blob: 408d5aacc85478f51862fc6b2effe8b695f724e5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
template <typename T>
ContiguousContainer<T>::ContiguousContainer() : mSize(0), mCapacity(10) {
// Allocate memory for 10 objects initially
mData = static_cast<T *>(malloc(mCapacity * sizeof(T)));
if (!mData) {
throw std::bad_alloc();
}
}
template <typename T>
ContiguousContainer<T>::~ContiguousContainer() {
// Destroy all constructed objects
for (size_t i = 0; i < mSize; ++i) {
mData[i].~T();
}
// Free the allocated memory
free(mData);
}
template <typename T>
template <typename... Args>
void ContiguousContainer<T>::pushBack(Args &&... args) {
if (mSize == mCapacity) {
// Double the capacity if the container is full
resize(mCapacity * 2);
}
// Use placement new with perfect forwarding to construct the object in place
new (mData + mSize) T(std::forward<Args>(args)...);
++mSize;
}
template <typename T>
void ContiguousContainer<T>::popBack() {
if (mSize > 0) {
--mSize;
// Explicitly call the destructor
mData[mSize].~T();
}
}
template <typename T>
T & ContiguousContainer<T>::operator[](size_t index) {
if (index >= mSize) {
throw std::out_of_range("Index out of range");
}
return mData[index];
}
template <typename T>
size_t ContiguousContainer<T>::getSize() const {
return mSize;
}
// Function that returns a vector of references to all stored objects
template <typename T>
std::vector<std::reference_wrapper<T>>
ContiguousContainer<T>::getAllReferences() {
std::vector<std::reference_wrapper<T>> references;
references.reserve(mSize); // Reserve space to avoid reallocation
for (size_t i = 0; i < mSize; ++i) {
references.push_back(std::ref(mData[i]));
}
return references;
}
template <typename T>
void ContiguousContainer<T>::resize(size_t new_capacity) {
// Allocate new memory block with the updated capacity
T * new_data = static_cast<T *>(malloc(new_capacity * sizeof(T)));
if (!new_data) {
throw std::bad_alloc();
}
// Move or copy existing objects to the new memory block
for (size_t i = 0; i < mSize; ++i) {
new (new_data + i) T(std::move(mData[i])); // Move the objects
mData[i].~T(); // Call the destructor for the old object
}
// Free the old memory block
free(mData);
mData = new_data;
mCapacity = new_capacity;
}
|