#include #include #include #include #include #include #include #include "api/Event.h" #include "api/EventManager.h" #include "api/BoxCollider.h" #include "api/CircleCollider.h" #include "api/Vector2.h" #include "api/Rigidbody.h" #include "api/Transform.h" #include "ComponentManager.h" #include "CollisionSystem.h" #include "Collider.h" #include "types.h" #include "util/OptionalRef.h" using namespace crepe; void CollisionSystem::update() { // Get collider components and keep them seperate ComponentManager & mgr = this->component_manager; std::vector> boxcolliders = mgr.get_components_by_type(); std::vector> circlecolliders = mgr.get_components_by_type(); std::vector all_colliders; // Add BoxCollider references for (auto& box : boxcolliders) { all_colliders.push_back(collider_variant{box}); } // Add CircleCollider references for (auto& circle : circlecolliders) { all_colliders.push_back(collider_variant{circle}); } // Check between all colliders if there is a collision std::vector> collided = check_collisions(all_colliders); // For both objects call the collision handler for (auto& collision_pair : collided) { collision_handler_request(collision_pair.first,collision_pair.second); collision_handler_request(collision_pair.second,collision_pair.first); } } void CollisionSystem::collision_handler_request(CollisionInternal& data1,CollisionInternal& data2){ CollisionInternalType type = check_collider_type(data1.collider,data2.collider); std::pair resolution_data = collision_handler(data1,data2,type); OptionalRef collider1; OptionalRef collider2; switch (type) { case CollisionInternalType::BOX_BOX:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } case CollisionInternalType::BOX_CIRCLE:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } case CollisionInternalType::CIRCLE_BOX:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } case CollisionInternalType::CIRCLE_CIRCLE:{ collider1 = std::get>(data1.collider); collider2 = std::get>(data2.collider); break; } } // collision info crepe::CollisionSystem::CollisionInfo collision_info{ .first_collider = collider1, .first_transform = data1.transform, .first_rigidbody = data1.rigidbody, .second_collider = collider2, .second_transform = data2.transform, .second_rigidbody = data2.rigidbody, .resolution = resolution_data.first, .resolution_direction = resolution_data.second, }; // Determine if static needs to be called determine_collision_handler(collision_info); } std::pair CollisionSystem::collision_handler(CollisionInternal& data1,CollisionInternal& data2,CollisionInternalType type) { vec2 move_back; switch (type) { case CollisionInternalType::BOX_BOX: { const BoxCollider & collider1 = std::get>(data1.collider); const BoxCollider & collider2 = std::get>(data2.collider); vec2 collider_pos1 = current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = current_position(collider2.offset, data2.transform, data2.rigidbody); move_back = box_box_resolution(collider1,collider2,collider_pos1,collider_pos2); } case CollisionInternalType::BOX_CIRCLE: { } case CollisionInternalType::CIRCLE_CIRCLE: { } case CollisionInternalType::CIRCLE_BOX: { } } Direction move_back_direction = Direction::NONE; if(move_back.x != 0 && move_back.y > 0) { move_back_direction = Direction::BOTH; } else if (move_back.x != 0) { move_back_direction = Direction::X_DIRECTION; if(data1.rigidbody.data.linear_velocity.y != 0) move_back.y = data1.rigidbody.data.linear_velocity.y * (move_back.x/data1.rigidbody.data.linear_velocity.x); } else if (move_back.y != 0) { move_back_direction = Direction::Y_DIRECTION; if(data1.rigidbody.data.linear_velocity.x != 0) move_back.x = data1.rigidbody.data.linear_velocity.x * (move_back.y/data1.rigidbody.data.linear_velocity.y); } return {move_back,move_back_direction}; } vec2 CollisionSystem::box_box_resolution(const BoxCollider& box_collider1,const BoxCollider& box_collider2,vec2 final_position1,vec2 final_position2) { vec2 resolution; // Default resolution vector vec2 delta = final_position2 - final_position1; // Compute half-dimensions of the boxes float half_width1 = box_collider1.width / 2.0; float half_height1 = box_collider1.height / 2.0; float half_width2 = box_collider2.width / 2.0; float half_height2 = box_collider2.height / 2.0; // Calculate overlaps along X and Y axes float overlap_x = (half_width1 + half_width2) - std::abs(delta.x); float overlap_y = (half_height1 + half_height2) - std::abs(delta.y); // Check if there is a collision if (overlap_x > 0 && overlap_y > 0) {//should always be true check if this can be removed // Determine the direction of resolution if (overlap_x < overlap_y) { // Resolve along the X-axis (smallest overlap) resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; } else if (overlap_y < overlap_x) { // Resolve along the Y-axis (smallest overlap) resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } else { // Equal overlap, resolve both directions with preference resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } } return resolution; } void CollisionSystem::determine_collision_handler(CollisionInfo& info){ // Check rigidbody type for static if(info.first_rigidbody.data.body_type != Rigidbody::BodyType::STATIC) { // If second body is static perform the static collision handler in this system if(info.second_rigidbody.data.body_type == Rigidbody::BodyType::STATIC){ static_collision_handler(info); }; // Call collision event for user CollisionEvent data(info); EventManager::get_instance().trigger_event(data, info.first_collider.game_object_id); } } void CollisionSystem::static_collision_handler(CollisionInfo& info){ // Move object back using calculate move back value info.first_transform.position += info.resolution; // If bounce is enabled mirror velocity if(info.first_rigidbody.data.bounce) { if(info.resolution_direction == Direction::BOTH) { info.first_rigidbody.data.linear_velocity.y = -info.first_rigidbody.data.linear_velocity.y * info.first_rigidbody.data.elastisity; info.first_rigidbody.data.linear_velocity.x = -info.first_rigidbody.data.linear_velocity.x * info.first_rigidbody.data.elastisity; } else if(info.resolution_direction == Direction::Y_DIRECTION) { info.first_rigidbody.data.linear_velocity.y = -info.first_rigidbody.data.linear_velocity.y * info.first_rigidbody.data.elastisity; } else if(info.resolution_direction == Direction::X_DIRECTION){ info.first_rigidbody.data.linear_velocity.x = -info.first_rigidbody.data.linear_velocity.x * info.first_rigidbody.data.elastisity; } } // Stop movement if bounce is disabled else { info.first_rigidbody.data.linear_velocity = {0,0}; } } std::vector> CollisionSystem::check_collisions(std::vector & colliders) { // TODO: // If no colliders skip // Check if colliders has rigidbody if not skip // TODO: // If amount is higer than lets say 16 for now use quadtree otwerwise skip // Quadtree code // Quadtree is placed over the input vector std::vector> collisions_ret; for (size_t i = 0; i < colliders.size(); ++i) { std::visit([&](auto& inner_collider_ref) { if (!inner_collider_ref.get().active) return; auto inner_components = get_active_transform_and_rigidbody(inner_collider_ref.get().game_object_id); if (!inner_components) return; for (size_t j = i + 1; j < colliders.size(); ++j) { std::visit([&](auto& outer_collider_ref) { if (!outer_collider_ref.get().active) return; if (inner_collider_ref.get().game_object_id == outer_collider_ref.get().game_object_id) return; auto outer_components = get_active_transform_and_rigidbody(outer_collider_ref.get().game_object_id); if (!outer_components) return; CollisionInternalType type = check_collider_type(colliders[i],colliders[j]); if(!check_collision(colliders[i],*inner_components,colliders[j],*outer_components,type)) return; collisions_ret.emplace_back( CollisionInternal{colliders[i], inner_components->first.get(), inner_components->second.get()}, CollisionInternal{colliders[j], outer_components->first.get(), outer_components->second.get()} ); }, colliders[j]); } }, colliders[i]); } return collisions_ret; } std::optional, std::reference_wrapper>> CollisionSystem::get_active_transform_and_rigidbody(game_object_id_t game_object_id) { RefVector transforms = this->component_manager.get_components_by_id(game_object_id); if (transforms.empty()) return std::nullopt; RefVector rigidbodies = this->component_manager.get_components_by_id(game_object_id); if (rigidbodies.empty()) return std::nullopt; Transform& transform = transforms.front().get(); if (!transform.active) return std::nullopt; Rigidbody& rigidbody = rigidbodies.front().get(); if (!rigidbody.active) return std::nullopt; // Return the active components return std::make_pair(std::ref(transform), std::ref(rigidbody)); } CollisionSystem::CollisionInternalType CollisionSystem::check_collider_type(const collider_variant& collider1,const collider_variant& collider2){ if(std::holds_alternative>(collider1)){ if(std::holds_alternative>(collider2)) { return CollisionInternalType::CIRCLE_CIRCLE; } else { return CollisionInternalType::CIRCLE_BOX; } } else { if(std::holds_alternative>(collider2)) { return CollisionInternalType::BOX_CIRCLE; } else { return CollisionInternalType::BOX_BOX; } } } bool CollisionSystem::check_collision(const collider_variant& collider1,std::pair, std::reference_wrapper> components1,const collider_variant& collider2,std::pair, std::reference_wrapper> components2, CollisionInternalType type){ switch (type) { case CollisionInternalType::BOX_BOX: { const BoxCollider & box_collider1 = std::get>(collider1); const BoxCollider & box_collider2 = std::get>(collider2); return check_box_box_collision(box_collider1,box_collider2,components1.first.get(),components2.first.get(),components1.second.get(),components2.second.get()); } case CollisionInternalType::BOX_CIRCLE: { const BoxCollider & box_collider = std::get>(collider1); const CircleCollider & circle_collider = std::get>(collider2); return check_box_circle_collision(box_collider,circle_collider,components1.first.get(),components2.first.get(),components1.second.get(),components2.second.get()); } case CollisionInternalType::CIRCLE_CIRCLE: { const CircleCollider & circle_collider1 = std::get>(collider1); const CircleCollider & circle_collider2 = std::get>(collider2); return check_circle_circle_collision(circle_collider1,circle_collider2,components1.first.get(),components2.first.get(),components1.second.get(),components2.second.get()); } case CollisionInternalType::CIRCLE_BOX: { const CircleCollider & circle_collider = std::get>(collider1); const BoxCollider & box_collider = std::get>(collider2); return check_box_circle_collision(box_collider,circle_collider,components1.first.get(),components2.first.get(),components1.second.get(),components2.second.get()); } } return false; } bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders vec2 final_position1 = current_position(box1.offset,transform1,rigidbody1); vec2 final_position2 = current_position(box2.offset,transform2,rigidbody2); // Calculate half-extents (half width and half height) float half_width1 = box1.width / 2.0; float half_height1 = box1.height / 2.0; float half_width2 = box2.width / 2.0; float half_height2 = box2.height / 2.0; // Check if the boxes overlap along the X and Y axes return (final_position1.x + half_width1 > final_position2.x - half_width2 && // not left final_position1.x - half_width1 < final_position2.x + half_width2 && // not right final_position1.y + half_height1 > final_position2.y - half_height2 && // not above final_position1.y - half_height1 < final_position2.y + half_height2); // not below } bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders vec2 final_position1 = current_position(box1.offset, transform1, rigidbody1); vec2 final_position2 = current_position(circle2.offset, transform2, rigidbody2); // Calculate box half-extents float half_width = box1.width / 2.0; float half_height = box1.height / 2.0; // Find the closest point on the box to the circle's center float closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width)); float closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height)); // Calculate the distance squared between the circle's center and the closest point on the box float distance_x = final_position2.x - closest_x; float distance_y = final_position2.y - closest_y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Compare distance squared with the square of the circle's radius return distance_squared <= circle2.radius * circle2.radius; } bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders vec2 final_position1 = current_position(circle1.offset,transform1,rigidbody1); vec2 final_position2 = current_position(circle2.offset,transform2,rigidbody2); float distance_x = final_position1.x - final_position2.x; float distance_y = final_position1.y - final_position2.y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Calculate the sum of the radii float radius_sum = circle1.radius + circle2.radius; // Check if the distance between the centers is less than or equal to the sum of the radii return distance_squared <= radius_sum * radius_sum; } vec2 CollisionSystem::current_position(vec2 collider_offset, const Transform& transform, const Rigidbody& rigidbody) { // Get the rotation in radians float radians1 = transform.rotation * (M_PI / 180.0); // Calculate total offset with scale vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale; // Rotate float rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); float rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); // Final positions considering scaling and rotation return(transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1)); }