#include #include #include #include "CollisionSystem.h" #include "../ComponentManager.h" #include "../api/BoxCollider.h" #include "../api/CircleCollider.h" #include "../api/Vector2.h" #include "../api/Rigidbody.h" #include "../api/Transform.h" #include "Collider.h" #include "iostream" using namespace crepe; CollisionSystem::CollisionSystem() {} void CollisionSystem::update() { ComponentManager & mgr = ComponentManager::get_instance(); std::vector> boxcolliders = mgr.get_components_by_type(); std::vector> circlecolliders = mgr.get_components_by_type(); check_collisions(boxcolliders,circlecolliders); } void CollisionSystem::check_collisions(const std::vector>& boxcolliders, const std::vector>& circlecolliders) { ComponentManager & mgr = ComponentManager::get_instance(); //if no colliders skip //check if colliders has rigibocdy if not skip //if amount is higer than lets say 16 for now use quadtree otwerwise skip //quadtree code //quadtree is placed over the input vector //check collision for (size_t i = 0; i < boxcolliders.size(); ++i) { for (size_t j = i + 1; j < boxcolliders.size(); ++j) { if(boxcolliders[i].get().game_object_id == boxcolliders[j].get().game_object_id){continue;} Transform & transform1 = mgr.get_components_by_id(boxcolliders[i].get().game_object_id).front().get(); Rigidbody & rigidbody1 = mgr.get_components_by_id(boxcolliders[i].get().game_object_id).front().get(); Transform & transform2 = mgr.get_components_by_id(boxcolliders[j].get().game_object_id).front().get(); Rigidbody & rigidbody2 = mgr.get_components_by_id(boxcolliders[j].get().game_object_id).front().get(); check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2); } for (size_t j = 0; j < circlecolliders.size(); ++j) { if(boxcolliders[i].get().game_object_id == circlecolliders[j].get().game_object_id){continue;} Transform & transform1 = mgr.get_components_by_id(boxcolliders[i].get().game_object_id).front().get(); Rigidbody & rigidbody1 = mgr.get_components_by_id(boxcolliders[i].get().game_object_id).front().get(); Transform & transform2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); Rigidbody & rigidbody2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2); } } for (size_t i = 0; i < circlecolliders.size(); ++i) { for (size_t j = i + 1; j < circlecolliders.size(); ++j) { if(circlecolliders[i].get().game_object_id == circlecolliders[j].get().game_object_id){continue;} Transform & transform1 = mgr.get_components_by_id(circlecolliders[i].get().game_object_id).front().get(); Rigidbody & rigidbody1 = mgr.get_components_by_id(circlecolliders[i].get().game_object_id).front().get(); Transform & transform2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); Rigidbody & rigidbody2 = mgr.get_components_by_id(circlecolliders[j].get().game_object_id).front().get(); check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2); } } } bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders Vector2 final_position1 = current_position(box1,transform1,rigidbody1); Vector2 final_position2 = current_position(box2,transform2,rigidbody2); // Log final positions for debugging purposes std::cout << "Final Position of Box 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl; std::cout << "Final Position of Box 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl; // Log rotation values for debugging std::cout << "Rotation of Box 1: " << transform1.rotation << " degrees" << std::endl; std::cout << "Rotation of Box 2: " << transform2.rotation << " degrees" << std::endl; // Calculate half-extents (half width and half height) double half_width1 = box1.width / 2.0; double half_height1 = box1.height / 2.0; double half_width2 = box2.width / 2.0; double half_height2 = box2.height / 2.0; // Check if the boxes overlap along the X and Y axes return !(final_position1.x + half_width1 < final_position2.x - half_width2 || // box1 is left of box2 final_position1.x - half_width1 > final_position2.x + half_width2 || // box1 is right of box2 final_position1.y + half_height1 < final_position2.y - half_height2 || // box1 is above box2 final_position1.y - half_height1 > final_position2.y + half_height2); // box1 is below box2 } bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders Vector2 final_position1 = current_position(box1, transform1, rigidbody1); Vector2 final_position2 = current_position(circle2, transform2, rigidbody2); // Log final positions for debugging purposes std::cout << "Final Position of Box: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl; std::cout << "Final Position of Circle: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl; // Calculate box half-extents double half_width = box1.width / 2.0; double half_height = box1.height / 2.0; // Find the closest point on the box to the circle's center double closest_x = std::clamp(final_position2.x, final_position1.x - half_width, final_position1.x + half_width); double closest_y = std::clamp(final_position2.y, final_position1.y - half_height, final_position1.y + half_height); // Calculate the distance squared between the circle's center and the closest point on the box double distance_x = final_position2.x - closest_x; double distance_y = final_position2.y - closest_y; double distance_squared = distance_x * distance_x + distance_y * distance_y; // Compare distance squared with the square of the circle's radius return distance_squared <= circle2.radius * circle2.radius; } bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) { // Get current positions of colliders Vector2 final_position1 = current_position(circle1,transform1,rigidbody1); Vector2 final_position2 = current_position(circle2,transform2,rigidbody2); // Log final positions for debugging purposes std::cout << "Final Position of Circle 1: (" << final_position1.x << ", " << final_position1.y << ")" << std::endl; std::cout << "Final Position of Circle 2: (" << final_position2.x << ", " << final_position2.y << ")" << std::endl; // Log rotation values for debugging (circles do not rotate, so this might not be needed for circles) std::cout << "Rotation of Circle 1: " << transform1.rotation << " degrees" << std::endl; std::cout << "Rotation of Circle 2: " << transform2.rotation << " degrees" << std::endl; double distance_x = final_position1.x - final_position2.x; double distance_y = final_position1.y - final_position2.y; double distance_squared = distance_x * distance_x + distance_y * distance_y; // Calculate the sum of the radii double radius_sum = circle1.radius + circle2.radius; // Check if the distance between the centers is less than or equal to the sum of the radii return distance_squared <= radius_sum * radius_sum; } Vector2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) { // Function to convert degrees to radians auto degrees_to_radians = [](double degrees) { return degrees * (M_PI / 180.0); }; // Get the rotation in radians double radians1 = degrees_to_radians(transform.rotation); // Calculate total offset with scale Vector2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale; // Rotate double rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); double rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); // Final positions considering scaling and rotation return(transform.position + Vector2(rotated_total_offset_x1, rotated_total_offset_y1)); }