#include #include #include #include #include #include "CollisionSystem.h" #include "../api/Event.h" #include "../api/EventManager.h" #include "../ComponentManager.h" #include "../api/BoxCollider.h" #include "../api/CircleCollider.h" #include "../api/Vector2.h" #include "../api/Rigidbody.h" #include "../api/Transform.h" #include "Collider.h" #include "iostream" using namespace crepe; CollisionSystem::CollisionSystem() {} void CollisionSystem::update() { ComponentManager & mgr = ComponentManager::get_instance(); std::vector> boxcolliders = mgr.get_components_by_type(); std::vector> circlecolliders = mgr.get_components_by_type(); std::vector> collided = check_collisions(boxcolliders,circlecolliders); // std::cout << "DEBUG INFO" << std::endl; for (const auto& collision_pair : collided) { call_collision_handler(collision_pair.first,collision_pair.second); // First collider call_collision_handler(collision_pair.second,collision_pair.first); // First collider } if(collided.empty()) { std::cout << "No objects collided" << std::endl; } } void CollisionSystem::call_collision_handler(const CollidedInfoStor& data1,const CollidedInfoStor& data2){ const Collider* collider1 = nullptr; const Collider* collider2 = nullptr; // Check collision type and get values for handler game_object_id_t first = 0,second = 0; if (std::holds_alternative(data1.collider)) { if (std::holds_alternative(data2.collider)) { const BoxCollider& box_collider1 = std::get(data1.collider); const BoxCollider& box_collider2 = std::get(data2.collider); collider1 = &box_collider1; collider2 = &box_collider2; first = box_collider1.game_object_id; second = box_collider2.game_object_id; } else { const BoxCollider& box_collider = std::get(data1.collider); const CircleCollider& circle_collider = std::get(data2.collider); collider1 = &box_collider; collider2 = &circle_collider; first = box_collider.game_object_id; second = circle_collider.game_object_id; } } else { if (std::holds_alternative(data2.collider)) { const CircleCollider& circle_collider1 = std::get(data1.collider); const CircleCollider& circle_collider2 = std::get(data2.collider); collider1 = &circle_collider1; collider2 = &circle_collider2; first = circle_collider1.game_object_id; second = circle_collider2.game_object_id; } else { const CircleCollider& circle_collider = std::get(data1.collider); const BoxCollider& box_collider = std::get(data2.collider); collider1 = &circle_collider; collider2 = &box_collider; first = circle_collider.game_object_id; second = box_collider.game_object_id; } } // check rigidbody type if(data1.rigidbody.data.body_type != Rigidbody::BodyType::STATIC) { // If second body is static move back if(data2.rigidbody.data.body_type == Rigidbody::BodyType::STATIC){ //call static handler (is bounce true?) }; crepe::CollisionSystem::CollisionInfo collision_info{ { *collider1, data1.transform, data1.rigidbody }, { *collider2, data2.transform, data2.rigidbody } }; CollisionEvent data(collision_info); EventManager::get_instance().trigger_event(data, first); } } std::vector> CollisionSystem::check_collisions(const std::vector>& boxcolliders, const std::vector>& circlecolliders) { ComponentManager & mgr = ComponentManager::get_instance(); std::vector> collisions_ret; //if no colliders skip //check if colliders has rigibocdy if not skip //if amount is higer than lets say 16 for now use quadtree otwerwise skip //quadtree code //quadtree is placed over the input vector // Check collisions for (size_t i = 0; i < boxcolliders.size(); ++i) { // Fetch components for the first box collider if(!boxcolliders[i].get().active) continue; int game_object_id_1 = boxcolliders[i].get().game_object_id; Transform& transform1 = mgr.get_components_by_id(game_object_id_1).front().get(); if(!transform1.active) continue; Rigidbody& rigidbody1 = mgr.get_components_by_id(game_object_id_1).front().get(); if(!rigidbody1.active) continue; // Check CircleCollider vs CircleCollider for (size_t j = i + 1; j < boxcolliders.size(); ++j) { if(!boxcolliders[j].get().active) continue; // Skip self collision int game_object_id_2 = boxcolliders[j].get().game_object_id; if (game_object_id_1 == game_object_id_2) continue; // Fetch components for the second box collider Transform & transform2 = mgr.get_components_by_id(boxcolliders[j].get().game_object_id).front().get(); if(!transform2.active) continue; Rigidbody & rigidbody2 = mgr.get_components_by_id(boxcolliders[j].get().game_object_id).front().get(); if(!rigidbody2.active) continue; // Check collision if (check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2)) { collisions_ret.emplace_back(std::make_pair( CollidedInfoStor{boxcolliders[i], transform1, rigidbody1}, CollidedInfoStor{boxcolliders[j], transform2, rigidbody2} )); } } // Check BoxCollider vs CircleCollider for (size_t j = 0; j < circlecolliders.size(); ++j) { if(!circlecolliders[j].get().active) continue; // Skip self collision int game_object_id_2 = circlecolliders[j].get().game_object_id; if (game_object_id_1 == game_object_id_2) continue; // Fetch components for the second collider (circle) Transform & transform2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!transform2.active) continue; Rigidbody & rigidbody2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!rigidbody2.active) continue; // Check collision if (check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) { collisions_ret.emplace_back(std::make_pair( CollidedInfoStor{boxcolliders[i], transform1, rigidbody1}, CollidedInfoStor{circlecolliders[j], transform2, rigidbody2} )); } } } // Check CircleCollider vs CircleCollider for (size_t i = 0; i < circlecolliders.size(); ++i) { if(!circlecolliders[i].get().active) continue; // Fetch components for the first circle collider int game_object_id_1 = circlecolliders[i].get().game_object_id; Transform & transform1 = mgr.get_components_by_id(circlecolliders[i].get().game_object_id).front().get(); if(!transform1.active) continue; Rigidbody & rigidbody1 = mgr.get_components_by_id(circlecolliders[i].get().game_object_id).front().get(); if(!rigidbody1.active) continue; for (size_t j = i + 1; j < circlecolliders.size(); ++j) { if(!circlecolliders[j].get().active) continue; // Skip self collision int game_object_id_2 = circlecolliders[j].get().game_object_id; if (game_object_id_1 == game_object_id_2) continue; // Fetch components for the second circle collider Transform & transform2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!transform2.active) continue; Rigidbody & rigidbody2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); if(!rigidbody2.active) continue; // Check collision if (check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) { collisions_ret.emplace_back(std::make_pair( CollidedInfoStor{circlecolliders[i], transform1, rigidbody1}, CollidedInfoStor{circlecolliders[j], transform2, rigidbody2} )); } } } return collisions_ret; } bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders Vector2 final_position1 = current_position(box1,transform1,rigidbody1); Vector2 final_position2 = current_position(box2,transform2,rigidbody2); // Log final positions for debugging purposes // std::cout << "Final Position of Box 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl; // std::cout << "Final Position of Box 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl; // Log rotation values for debugging // std::cout << "Rotation of Box 1: " << transform1.rotation << " degrees" << std::endl; // std::cout << "Rotation of Box 2: " << transform2.rotation << " degrees" << std::endl; // Calculate half-extents (half width and half height) double half_width1 = box1.width / 2.0; double half_height1 = box1.height / 2.0; double half_width2 = box2.width / 2.0; double half_height2 = box2.height / 2.0; // Check if the boxes overlap along the X and Y axes return !(final_position1.x + half_width1 < final_position2.x - half_width2 || // box1 is left of box2 final_position1.x - half_width1 > final_position2.x + half_width2 || // box1 is right of box2 final_position1.y + half_height1 < final_position2.y - half_height2 || // box1 is above box2 final_position1.y - half_height1 > final_position2.y + half_height2); // box1 is below box2 } bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders Vector2 final_position1 = current_position(box1, transform1, rigidbody1); Vector2 final_position2 = current_position(circle2, transform2, rigidbody2); // Log final positions for debugging purposes // std::cout << "Final Position of Box: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl; // std::cout << "Final Position of Circle: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl; // Calculate box half-extents double half_width = box1.width / 2.0; double half_height = box1.height / 2.0; // Find the closest point on the box to the circle's center double closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width)); double closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height)); // Calculate the distance squared between the circle's center and the closest point on the box double distance_x = final_position2.x - closest_x; double distance_y = final_position2.y - closest_y; double distance_squared = distance_x * distance_x + distance_y * distance_y; // Compare distance squared with the square of the circle's radius return distance_squared <= circle2.radius * circle2.radius; } bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders Vector2 final_position1 = current_position(circle1,transform1,rigidbody1); Vector2 final_position2 = current_position(circle2,transform2,rigidbody2); // Log final positions for debugging purposes // std::cout << "Final Position of Circle 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl; // std::cout << "Final Position of Circle 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl; // Log rotation values for debugging (circles do not rotate, so this might not be needed for circles) // std::cout << "Rotation of Circle 1: " << transform1.rotation << " degrees" << std::endl; // std::cout << "Rotation of Circle 2: " << transform2.rotation << " degrees" << std::endl; double distance_x = final_position1.x - final_position2.x; double distance_y = final_position1.y - final_position2.y; double distance_squared = distance_x * distance_x + distance_y * distance_y; // Calculate the sum of the radii double radius_sum = circle1.radius + circle2.radius; // Check if the distance between the centers is less than or equal to the sum of the radii return distance_squared <= radius_sum * radius_sum; } Vector2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) { // Function to convert degrees to radians auto degrees_to_radians = [](double degrees) { return degrees * (M_PI / 180.0); }; // Get the rotation in radians double radians1 = degrees_to_radians(transform.rotation); // Calculate total offset with scale Vector2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale; // Rotate double rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); double rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); // Final positions considering scaling and rotation return(transform.position + Vector2(rotated_total_offset_x1, rotated_total_offset_y1)); }