVector<BoxCollider> boxcolliders = mgr.get_components_by_type<BoxCollider>();
for (BoxCollider & boxcollider : boxcolliders) {
if (boxcollider.game_object_id != id) continue;
if (!boxcollider.active) continue;
all_colliders.push_back({.id = id,
.collider = collider_variant{boxcollider},
.transform = transform,
.rigidbody = rigidbody});
}
// Check if the circlecollider is active and has the same id as the rigidbody.
RefVector<CircleCollider> circlecolliders
= mgr.get_components_by_type<CircleCollider>();
for (CircleCollider & circlecollider : circlecolliders) {
if (circlecollider.game_object_id != id) continue;
if (!circlecollider.active) continue;
all_colliders.push_back({.id = id,
.collider = collider_variant{circlecollider},
.transform = transform,
.rigidbody = rigidbody});
}
}
// Check between all colliders if there is a collision
std::vector<std::pair<CollisionInternal, CollisionInternal>> collided
= this->gather_collisions(all_colliders);
// For both objects call the collision handler
for (auto & collision_pair : collided) {
this->collision_handler_request(collision_pair.first, collision_pair.second);
this->collision_handler_request(collision_pair.second, collision_pair.first);
}
}
void CollisionSystem::collision_handler_request(CollisionInternal & this_data,
CollisionInternal & other_data) {
CollisionInternalType type
= this->get_collider_type(this_data.collider, other_data.collider);
std::pair<vec2, CollisionSystem::Direction> resolution_data
= this->collision_handler(this_data, other_data, type);
ComponentManager & mgr = this->mediator.component_manager;
OptionalRef<Metadata> this_metadata
= mgr.get_components_by_id<Metadata>(this_data.id).front().get();
OptionalRef<Metadata> other_metadata
= mgr.get_components_by_id<Metadata>(other_data.id).front().get();
OptionalRef<Collider> this_collider;
OptionalRef<Collider> other_collider;
switch (type) {
case CollisionInternalType::BOX_BOX: {
this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider);
other_collider
= std::get<std::reference_wrapper<BoxCollider>>(other_data.collider);
break;
}
case CollisionInternalType::BOX_CIRCLE: {
this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider);
other_collider
= std::get<std::reference_wrapper<CircleCollider>>(other_data.collider);
break;
}
case CollisionInternalType::CIRCLE_BOX: {
this_collider
= std::get<std::reference_wrapper<CircleCollider>>(this_data.collider);
other_collider
= std::get<std::reference_wrapper<BoxCollider>>(other_data.collider);
break;
}
case CollisionInternalType::CIRCLE_CIRCLE: {
this_collider
= std::get<std::reference_wrapper<CircleCollider>>(this_data.collider);
other_collider
= std::get<std::reference_wrapper<CircleCollider>>(other_data.collider);
break;
}
}
// collision info
crepe::CollisionSystem::CollisionInfo collision_info{
.this_collider = this_collider,
.this_transform = this_data.transform,
.this_rigidbody = this_data.rigidbody,
.this_metadata = this_metadata,
.other_collider = other_collider,
.other_transform = other_data.transform,
.other_rigidbody = other_data.rigidbody,
.other_metadata = other_metadata,
.resolution = resolution_data.first,
.resolution_direction = resolution_data.second,
};
// Determine if static needs to be called
this->determine_collision_handler(collision_info);
}
std::pair<vec2, CollisionSystem::Direction>
CollisionSystem::collision_handler(CollisionInternal & data1, CollisionInternal & data2,
CollisionInternalType type) {
vec2 resolution;
switch (type) {
case CollisionInternalType::BOX_BOX: {
const BoxCollider & collider1
= std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
const BoxCollider & collider2
= std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
data1.rigidbody);
vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
data2.rigidbody);
resolution = this->get_box_box_resolution(collider1, collider2, collider_pos1,
collider_pos2);
break;
}
case CollisionInternalType::BOX_CIRCLE: {
const BoxCollider & collider1
= std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
const CircleCollider & collider2
= std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
data1.rigidbody);
vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
data2.rigidbody);
resolution = -this->get_circle_box_resolution(collider2, collider1, collider_pos2,
collider_pos1);
break;
}
case CollisionInternalType::CIRCLE_CIRCLE: {
const CircleCollider & collider1
= std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
const CircleCollider & collider2
= std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
data1.rigidbody);
vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
data2.rigidbody);
resolution = this->get_circle_circle_resolution(collider1, collider2,
collider_pos1, collider_pos2);
break;
}
case CollisionInternalType::CIRCLE_BOX: {
const CircleCollider & collider1
= std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
const BoxCollider & collider2
= std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
data1.rigidbody);
vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
data2.rigidbody);
resolution = this->get_circle_box_resolution(collider1, collider2, collider_pos1,
<<<<<<< HEAD
collider_pos2);
=======
collider_pos2, false);
>>>>>>> 33a072db28d71ba65e59f9491abd42dbf9695fc4
break;
}
}
Direction resolution_direction = Direction::NONE;
if (resolution.x != 0 && resolution.y != 0) {
resolution_direction = Direction::BOTH;
} else if (resolution.x != 0) {
resolution_direction = Direction::X_DIRECTION;
if (data1.rigidbody.data.linear_velocity.y != 0)
resolution.y = data1.rigidbody.data.linear_velocity.y
* (resolution.x / data1.rigidbody.data.linear_velocity.x);
} else if (resolution.y != 0) {
resolution_direction = Direction::Y_DIRECTION;
if (data1.rigidbody.data.linear_velocity.x != 0)
resolution.x = data1.rigidbody.data.linear_velocity.x
* (resolution.y / data1.rigidbody.data.linear_velocity.y);
}
return std::make_pair(resolution, resolution_direction);
}
vec2 CollisionSystem::get_box_box_resolution(const BoxCollider & box_collider1,
const BoxCollider & box_collider2,
const vec2 & final_position1,
const vec2 & final_position2) const {
vec2 resolution; // Default resolution vector
vec2 delta = final_position2 - final_position1;
// Compute half-dimensions of the boxes
float half_width1 = box_collider1.dimensions.x / 2.0;
float half_height1 = box_collider1.dimensions.y / 2.0;
float half_width2 = box_collider2.dimensions.x / 2.0;
float half_height2 = box_collider2.dimensions.y / 2.0;
// Calculate overlaps along X and Y axes
float overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
float overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
// Check if there is a collision should always be true
if (overlap_x > 0 && overlap_y > 0) {
// Determine the direction of resolution
if (overlap_x < overlap_y) {
// Resolve along the X-axis (smallest overlap)
resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
} else if (overlap_y < overlap_x) {
// Resolve along the Y-axis (smallest overlap)
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
} else {
// Equal overlap, resolve both directions with preference
resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
}
}
return resolution;
}
vec2 CollisionSystem::get_circle_circle_resolution(const CircleCollider & circle_collider1,
const CircleCollider & circle_collider2,
const vec2 & final_position1,
const vec2 & final_position2) const {
vec2 delta = final_position2 - final_position1;
// Compute the distance between the two circle centers
float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y);
// Compute the combined radii of the two circles
float combined_radius = circle_collider1.radius + circle_collider2.radius;
// Compute the penetration depth
float penetration_depth = combined_radius - distance;
// Normalize the delta vector to get the collision direction
vec2 collision_normal = delta / distance;
// Compute the resolution vector
vec2 resolution = -collision_normal * penetration_depth;
return resolution;
}
vec2 CollisionSystem::get_circle_box_resolution(const CircleCollider & circle_collider,
const BoxCollider & box_collider,
const vec2 & circle_position,
<<<<<<< HEAD
const vec2 & box_position) const {
=======
const vec2 & box_position,
bool inverse) const {
>>>>>>> 33a072db28d71ba65e59f9491abd42dbf9695fc4
vec2 delta = circle_position - box_position;
// Compute half-dimensions of the box
float half_width = box_collider.dimensions.x / 2.0f;
float half_height = box_collider.dimensions.y / 2.0f;
// Clamp circle center to the nearest point on the box
vec2 closest_point;
closest_point.x = std::clamp(delta.x, -half_width, half_width);
closest_point.y = std::clamp(delta.y, -half_height, half_height);
// Find the vector from the circle center to the closest point
vec2 closest_delta = delta - closest_point;
// Normalize the delta to get the collision direction
float distance
= std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y);
vec2 collision_normal = closest_delta / distance;
// Compute penetration depth
float penetration_depth = circle_collider.radius - distance;
<<<<<<< HEAD
=======
if (inverse) collision_normal = -collision_normal;
>>>>>>> 33a072db28d71ba65e59f9491abd42dbf9695fc4
// Compute the resolution vector
vec2 resolution = collision_normal * penetration_depth;
return resolution;
}
void CollisionSystem::determine_collision_handler(CollisionInfo & info) {
// Check rigidbody type for static
if (info.this_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) return;
// If second body is static perform the static collision handler in this system
if (info.other_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) {
this->static_collision_handler(info);
};
// Call collision event for user
CollisionEvent data(info);
EventManager & emgr = this->mediator.event_manager;
emgr.trigger_event<CollisionEvent>(data, info.this_collider.game_object_id);
}
void CollisionSystem::static_collision_handler(CollisionInfo & info) {
// Move object back using calculate move back value
info.this_transform.position += info.resolution;
// If bounce is enabled mirror velocity
if (info.this_rigidbody.data.elastisity_coefficient > 0) {
if (info.resolution_direction == Direction::BOTH) {
info.this_rigidbody.data.linear_velocity.y
= -info.this_rigidbody.data.linear_velocity.y
* info.this_rigidbody.data.elastisity_coefficient;
info.this_rigidbody.data.linear_velocity.x
= -info.this_rigidbody.data.linear_velocity.x
* info.this_rigidbody.data.elastisity_coefficient;
} else if (info.resolution_direction == Direction::Y_DIRECTION) {
info.this_rigidbody.data.linear_velocity.y
= -info.this_rigidbody.data.linear_velocity.y
* info.this_rigidbody.data.elastisity_coefficient;
} else if (info.resolution_direction == Direction::X_DIRECTION) {
info.this_rigidbody.data.linear_velocity.x
= -info.this_rigidbody.data.linear_velocity.x
* info.this_rigidbody.data.elastisity_coefficient;
}
}
// Stop movement if bounce is disabled
else {
info.this_rigidbody.data.linear_velocity = {0, 0};
}
}
std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>>
CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) {
// TODO:
// If no colliders skip
// Check if colliders has rigidbody if not skip
// TODO:
// If amount is higer than lets say 16 for now use quadtree otwerwise skip
// Quadtree code
// Quadtree is placed over the input vector
// Return data of collided colliders which are variants
std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret;
//using visit to visit the variant to access the active and id.
for (size_t i = 0; i < colliders.size(); ++i) {
for (size_t j = i + 1; j < colliders.size(); ++j) {
if (colliders[i].id == colliders[j].id) continue;
if (!have_common_layer(colliders[i].rigidbody.data.collision_layers,
colliders[j].rigidbody.data.collision_layers))
continue;
CollisionInternalType type
= get_collider_type(colliders[i].collider, colliders[j].collider);
if (!get_collision(
{
.collider = colliders[i].collider,
.transform = colliders[i].transform,
.rigidbody = colliders[i].rigidbody,
},
{
.collider = colliders[j].collider,
.transform = colliders[j].transform,
.rigidbody = colliders[j].rigidbody,
},
type))
continue;
collisions_ret.emplace_back(colliders[i], colliders[j]);
}
}
return collisions_ret;
}
bool CollisionSystem::have_common_layer(const std::set<int> & layers1,
const std::set<int> & layers2) {
// Check if any number is equal in the layers
for (int num : layers1) {
if (layers2.contains(num)) {
// Common layer found
return true;
break;
}
}
// No common layer found
return false;
}
CollisionSystem::CollisionInternalType
CollisionSystem::get_collider_type(const collider_variant & collider1,
const collider_variant & collider2) const {
if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) {
if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
return CollisionInternalType::CIRCLE_CIRCLE;
} else {
return CollisionInternalType::CIRCLE_BOX;
}
} else {
if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
return CollisionInternalType::BOX_CIRCLE;
} else {
return CollisionInternalType::BOX_BOX;
}
}
}
bool CollisionSystem::get_collision(const CollisionInternal & first_info,
const CollisionInternal & second_info,
CollisionInternalType type) const {
switch (type) {
case CollisionInternalType::BOX_BOX: {
const BoxCollider & box_collider1
= std::get<std::reference_wrapper<BoxCollider>>(first_info.collider);
const BoxCollider & box_collider2
= std::get<std::reference_wrapper<BoxCollider>>(second_info.collider);
return this->get_box_box_collision(box_collider1, box_collider2,
first_info.transform, second_info.transform,
second_info.rigidbody, second_info.rigidbody);
}
case CollisionInternalType::BOX_CIRCLE: {
const BoxCollider & box_collider
= std::get<std::reference_wrapper<BoxCollider>>(first_info.collider);
const CircleCollider & circle_collider
= std::get<std::reference_wrapper<CircleCollider>>(second_info.collider);
return this->get_box_circle_collision(
box_collider, circle_collider, first_info.transform, second_info.transform,
second_info.rigidbody, second_info.rigidbody);
}
case CollisionInternalType::CIRCLE_CIRCLE: {
const CircleCollider & circle_collider1
= std::get<std::reference_wrapper<CircleCollider>>(first_info.collider);
const CircleCollider & circle_collider2
= std::get<std::reference_wrapper<CircleCollider>>(second_info.collider);
return this->get_circle_circle_collision(
circle_collider1, circle_collider2, first_info.transform,
second_info.transform, second_info.rigidbody, second_info.rigidbody);
}
case CollisionInternalType::CIRCLE_BOX: {
const CircleCollider & circle_collider
= std::get<std::reference_wrapper<CircleCollider>>(first_info.collider);
const BoxCollider & box_collider
= std::get<std::reference_wrapper<BoxCollider>>(second_info.collider);
return this->get_box_circle_collision(
box_collider, circle_collider, first_info.transform, second_info.transform,
second_info.rigidbody, second_info.rigidbody);
}
}
return false;
}
bool CollisionSystem::get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2,
const Transform & transform1,
const Transform & transform2,
const Rigidbody & rigidbody1,
const Rigidbody & rigidbody2) const {
// Get current positions of colliders
vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1);
vec2 final_position2 = this->get_current_position(box2.offset, transform2, rigidbody2);
// Calculate half-extents (half width and half height)
float half_width1 = box1.dimensions.x / 2.0;
float half_height1 = box1.dimensions.y / 2.0;
float half_width2 = box2.dimensions.x / 2.0;
float half_height2 = box2.dimensions.y / 2.0;
// Check if the boxes overlap along the X and Y axes
return (final_position1.x + half_width1 > final_position2.x - half_width2
&& final_position1.x - half_width1 < final_position2.x + half_width2
&& final_position1.y + half_height1 > final_position2.y - half_height2
&& final_position1.y - half_height1 < final_position2.y + half_height2);
}
bool CollisionSystem::get_box_circle_collision(const BoxCollider & box1,
const CircleCollider & circle2,
const Transform & transform1,
const Transform & transform2,
const Rigidbody & rigidbody1,
const Rigidbody & rigidbody2) const {
// Get current positions of colliders
vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1);
vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2);
// Calculate box half-extents
float half_width = box1.dimensions.x / 2.0;
float half_height = box1.dimensions.y / 2.0;
// Find the closest point on the box to the circle's center
float closest_x = std::max(final_position1.x - half_width,
std::min(final_position2.x, final_position1.x + half_width));
float closest_y = std::max(final_position1.y - half_height,
std::min(final_position2.y, final_position1.y + half_height));
// Calculate the distance squared between the circle's center and the closest point on the box
float distance_x = final_position2.x - closest_x;
float distance_y = final_position2.y - closest_y;
float distance_squared = distance_x * distance_x + distance_y * distance_y;
// Compare distance squared with the square of the circle's radius
return distance_squared < circle2.radius * circle2.radius;
}
bool CollisionSystem::get_circle_circle_collision(const CircleCollider & circle1,
const CircleCollider & circle2,
const Transform & transform1,
const Transform & transform2,
const Rigidbody & rigidbody1,
const Rigidbody & rigidbody2) const {
// Get current positions of colliders
vec2 final_position1 = this->get_current_position(circle1.offset, transform1, rigidbody1);
vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2);
float distance_x = final_position1.x - final_position2.x;
float distance_y = final_position1.y - final_position2.y;
float distance_squared = distance_x * distance_x + distance_y * distance_y;
// Calculate the sum of the radii
float radius_sum = circle1.radius + circle2.radius;
// Check if the distance between the centers is less than or equal to the sum of the radii
return distance_squared < radius_sum * radius_sum;
}
vec2 CollisionSystem::get_current_position(const vec2 & collider_offset,
const Transform & transform,
const Rigidbody & rigidbody) const {
// Get the rotation in radians
float radians1 = transform.rotation * (M_PI / 180.0);
// Calculate total offset with scale
vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale;
// Rotate
float rotated_total_offset_x1
= total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
float rotated_total_offset_y1
= total_offset.x * sin(radians1) + total_offset.y * cos(radians1);
// Final positions considering scaling and rotation
return (transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1));
}
|