#include #include #include #include #include #include #include #include "api/Event.h" #include "api/EventManager.h" #include "api/BoxCollider.h" #include "api/CircleCollider.h" #include "api/Vector2.h" #include "api/Rigidbody.h" #include "api/Transform.h" #include "ComponentManager.h" #include "CollisionSystem.h" #include "Collider.h" #include "types.h" #include "util/OptionalRef.h" using namespace crepe; void CollisionSystem::update() { std::vector all_colliders; ComponentManager & mgr = this->component_manager; game_object_id_t id = 0; RefVector rigidbodies = mgr.get_components_by_type(); for(Rigidbody& rigidbody : rigidbodies) { if (!rigidbody.active) continue; id = rigidbody.game_object_id; Transform& transform = this->component_manager.get_components_by_id(id).front().get(); RefVector boxcolliders = mgr.get_components_by_type(); for (BoxCollider& boxcollider : boxcolliders) { if(boxcollider.game_object_id != id) continue; if(!boxcollider.active) continue; all_colliders.push_back( { .id = id, .collider = collider_variant{boxcollider}, .transform = transform, .rigidbody = rigidbody } ); } RefVector circlecolliders = mgr.get_components_by_type(); for (CircleCollider& circlecollider : circlecolliders) { if(circlecollider.game_object_id != id) continue; if(!circlecollider.active) continue; all_colliders.push_back( { .id = id, .collider = collider_variant{circlecollider}, .transform = transform, .rigidbody = rigidbody } ); } } // Check between all colliders if there is a collision std::vector> collided = gather_collisions(all_colliders); // For both objects call the collision handler for (auto& collision_pair : collided) { collision_handler_request(collision_pair.first,collision_pair.second); collision_handler_request(collision_pair.second,collision_pair.first); } } void CollisionSystem::collision_handler_request(CollisionInternal& data1,CollisionInternal& data2){ CollisionInternalType type = get_collider_type(data1.collider,data2.collider); std::pair resolution_data = collision_handler(data1,data2,type); OptionalRef collider1; OptionalRef collider2; switch (type) { case CollisionInternalType::BOX_BOX:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } case CollisionInternalType::BOX_CIRCLE:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } case CollisionInternalType::CIRCLE_BOX:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } case CollisionInternalType::CIRCLE_CIRCLE:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } } // collision info crepe::CollisionSystem::CollisionInfo collision_info{ .first_collider = collider1, .first_transform = data1.transform, .first_rigidbody = data1.rigidbody, .second_collider = collider2, .second_transform = data2.transform, .second_rigidbody = data2.rigidbody, .resolution = resolution_data.first, .resolution_direction = resolution_data.second, }; // Determine if static needs to be called determine_collision_handler(collision_info); } std::pair CollisionSystem::collision_handler(CollisionInternal& data1,CollisionInternal& data2,CollisionInternalType type) { vec2 resolution; switch (type) { case CollisionInternalType::BOX_BOX: { const BoxCollider & collider1 = std::get>(data1.collider); const BoxCollider & collider2 = std::get>(data2.collider); vec2 collider_pos1 = get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = get_box_box_resolution(collider1,collider2,collider_pos1,collider_pos2); break; } case CollisionInternalType::BOX_CIRCLE: { const BoxCollider & collider1 = std::get>(data1.collider); const CircleCollider & collider2 = std::get>(data2.collider); vec2 collider_pos1 = get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = get_circle_box_resolution(collider2,collider1,collider_pos2,collider_pos1); break; } case CollisionInternalType::CIRCLE_CIRCLE: { const CircleCollider & collider1 = std::get>(data1.collider); const CircleCollider & collider2 = std::get>(data2.collider); vec2 collider_pos1 = get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = get_circle_circle_resolution(collider1,collider2,collider_pos1,collider_pos2); break; } case CollisionInternalType::CIRCLE_BOX: { const CircleCollider & collider1 = std::get>(data1.collider); const BoxCollider & collider2 = std::get>(data2.collider); vec2 collider_pos1 = get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = get_circle_box_resolution(collider1,collider2,collider_pos1,collider_pos2); break; } } Direction resolution_direction = Direction::NONE; if(resolution.x != 0 && resolution.y > 0) { resolution_direction = Direction::BOTH; } else if (resolution.x != 0) { resolution_direction = Direction::X_DIRECTION; if(data1.rigidbody.data.linear_velocity.y != 0) resolution.y = data1.rigidbody.data.linear_velocity.y * (resolution.x/data1.rigidbody.data.linear_velocity.x); } else if (resolution.y != 0) { resolution_direction = Direction::Y_DIRECTION; if(data1.rigidbody.data.linear_velocity.x != 0) resolution.x = data1.rigidbody.data.linear_velocity.x * (resolution.y/data1.rigidbody.data.linear_velocity.y); } return std::make_pair(resolution,resolution_direction); } vec2 CollisionSystem::get_box_box_resolution(const BoxCollider& box_collider1,const BoxCollider& box_collider2,const vec2& final_position1,const vec2& final_position2) const { vec2 resolution; // Default resolution vector vec2 delta = final_position2 - final_position1; // Compute half-dimensions of the boxes float half_width1 = box_collider1.width / 2.0; float half_height1 = box_collider1.height / 2.0; float half_width2 = box_collider2.width / 2.0; float half_height2 = box_collider2.height / 2.0; // Calculate overlaps along X and Y axes float overlap_x = (half_width1 + half_width2) - std::abs(delta.x); float overlap_y = (half_height1 + half_height2) - std::abs(delta.y); // Check if there is a collision should always be true if (overlap_x > 0 && overlap_y > 0) { // Determine the direction of resolution if (overlap_x < overlap_y) { // Resolve along the X-axis (smallest overlap) resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; } else if (overlap_y < overlap_x) { // Resolve along the Y-axis (smallest overlap) resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } else { // Equal overlap, resolve both directions with preference resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } } return resolution; } vec2 CollisionSystem::get_circle_circle_resolution(const CircleCollider& circle_collider1, const CircleCollider& circle_collider2, const vec2& final_position1, const vec2& final_position2) const { vec2 delta = final_position2 - final_position1; // Compute the distance between the two circle centers float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y); // Compute the combined radii of the two circles float combined_radius = circle_collider1.radius + circle_collider2.radius; // Compute the penetration depth float penetration_depth = combined_radius - distance; // Normalize the delta vector to get the collision direction vec2 collision_normal = delta / distance; // Compute the resolution vector vec2 resolution = collision_normal * penetration_depth; return resolution; } vec2 CollisionSystem::get_circle_box_resolution(const CircleCollider& circle_collider, const BoxCollider& box_collider, const vec2& circle_position, const vec2& box_position) const { vec2 delta = circle_position - box_position; // Compute half-dimensions of the box float half_width = box_collider.width / 2.0f; float half_height = box_collider.height / 2.0f; // Clamp circle center to the nearest point on the box vec2 closest_point; closest_point.x = std::clamp(delta.x, -half_width, half_width); closest_point.y = std::clamp(delta.y, -half_height, half_height); // Find the vector from the circle center to the closest point vec2 closest_delta = delta - closest_point; // Normalize the delta to get the collision direction float distance = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y); vec2 collision_normal = closest_delta / distance; // Compute penetration depth float penetration_depth = circle_collider.radius - distance; // Compute the resolution vector vec2 resolution = collision_normal * penetration_depth; return resolution; } void CollisionSystem::determine_collision_handler(CollisionInfo& info){ // Check rigidbody type for static if(info.first_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) return; // If second body is static perform the static collision handler in this system if(info.second_rigidbody.data.body_type == Rigidbody::BodyType::STATIC){ static_collision_handler(info); }; // Call collision event for user CollisionEvent data(info); EventManager::get_instance().trigger_event(data, info.first_collider.game_object_id); } void CollisionSystem::static_collision_handler(CollisionInfo& info){ // Move object back using calculate move back value info.first_transform.position += info.resolution; // If bounce is enabled mirror velocity if(info.first_rigidbody.data.elastisity > 0) { if(info.resolution_direction == Direction::BOTH) { info.first_rigidbody.data.linear_velocity.y = -info.first_rigidbody.data.linear_velocity.y * info.first_rigidbody.data.elastisity; info.first_rigidbody.data.linear_velocity.x = -info.first_rigidbody.data.linear_velocity.x * info.first_rigidbody.data.elastisity; } else if(info.resolution_direction == Direction::Y_DIRECTION) { info.first_rigidbody.data.linear_velocity.y = -info.first_rigidbody.data.linear_velocity.y * info.first_rigidbody.data.elastisity; } else if(info.resolution_direction == Direction::X_DIRECTION){ info.first_rigidbody.data.linear_velocity.x = -info.first_rigidbody.data.linear_velocity.x * info.first_rigidbody.data.elastisity; } } // Stop movement if bounce is disabled else { info.first_rigidbody.data.linear_velocity = {0,0}; } } std::vector> CollisionSystem::gather_collisions(std::vector & colliders) { // TODO: // If no colliders skip // Check if colliders has rigidbody if not skip // TODO: // If amount is higer than lets say 16 for now use quadtree otwerwise skip // Quadtree code // Quadtree is placed over the input vector // Return data of collided colliders which are variants std::vector> collisions_ret; //using visit to visit the variant to access the active and id. for (size_t i = 0; i < colliders.size(); ++i) { for (size_t j = i + 1; j < colliders.size(); ++j) { if(colliders[i].id == colliders[j].id) continue; // Get collision type form variant colliders CollisionInternalType type = get_collider_type(colliders[i].collider,colliders[j].collider); if(!get_collision({ .collider = colliders[i].collider, .transform = colliders[i].transform, .rigidbody = colliders[i].rigidbody, }, { .collider = colliders[j].collider, .transform = colliders[j].transform, .rigidbody = colliders[j].rigidbody, }, type)) continue; collisions_ret.emplace_back(colliders[i],colliders[j]); } } return collisions_ret; } std::optional, std::reference_wrapper>> CollisionSystem::get_active_transform_and_rigidbody(game_object_id_t game_object_id) const{ RefVector transforms = this->component_manager.get_components_by_id(game_object_id); if (transforms.empty()) return std::nullopt; Transform& transform = transforms.front().get(); if (!transform.active) return std::nullopt; RefVector rigidbodies = this->component_manager.get_components_by_id(game_object_id); if (rigidbodies.empty()) return std::nullopt; Rigidbody& rigidbody = rigidbodies.front().get(); if (!rigidbody.active) return std::nullopt; // Return the active components return std::make_pair(std::ref(transform), std::ref(rigidbody)); } CollisionSystem::CollisionInternalType CollisionSystem::get_collider_type(const collider_variant& collider1,const collider_variant& collider2) const{ if(std::holds_alternative>(collider1)){ if(std::holds_alternative>(collider2)) { return CollisionInternalType::CIRCLE_CIRCLE; } else { return CollisionInternalType::CIRCLE_BOX; } } else { if(std::holds_alternative>(collider2)) { return CollisionInternalType::BOX_CIRCLE; } else { return CollisionInternalType::BOX_BOX; } } } bool CollisionSystem::get_collision(const CollisionInternal& first_info,const CollisionInternal& second_info, CollisionInternalType type) const{ switch (type) { case CollisionInternalType::BOX_BOX: { const BoxCollider & box_collider1 = std::get>(first_info.collider); const BoxCollider & box_collider2 = std::get>(second_info.collider); return get_box_box_collision(box_collider1,box_collider2,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody); } case CollisionInternalType::BOX_CIRCLE: { const BoxCollider & box_collider = std::get>(first_info.collider); const CircleCollider & circle_collider = std::get>(second_info.collider); return get_box_circle_collision(box_collider,circle_collider,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody); } case CollisionInternalType::CIRCLE_CIRCLE: { const CircleCollider & circle_collider1 = std::get>(first_info.collider); const CircleCollider & circle_collider2 = std::get>(second_info.collider); return get_circle_circle_collision(circle_collider1,circle_collider2,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody); } case CollisionInternalType::CIRCLE_BOX: { const CircleCollider & circle_collider = std::get>(first_info.collider); const BoxCollider & box_collider = std::get>(second_info.collider); return get_box_circle_collision(box_collider,circle_collider,first_info.transform,second_info.transform,second_info.rigidbody,second_info.rigidbody); } } return false; } bool CollisionSystem::get_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) const { // Get current positions of colliders vec2 final_position1 = get_current_position(box1.offset,transform1,rigidbody1); vec2 final_position2 = get_current_position(box2.offset,transform2,rigidbody2); // Calculate half-extents (half width and half height) float half_width1 = box1.width / 2.0; float half_height1 = box1.height / 2.0; float half_width2 = box2.width / 2.0; float half_height2 = box2.height / 2.0; // Check if the boxes overlap along the X and Y axes return (final_position1.x + half_width1 > final_position2.x - half_width2 && // not left final_position1.x - half_width1 < final_position2.x + half_width2 && // not right final_position1.y + half_height1 > final_position2.y - half_height2 && // not above final_position1.y - half_height1 < final_position2.y + half_height2); // not below } bool CollisionSystem::get_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) const { // Get current positions of colliders vec2 final_position1 = get_current_position(box1.offset, transform1, rigidbody1); vec2 final_position2 = get_current_position(circle2.offset, transform2, rigidbody2); // Calculate box half-extents float half_width = box1.width / 2.0; float half_height = box1.height / 2.0; // Find the closest point on the box to the circle's center float closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width)); float closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height)); // Calculate the distance squared between the circle's center and the closest point on the box float distance_x = final_position2.x - closest_x; float distance_y = final_position2.y - closest_y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Compare distance squared with the square of the circle's radius return distance_squared <= circle2.radius * circle2.radius; } bool CollisionSystem::get_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) const { // Get current positions of colliders vec2 final_position1 = get_current_position(circle1.offset,transform1,rigidbody1); vec2 final_position2 = get_current_position(circle2.offset,transform2,rigidbody2); float distance_x = final_position1.x - final_position2.x; float distance_y = final_position1.y - final_position2.y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Calculate the sum of the radii float radius_sum = circle1.radius + circle2.radius; // Check if the distance between the centers is less than or equal to the sum of the radii return distance_squared <= radius_sum * radius_sum; } vec2 CollisionSystem::get_current_position(const vec2& collider_offset, const Transform& transform, const Rigidbody& rigidbody) const { // Get the rotation in radians float radians1 = transform.rotation * (M_PI / 180.0); // Calculate total offset with scale vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale; // Rotate float rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); float rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); // Final positions considering scaling and rotation return(transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1)); }