#include "api/Vector2.h" #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace std::chrono_literals; using namespace crepe; class ParticlesTest : public ::testing::Test { public: ComponentManager component_manager; ParticleSystem particle_system{component_manager}; void SetUp() override { ComponentManager & mgr = this->component_manager; std::vector> transforms = mgr.get_components_by_id(0); if (transforms.empty()) { GameObject game_object = mgr.new_object("", "", Vector2{0, 0}, 0, 0); Color color(0, 0, 0, 0); Sprite & test_sprite = game_object.add_component( make_shared("asset/texture/img.png"), color, FlipSettings{true, true}); game_object.add_component(ParticleEmitter::Data{ .position = {0, 0}, .max_particles = 100, .emission_rate = 0, .min_speed = 0, .max_speed = 0, .min_angle = 0, .max_angle = 0, .begin_lifespan = 0, .end_lifespan = 0, .force_over_time = Vector2{0, 0}, .boundary{ .width = 0, .height = 0, .offset = Vector2{0, 0}, .reset_on_exit = false, }, .sprite = test_sprite, }); } transforms = mgr.get_components_by_id(0); Transform & transform = transforms.front().get(); transform.position.x = 0.0; transform.position.y = 0.0; transform.rotation = 0.0; std::vector> rigidbodies = mgr.get_components_by_id(0); ParticleEmitter & emitter = rigidbodies.front().get(); emitter.data.position = {0, 0}; emitter.data.emission_rate = 0; emitter.data.min_speed = 0; emitter.data.max_speed = 0; emitter.data.min_angle = 0; emitter.data.max_angle = 0; emitter.data.begin_lifespan = 0; emitter.data.end_lifespan = 0; emitter.data.force_over_time = Vector2{0, 0}; emitter.data.boundary = {0, 0, Vector2{0, 0}, false}; for (auto & particle : emitter.data.particles) { particle.active = false; } } }; TEST_F(ParticlesTest, spawnParticle) { Config::get_instance().physics.gravity = 1; ComponentManager & mgr = this->component_manager; ParticleEmitter & emitter = mgr.get_components_by_id(0).front().get(); emitter.data.end_lifespan = 5; emitter.data.boundary.height = 100; emitter.data.boundary.width = 100; emitter.data.max_speed = 0.1; emitter.data.max_angle = 0.1; emitter.data.max_speed = 10; emitter.data.max_angle = 10; particle_system.update(); //check if nothing happend EXPECT_EQ(emitter.data.particles[0].active, false); emitter.data.emission_rate = 1; //check particle spawnes particle_system.update(); EXPECT_EQ(emitter.data.particles[0].active, true); particle_system.update(); EXPECT_EQ(emitter.data.particles[1].active, true); particle_system.update(); EXPECT_EQ(emitter.data.particles[2].active, true); particle_system.update(); EXPECT_EQ(emitter.data.particles[3].active, true); for (auto & particle : emitter.data.particles) { // Check velocity range EXPECT_GE(particle.velocity.x, emitter.data.min_speed); // Speed should be greater than or equal to min_speed EXPECT_LE(particle.velocity.x, emitter.data.max_speed); // Speed should be less than or equal to max_speed EXPECT_GE(particle.velocity.y, emitter.data.min_speed); // Speed should be greater than or equal to min_speed EXPECT_LE(particle.velocity.y, emitter.data.max_speed); // Speed should be less than or equal to max_speed // Check angle range EXPECT_GE(particle.angle, emitter.data.min_angle); // Angle should be greater than or equal to min_angle EXPECT_LE(particle.angle, emitter.data.max_angle); // Angle should be less than or equal to max_angle } } TEST_F(ParticlesTest, moveParticleHorizontal) { Config::get_instance().physics.gravity = 1; ComponentManager & mgr = this->component_manager; ParticleEmitter & emitter = mgr.get_components_by_id(0).front().get(); emitter.data.end_lifespan = 100; emitter.data.boundary.height = 100; emitter.data.boundary.width = 100; emitter.data.min_speed = 1; emitter.data.max_speed = 1; emitter.data.max_angle = 0; emitter.data.emission_rate = 1; for (int a = 1; a < emitter.data.boundary.width / 2; a++) { particle_system.update(); EXPECT_EQ(emitter.data.particles[0].position.x, a); } } TEST_F(ParticlesTest, moveParticleVertical) { Config::get_instance().physics.gravity = 1; ComponentManager & mgr = this->component_manager; ParticleEmitter & emitter = mgr.get_components_by_id(0).front().get(); emitter.data.end_lifespan = 100; emitter.data.boundary.height = 100; emitter.data.boundary.width = 100; emitter.data.min_speed = 1; emitter.data.max_speed = 1; emitter.data.min_angle = 90; emitter.data.max_angle = 90; emitter.data.emission_rate = 1; for (int a = 1; a < emitter.data.boundary.width / 2; a++) { particle_system.update(); EXPECT_EQ(emitter.data.particles[0].position.y, a); } } TEST_F(ParticlesTest, boundaryParticleReset) { Config::get_instance().physics.gravity = 1; ComponentManager & mgr = this->component_manager; ParticleEmitter & emitter = mgr.get_components_by_id(0).front().get(); emitter.data.end_lifespan = 100; emitter.data.boundary.height = 10; emitter.data.boundary.width = 10; emitter.data.boundary.reset_on_exit = true; emitter.data.min_speed = 1; emitter.data.max_speed = 1; emitter.data.min_angle = 90; emitter.data.max_angle = 90; emitter.data.emission_rate = 1; for (int a = 0; a < emitter.data.boundary.width / 2 + 1; a++) { particle_system.update(); } EXPECT_EQ(emitter.data.particles[0].active, false); } TEST_F(ParticlesTest, boundaryParticleStop) { Config::get_instance().physics.gravity = 1; ComponentManager & mgr = this->component_manager; ParticleEmitter & emitter = mgr.get_components_by_id(0).front().get(); emitter.data.end_lifespan = 100; emitter.data.boundary.height = 10; emitter.data.boundary.width = 10; emitter.data.boundary.reset_on_exit = false; emitter.data.min_speed = 1; emitter.data.max_speed = 1; emitter.data.min_angle = 90; emitter.data.max_angle = 90; emitter.data.emission_rate = 1; for (int a = 0; a < emitter.data.boundary.width / 2 + 1; a++) { particle_system.update(); } const double TOLERANCE = 0.01; EXPECT_NEAR(emitter.data.particles[0].velocity.x, 0, TOLERANCE); EXPECT_NEAR(emitter.data.particles[0].velocity.y, 0, TOLERANCE); if (emitter.data.particles[0].velocity.x != 0) EXPECT_NEAR(std::abs(emitter.data.particles[0].position.x), emitter.data.boundary.height / 2, TOLERANCE); if (emitter.data.particles[0].velocity.y != 0) EXPECT_NEAR(std::abs(emitter.data.particles[0].position.y), emitter.data.boundary.width / 2, TOLERANCE); }