#include #include #include #include #include #include "api/Event.h" #include "api/EventManager.h" #include "api/BoxCollider.h" #include "api/CircleCollider.h" #include "api/Vector2.h" #include "api/Rigidbody.h" #include "api/Transform.h" #include "ComponentManager.h" #include "CollisionSystem.h" #include "Collider.h" #include "types.h" using namespace crepe; void CollisionSystem::update() { // Get collider components and keep them seperate ComponentManager & mgr = this->component_manager; std::vector> boxcolliders = mgr.get_components_by_type(); std::vector> circlecolliders = mgr.get_components_by_type(); // Check between all colliders if there is a collision std::vector> collided = check_collisions(boxcolliders,circlecolliders); // For both objects call the collision handler for (auto& collision_pair : collided) { collision_handler(collision_pair.first,collision_pair.second); collision_handler(collision_pair.second,collision_pair.first); } } void CollisionSystem::collision_handler(CollidedInfoStor& data1,CollidedInfoStor& data2){ // Data needed for collision handler info const Collider* collider1 = nullptr; const Collider* collider2 = nullptr; vec2 move_back; // Check collision type and get values for handler if (std::holds_alternative>(data1.collider)) { if (std::holds_alternative>(data2.collider)) { // Get colliders from variant to be used to determine collision handler info const BoxCollider& box_collider1 = std::get>(data1.collider).get(); const BoxCollider& box_collider2 = std::get>(data2.collider).get(); collider1 = &box_collider1; collider2 = &box_collider2; // TODO: send with the collider info to this function because this is calculated previously // Get the current position of the collider vec2 final_position1 = current_position(box_collider1,data1.transform,data1.rigidbody); vec2 final_position2 = current_position(box_collider2,data2.transform,data2.rigidbody); // Determine move_back value for smallest overlap (x or y) move_back = box_box_collision_move_back(box_collider1,box_collider2,final_position1,final_position2); } else { // TODO: calcualte Box - Circle collision info const BoxCollider& box_collider = std::get>(data1.collider).get(); const CircleCollider& circle_collider = std::get>(data2.collider).get(); collider1 = &box_collider; collider2 = &circle_collider; } } else { if (std::holds_alternative>(data2.collider)) { // TODO: calcualte Circle - Circle collision info const CircleCollider& circle_collider1 = std::get>(data1.collider).get(); const CircleCollider& circle_collider2 = std::get>(data2.collider).get(); collider1 = &circle_collider1; collider2 = &circle_collider2; } else { // TODO: calcualte Circle - Box collision info const CircleCollider& circle_collider = std::get>(data1.collider); const BoxCollider& box_collider = std::get>(data2.collider); collider1 = &circle_collider; collider2 = &box_collider; } } // One vaue is calculated for moving back. Calculate the other value (x or y) relateive to the move_back value. Direction move_back_direction = Direction::NONE; if(move_back.x != 0 && move_back.y > 0) { move_back_direction = Direction::BOTH; } else if (move_back.x != 0) { move_back_direction = Direction::X_DIRECTION; if(data1.rigidbody.data.linear_velocity.y != 0) move_back.y = data1.rigidbody.data.linear_velocity.y * (move_back.x/data1.rigidbody.data.linear_velocity.x); } else if (move_back.y != 0) { move_back_direction = Direction::Y_DIRECTION; if(data1.rigidbody.data.linear_velocity.x != 0) move_back.x = data1.rigidbody.data.linear_velocity.x * (move_back.y/data1.rigidbody.data.linear_velocity.y); } // collision info crepe::CollisionSystem::CollisionInfo collision_info{ .first={ *collider1, data1.transform, data1.rigidbody }, .second={ *collider2, data2.transform, data2.rigidbody }, .move_back_value = move_back, .move_back_direction = move_back_direction, }; // Determine if static needs to be called determine_collision_handler(collision_info); } vec2 CollisionSystem::box_box_collision_move_back(const BoxCollider& box_collider1,const BoxCollider& box_collider2,vec2 final_position1,vec2 final_position2) { vec2 resolution; // Default resolution vector vec2 delta = final_position2 - final_position1; // Compute half-dimensions of the boxes float half_width1 = box_collider1.width / 2.0; float half_height1 = box_collider1.height / 2.0; float half_width2 = box_collider2.width / 2.0; float half_height2 = box_collider2.height / 2.0; // Calculate overlaps along X and Y axes float overlap_x = (half_width1 + half_width2) - std::abs(delta.x); float overlap_y = (half_height1 + half_height2) - std::abs(delta.y); // Check if there is a collision if (overlap_x > 0 && overlap_y > 0) {//should always be true check if this can be removed // Determine the direction of resolution if (overlap_x < overlap_y) { // Resolve along the X-axis (smallest overlap) resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; } else if (overlap_y < overlap_x) { // Resolve along the Y-axis (smallest overlap) resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } else { // Equal overlap, resolve both directions with preference resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } } return resolution; } void CollisionSystem::determine_collision_handler(CollisionInfo& info){ // Check rigidbody type for static if(info.first.rigidbody.data.body_type != Rigidbody::BodyType::STATIC) { // If second body is static perform the static collision handler in this system if(info.second.rigidbody.data.body_type == Rigidbody::BodyType::STATIC){ static_collision_handler(info); }; // Call collision event for user CollisionEvent data(info); EventManager::get_instance().trigger_event(data, info.first.collider.game_object_id); } } void CollisionSystem::static_collision_handler(CollisionInfo& info){ // Move object back using calculate move back value info.first.transform.position += info.move_back_value; // If bounce is enabled mirror velocity if(info.first.rigidbody.data.bounce) { if(info.move_back_direction == Direction::BOTH) { info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.elastisity; info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.elastisity; } else if(info.move_back_direction == Direction::Y_DIRECTION) { info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.elastisity; } else if(info.move_back_direction == Direction::X_DIRECTION){ info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.elastisity; } } // Stop movement if bounce is disabled else { info.first.rigidbody.data.linear_velocity = {0,0}; } } std::vector> CollisionSystem::check_collisions(const std::vector>& boxcolliders, const std::vector>& circlecolliders) { ComponentManager & mgr = this->component_manager; std::vector> collisions_ret; // TODO: // If no colliders skip // Check if colliders has rigidbody if not skip // TODO: // If amount is higer than lets say 16 for now use quadtree otwerwise skip // Quadtree code // Quadtree is placed over the input vector // Check collisions for each collider for (size_t i = 0; i < boxcolliders.size(); ++i) { // Fetch components for the first box collider if(!boxcolliders[i].get().active) continue; int game_object_id_1 = boxcolliders[i].get().game_object_id; Transform& transform1 = mgr.get_components_by_id(game_object_id_1).front().get(); if(!transform1.active) continue; Rigidbody& rigidbody1 = mgr.get_components_by_id(game_object_id_1).front().get(); if(!rigidbody1.active) continue; // Check BoxCollider vs BoxCollider for (size_t j = i + 1; j < boxcolliders.size(); ++j) { if(!boxcolliders[j].get().active) continue; // Skip self collision int game_object_id_2 = boxcolliders[j].get().game_object_id; if (game_object_id_1 == game_object_id_2) continue; // Fetch components for the second box collider Transform & transform2 = mgr.get_components_by_id(boxcolliders[j].get().game_object_id).front().get(); if(!transform2.active) continue; Rigidbody & rigidbody2 = mgr.get_components_by_id(boxcolliders[j].get().game_object_id).front().get(); if(!rigidbody2.active) continue; // Check collision if (check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2)) { collisions_ret.emplace_back(std::make_pair( CollidedInfoStor{boxcolliders[i].get(), transform1, rigidbody1}, CollidedInfoStor{boxcolliders[j].get(), transform2, rigidbody2} )); } } // Check BoxCollider vs CircleCollider for (size_t j = 0; j < circlecolliders.size(); ++j) { if(!circlecolliders[j].get().active) continue; // Skip self collision int game_object_id_2 = circlecolliders[j].get().game_object_id; if (game_object_id_1 == game_object_id_2) continue; // Fetch components for the second collider (circle) Transform & transform2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!transform2.active) continue; Rigidbody & rigidbody2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!rigidbody2.active) continue; // Check collision if (check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) { collisions_ret.emplace_back(std::make_pair( CollidedInfoStor{boxcolliders[i].get(), transform1, rigidbody1}, CollidedInfoStor{circlecolliders[j].get(), transform2, rigidbody2} )); } } } // Check CircleCollider vs CircleCollider for (size_t i = 0; i < circlecolliders.size(); ++i) { if(!circlecolliders[i].get().active) continue; // Fetch components for the first circle collider int game_object_id_1 = circlecolliders[i].get().game_object_id; Transform & transform1 = mgr.get_components_by_id(circlecolliders[i].get().game_object_id).front().get(); if(!transform1.active) continue; Rigidbody & rigidbody1 = mgr.get_components_by_id(circlecolliders[i].get().game_object_id).front().get(); if(!rigidbody1.active) continue; for (size_t j = i + 1; j < circlecolliders.size(); ++j) { if(!circlecolliders[j].get().active) continue; // Skip self collision int game_object_id_2 = circlecolliders[j].get().game_object_id; if (game_object_id_1 == game_object_id_2) continue; // Fetch components for the second circle collider Transform & transform2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!transform2.active) continue; Rigidbody & rigidbody2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!rigidbody2.active) continue; // Check collision if (check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) { collisions_ret.emplace_back(std::make_pair( CollidedInfoStor{circlecolliders[i].get(), transform1, rigidbody1}, CollidedInfoStor{circlecolliders[j].get(), transform2, rigidbody2} )); } } } return collisions_ret; } bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders vec2 final_position1 = current_position(box1,transform1,rigidbody1); vec2 final_position2 = current_position(box2,transform2,rigidbody2); // Calculate half-extents (half width and half height) float half_width1 = box1.width / 2.0; float half_height1 = box1.height / 2.0; float half_width2 = box2.width / 2.0; float half_height2 = box2.height / 2.0; // Check if the boxes overlap along the X and Y axes return !(final_position1.x + half_width1 <= final_position2.x - half_width2 || // box1 is left of box2 final_position1.x - half_width1 >= final_position2.x + half_width2 || // box1 is right of box2 final_position1.y + half_height1 <= final_position2.y - half_height2 || // box1 is above box2 final_position1.y - half_height1 >= final_position2.y + half_height2); // box1 is below box2 } bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders vec2 final_position1 = current_position(box1, transform1, rigidbody1); vec2 final_position2 = current_position(circle2, transform2, rigidbody2); // Calculate box half-extents float half_width = box1.width / 2.0; float half_height = box1.height / 2.0; // Find the closest point on the box to the circle's center float closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width)); float closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height)); // Calculate the distance squared between the circle's center and the closest point on the box float distance_x = final_position2.x - closest_x; float distance_y = final_position2.y - closest_y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Compare distance squared with the square of the circle's radius return distance_squared <= circle2.radius * circle2.radius; } bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders vec2 final_position1 = current_position(circle1,transform1,rigidbody1); vec2 final_position2 = current_position(circle2,transform2,rigidbody2); float distance_x = final_position1.x - final_position2.x; float distance_y = final_position1.y - final_position2.y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Calculate the sum of the radii float radius_sum = circle1.radius + circle2.radius; // Check if the distance between the centers is less than or equal to the sum of the radii return distance_squared <= radius_sum * radius_sum; } vec2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) { // Get the rotation in radians float radians1 = transform.rotation * (M_PI / 180.0); // Calculate total offset with scale vec2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale; // Rotate float rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); float rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); // Final positions considering scaling and rotation return(transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1)); }