#include <algorithm> #include <cmath> #include <cstddef> #include <functional> #include <optional> #include <utility> #include <variant> #include "../manager/ComponentManager.h" #include "../manager/EventManager.h" #include "api/BoxCollider.h" #include "api/CircleCollider.h" #include "api/Event.h" #include "api/Metadata.h" #include "api/Rigidbody.h" #include "api/Transform.h" #include "api/Vector2.h" #include "Collider.h" #include "CollisionSystem.h" #include "types.h" #include "util/OptionalRef.h" using namespace crepe; void CollisionSystem::update() { std::vector<CollisionInternal> all_colliders; game_object_id_t id = 0; ComponentManager & mgr = this->mediator.component_manager; RefVector<Rigidbody> rigidbodies = mgr.get_components_by_type<Rigidbody>(); // Collisions can only happen on object with a rigidbody for (Rigidbody & rigidbody : rigidbodies) { if (!rigidbody.active) continue; id = rigidbody.game_object_id; Transform & transform = mgr.get_components_by_id<Transform>(id).front().get(); // Check if the boxcollider is active and has the same id as the rigidbody. RefVector<BoxCollider> boxcolliders = mgr.get_components_by_type<BoxCollider>(); for (BoxCollider & boxcollider : boxcolliders) { if (boxcollider.game_object_id != id) continue; if (!boxcollider.active) continue; all_colliders.push_back({.id = id, .collider = collider_variant{boxcollider}, .transform = transform, .rigidbody = rigidbody}); } // Check if the circlecollider is active and has the same id as the rigidbody. RefVector<CircleCollider> circlecolliders = mgr.get_components_by_type<CircleCollider>(); for (CircleCollider & circlecollider : circlecolliders) { if (circlecollider.game_object_id != id) continue; if (!circlecollider.active) continue; all_colliders.push_back({.id = id, .collider = collider_variant{circlecollider}, .transform = transform, .rigidbody = rigidbody}); } } // Check between all colliders if there is a collision std::vector<std::pair<CollisionInternal, CollisionInternal>> collided = this->gather_collisions(all_colliders); // For both objects call the collision handler for (auto & collision_pair : collided) { this->collision_handler_request(collision_pair.first, collision_pair.second); this->collision_handler_request(collision_pair.second, collision_pair.first); } } void CollisionSystem::collision_handler_request(CollisionInternal & this_data, CollisionInternal & other_data) { CollisionInternalType type = this->get_collider_type(this_data.collider, other_data.collider); std::pair<vec2, CollisionSystem::Direction> resolution_data = this->collision_handler(this_data, other_data, type); ComponentManager & mgr = this->mediator.component_manager; OptionalRef<Metadata> this_metadata = mgr.get_components_by_id<Metadata>(this_data.id).front().get(); OptionalRef<Metadata> other_metadata = mgr.get_components_by_id<Metadata>(other_data.id).front().get(); OptionalRef<Collider> this_collider; OptionalRef<Collider> other_collider; switch (type) { case CollisionInternalType::BOX_BOX: { this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider); other_collider = std::get<std::reference_wrapper<BoxCollider>>(other_data.collider); break; } case CollisionInternalType::BOX_CIRCLE: { this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider); other_collider = std::get<std::reference_wrapper<CircleCollider>>(other_data.collider); break; } case CollisionInternalType::CIRCLE_BOX: { this_collider = std::get<std::reference_wrapper<CircleCollider>>(this_data.collider); other_collider = std::get<std::reference_wrapper<BoxCollider>>(other_data.collider); break; } case CollisionInternalType::CIRCLE_CIRCLE: { this_collider = std::get<std::reference_wrapper<CircleCollider>>(this_data.collider); other_collider = std::get<std::reference_wrapper<CircleCollider>>(other_data.collider); break; } } // collision info crepe::CollisionSystem::CollisionInfo collision_info{ .this_collider = this_collider, .this_transform = this_data.transform, .this_rigidbody = this_data.rigidbody, .this_metadata = this_metadata, .other_collider = other_collider, .other_transform = other_data.transform, .other_rigidbody = other_data.rigidbody, .other_metadata = other_metadata, .resolution = resolution_data.first, .resolution_direction = resolution_data.second, }; // Determine if static needs to be called this->determine_collision_handler(collision_info); } std::pair<vec2, CollisionSystem::Direction> CollisionSystem::collision_handler(CollisionInternal & data1, CollisionInternal & data2, CollisionInternalType type) { vec2 resolution; switch (type) { case CollisionInternalType::BOX_BOX: { const BoxCollider & collider1 = std::get<std::reference_wrapper<BoxCollider>>(data1.collider); const BoxCollider & collider2 = std::get<std::reference_wrapper<BoxCollider>>(data2.collider); vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = this->get_box_box_resolution(collider1, collider2, collider_pos1, collider_pos2); break; } case CollisionInternalType::BOX_CIRCLE: { const BoxCollider & collider1 = std::get<std::reference_wrapper<BoxCollider>>(data1.collider); const CircleCollider & collider2 = std::get<std::reference_wrapper<CircleCollider>>(data2.collider); vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = -this->get_circle_box_resolution(collider2, collider1, collider_pos2, collider_pos1); break; } case CollisionInternalType::CIRCLE_CIRCLE: { const CircleCollider & collider1 = std::get<std::reference_wrapper<CircleCollider>>(data1.collider); const CircleCollider & collider2 = std::get<std::reference_wrapper<CircleCollider>>(data2.collider); vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = this->get_circle_circle_resolution(collider1, collider2, collider_pos1, collider_pos2); break; } case CollisionInternalType::CIRCLE_BOX: { const CircleCollider & collider1 = std::get<std::reference_wrapper<CircleCollider>>(data1.collider); const BoxCollider & collider2 = std::get<std::reference_wrapper<BoxCollider>>(data2.collider); vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, data1.rigidbody); vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, data2.rigidbody); resolution = this->get_circle_box_resolution(collider1, collider2, collider_pos1, collider_pos2); break; } } Direction resolution_direction = Direction::NONE; if (resolution.x != 0 && resolution.y != 0) { resolution_direction = Direction::BOTH; } else if (resolution.x != 0) { resolution_direction = Direction::X_DIRECTION; //checks if the other velocity has a value and if this object moved if (data1.rigidbody.data.linear_velocity.x != 0 && data1.rigidbody.data.linear_velocity.y != 0) resolution.y = -data1.rigidbody.data.linear_velocity.y * (resolution.x / data1.rigidbody.data.linear_velocity.x); } else if (resolution.y != 0) { resolution_direction = Direction::Y_DIRECTION; //checks if the other velocity has a value and if this object moved if (data1.rigidbody.data.linear_velocity.x != 0 && data1.rigidbody.data.linear_velocity.y != 0) resolution.x = -data1.rigidbody.data.linear_velocity.x * (resolution.y / data1.rigidbody.data.linear_velocity.y); } return std::make_pair(resolution, resolution_direction); } vec2 CollisionSystem::get_box_box_resolution(const BoxCollider & box_collider1, const BoxCollider & box_collider2, const vec2 & final_position1, const vec2 & final_position2) const { vec2 resolution; // Default resolution vector vec2 delta = final_position2 - final_position1; // Compute half-dimensions of the boxes float half_width1 = box_collider1.dimensions.x / 2.0; float half_height1 = box_collider1.dimensions.y / 2.0; float half_width2 = box_collider2.dimensions.x / 2.0; float half_height2 = box_collider2.dimensions.y / 2.0; // Calculate overlaps along X and Y axes float overlap_x = (half_width1 + half_width2) - std::abs(delta.x); float overlap_y = (half_height1 + half_height2) - std::abs(delta.y); // Check if there is a collision should always be true if (overlap_x > 0 && overlap_y > 0) { // Determine the direction of resolution if (overlap_x < overlap_y) { // Resolve along the X-axis (smallest overlap) resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; } else if (overlap_y < overlap_x) { // Resolve along the Y-axis (smallest overlap) resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } else { // Equal overlap, resolve both directions with preference resolution.x = (delta.x > 0) ? -overlap_x : overlap_x; resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } } return resolution; } vec2 CollisionSystem::get_circle_circle_resolution(const CircleCollider & circle_collider1, const CircleCollider & circle_collider2, const vec2 & final_position1, const vec2 & final_position2) const { vec2 delta = final_position2 - final_position1; // Compute the distance between the two circle centers float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y); // Compute the combined radii of the two circles float combined_radius = circle_collider1.radius + circle_collider2.radius; // Compute the penetration depth float penetration_depth = combined_radius - distance; // Normalize the delta vector to get the collision direction vec2 collision_normal = delta / distance; // Compute the resolution vector vec2 resolution = -collision_normal * penetration_depth; return resolution; } vec2 CollisionSystem::get_circle_box_resolution(const CircleCollider & circle_collider, const BoxCollider & box_collider, const vec2 & circle_position, const vec2 & box_position) const { vec2 delta = circle_position - box_position; // Compute half-dimensions of the box float half_width = box_collider.dimensions.x / 2.0f; float half_height = box_collider.dimensions.y / 2.0f; // Clamp circle center to the nearest point on the box vec2 closest_point; closest_point.x = std::clamp(delta.x, -half_width, half_width); closest_point.y = std::clamp(delta.y, -half_height, half_height); // Find the vector from the circle center to the closest point vec2 closest_delta = delta - closest_point; // Normalize the delta to get the collision direction float distance = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y); vec2 collision_normal = closest_delta / distance; // Compute penetration depth float penetration_depth = circle_collider.radius - distance; // Compute the resolution vector vec2 resolution = collision_normal * penetration_depth; return resolution; } void CollisionSystem::determine_collision_handler(CollisionInfo & info) { // Check rigidbody type for static if (info.this_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) return; // If second body is static perform the static collision handler in this system if (info.other_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) { this->static_collision_handler(info); }; // Call collision event for user CollisionEvent data(info); EventManager & emgr = this->mediator.event_manager; emgr.trigger_event<CollisionEvent>(data, info.this_collider.game_object_id); } void CollisionSystem::static_collision_handler(CollisionInfo & info) { // Move object back using calculate move back value info.this_transform.position += info.resolution; switch (info.resolution_direction) { case Direction::BOTH: //bounce if (info.this_rigidbody.data.elastisity_coefficient > 0) { info.this_rigidbody.data.linear_velocity = -info.this_rigidbody.data.linear_velocity * info.this_rigidbody.data.elastisity_coefficient; } //stop movement else { info.this_rigidbody.data.linear_velocity = {0, 0}; } break; case Direction::Y_DIRECTION: // Bounce if (info.this_rigidbody.data.elastisity_coefficient > 0) { info.this_rigidbody.data.linear_velocity.y = -info.this_rigidbody.data.linear_velocity.y * info.this_rigidbody.data.elastisity_coefficient; } // Stop movement else { info.this_rigidbody.data.linear_velocity.y = 0; info.this_transform.position.x -= info.resolution.x; } break; case Direction::X_DIRECTION: // Bounce if (info.this_rigidbody.data.elastisity_coefficient > 0) { info.this_rigidbody.data.linear_velocity.x = -info.this_rigidbody.data.linear_velocity.x * info.this_rigidbody.data.elastisity_coefficient; } // Stop movement else { info.this_rigidbody.data.linear_velocity.x = 0; info.this_transform.position.y -= info.resolution.y; } break; case Direction::NONE: // Not possible break; } } std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>> CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) { // TODO: // If no colliders skip // Check if colliders has rigidbody if not skip // TODO: // If amount is higer than lets say 16 for now use quadtree otwerwise skip // Quadtree code // Quadtree is placed over the input vector // Return data of collided colliders which are variants std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret; //using visit to visit the variant to access the active and id. for (size_t i = 0; i < colliders.size(); ++i) { for (size_t j = i + 1; j < colliders.size(); ++j) { if (colliders[i].id == colliders[j].id) continue; if (!have_common_layer(colliders[i].rigidbody.data.collision_layers, colliders[j].rigidbody.data.collision_layers)) continue; CollisionInternalType type = get_collider_type(colliders[i].collider, colliders[j].collider); if (!get_collision( { .collider = colliders[i].collider, .transform = colliders[i].transform, .rigidbody = colliders[i].rigidbody, }, { .collider = colliders[j].collider, .transform = colliders[j].transform, .rigidbody = colliders[j].rigidbody, }, type)) continue; collisions_ret.emplace_back(colliders[i], colliders[j]); } } return collisions_ret; } bool CollisionSystem::have_common_layer(const std::set<int> & layers1, const std::set<int> & layers2) { // Check if any number is equal in the layers for (int num : layers1) { if (layers2.contains(num)) { // Common layer found return true; break; } } // No common layer found return false; } CollisionSystem::CollisionInternalType CollisionSystem::get_collider_type(const collider_variant & collider1, const collider_variant & collider2) const { if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) { if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) { return CollisionInternalType::CIRCLE_CIRCLE; } else { return CollisionInternalType::CIRCLE_BOX; } } else { if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) { return CollisionInternalType::BOX_CIRCLE; } else { return CollisionInternalType::BOX_BOX; } } } bool CollisionSystem::get_collision(const CollisionInternal & first_info, const CollisionInternal & second_info, CollisionInternalType type) const { switch (type) { case CollisionInternalType::BOX_BOX: { const BoxCollider & box_collider1 = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider); const BoxCollider & box_collider2 = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider); return this->get_box_box_collision(box_collider1, box_collider2, first_info.transform, second_info.transform, second_info.rigidbody, second_info.rigidbody); } case CollisionInternalType::BOX_CIRCLE: { const BoxCollider & box_collider = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider); const CircleCollider & circle_collider = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider); return this->get_box_circle_collision( box_collider, circle_collider, first_info.transform, second_info.transform, second_info.rigidbody, second_info.rigidbody); } case CollisionInternalType::CIRCLE_CIRCLE: { const CircleCollider & circle_collider1 = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider); const CircleCollider & circle_collider2 = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider); return this->get_circle_circle_collision( circle_collider1, circle_collider2, first_info.transform, second_info.transform, second_info.rigidbody, second_info.rigidbody); } case CollisionInternalType::CIRCLE_BOX: { const CircleCollider & circle_collider = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider); const BoxCollider & box_collider = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider); return this->get_box_circle_collision( box_collider, circle_collider, first_info.transform, second_info.transform, second_info.rigidbody, second_info.rigidbody); } } return false; } bool CollisionSystem::get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2, const Transform & transform1, const Transform & transform2, const Rigidbody & rigidbody1, const Rigidbody & rigidbody2) const { // Get current positions of colliders vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1); vec2 final_position2 = this->get_current_position(box2.offset, transform2, rigidbody2); // Calculate half-extents (half width and half height) float half_width1 = box1.dimensions.x / 2.0; float half_height1 = box1.dimensions.y / 2.0; float half_width2 = box2.dimensions.x / 2.0; float half_height2 = box2.dimensions.y / 2.0; // Check if the boxes overlap along the X and Y axes return (final_position1.x + half_width1 > final_position2.x - half_width2 && final_position1.x - half_width1 < final_position2.x + half_width2 && final_position1.y + half_height1 > final_position2.y - half_height2 && final_position1.y - half_height1 < final_position2.y + half_height2); } bool CollisionSystem::get_box_circle_collision(const BoxCollider & box1, const CircleCollider & circle2, const Transform & transform1, const Transform & transform2, const Rigidbody & rigidbody1, const Rigidbody & rigidbody2) const { // Get current positions of colliders vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1); vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2); // Calculate box half-extents float half_width = box1.dimensions.x / 2.0; float half_height = box1.dimensions.y / 2.0; // Find the closest point on the box to the circle's center float closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width)); float closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height)); // Calculate the distance squared between the circle's center and the closest point on the box float distance_x = final_position2.x - closest_x; float distance_y = final_position2.y - closest_y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Compare distance squared with the square of the circle's radius return distance_squared < circle2.radius * circle2.radius; } bool CollisionSystem::get_circle_circle_collision(const CircleCollider & circle1, const CircleCollider & circle2, const Transform & transform1, const Transform & transform2, const Rigidbody & rigidbody1, const Rigidbody & rigidbody2) const { // Get current positions of colliders vec2 final_position1 = this->get_current_position(circle1.offset, transform1, rigidbody1); vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2); float distance_x = final_position1.x - final_position2.x; float distance_y = final_position1.y - final_position2.y; float distance_squared = distance_x * distance_x + distance_y * distance_y; // Calculate the sum of the radii float radius_sum = circle1.radius + circle2.radius; // Check if the distance between the centers is less than or equal to the sum of the radii return distance_squared < radius_sum * radius_sum; } vec2 CollisionSystem::get_current_position(const vec2 & collider_offset, const Transform & transform, const Rigidbody & rigidbody) const { // Get the rotation in radians float radians1 = transform.rotation * (M_PI / 180.0); // Calculate total offset with scale vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale; // Rotate float rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); float rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); // Final positions considering scaling and rotation return (transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1)); }