#include #include #include #include #include "../api/ParticleEmitter.h" #include "../api/Transform.h" #include "../manager/ComponentManager.h" #include "../manager/LoopTimerManager.h" #include "ParticleSystem.h" using namespace crepe; void ParticleSystem::update() { // Get all emitters const Mediator & mediator = this->mediator; LoopTimerManager & loop_timer = mediator.loop_timer; ComponentManager & mgr = mediator.component_manager; float dt = loop_timer.get_scaled_fixed_delta_time().count(); RefVector emitters = mgr.get_components_by_type(); for (ParticleEmitter & emitter : emitters) { // Get transform linked to emitter const Transform & transform = mgr.get_components_by_id(emitter.game_object_id).front().get(); // Emit particles based on emission_rate emitter.spawn_accumulator += emitter.data.emission_rate * dt; while (emitter.spawn_accumulator >= 1.0) { this->emit_particle(emitter, transform); emitter.spawn_accumulator -= 1.0; } // Update all particles for (Particle & particle : emitter.particles) { if (particle.active) { particle.update(dt); } } // Check if within boundary this->check_bounds(emitter, transform); } } void ParticleSystem::emit_particle(ParticleEmitter & emitter, const Transform & transform) { constexpr float DEG_TO_RAD = M_PI / 180.0; vec2 initial_position = emitter.data.offset + transform.position; float random_angle = this->generate_random_angle(emitter.data.min_angle, emitter.data.max_angle); float random_speed = this->generate_random_speed(emitter.data.min_speed, emitter.data.max_speed); float angle_radians = random_angle * DEG_TO_RAD; vec2 velocity = {random_speed * std::cos(angle_radians), random_speed * std::sin(angle_radians)}; for (Particle & particle : emitter.particles) { if (!particle.active) { particle.reset(emitter.data.end_lifespan, initial_position, velocity, random_angle); break; } } } void ParticleSystem::check_bounds(ParticleEmitter & emitter, const Transform & transform) { vec2 offset = emitter.data.boundary.offset + transform.position + emitter.data.offset; float half_width = emitter.data.boundary.width / 2.0; float half_height = emitter.data.boundary.height / 2.0; float left = offset.x - half_width; float right = offset.x + half_width; float top = offset.y - half_height; float bottom = offset.y + half_height; for (Particle & particle : emitter.particles) { const vec2 & position = particle.position; bool within_bounds = (position.x >= left && position.x <= right && position.y >= top && position.y <= bottom); //if not within bounds do a reset or stop velocity if (!within_bounds) { if (emitter.data.boundary.reset_on_exit) { particle.active = false; } else { particle.velocity = {0, 0}; if (position.x < left) particle.position.x = left; else if (position.x > right) particle.position.x = right; if (position.y < top) particle.position.y = top; else if (position.y > bottom) particle.position.y = bottom; } } } } float ParticleSystem::generate_random_angle(float min_angle, float max_angle) const { if (min_angle == max_angle) { return min_angle; } else if (min_angle < max_angle) { return min_angle + static_cast(std::rand() % static_cast(max_angle - min_angle)); } else { float angle_offset = (360 - min_angle) + max_angle; float random_angle = min_angle + static_cast(std::rand() % static_cast(angle_offset)); return (random_angle >= 360) ? random_angle - 360 : random_angle; } } float ParticleSystem::generate_random_speed(float min_speed, float max_speed) const { if (min_speed == max_speed) { return min_speed; } else { return min_speed + static_cast(std::rand() % static_cast(max_speed - min_speed)); } }