#include #include #include "api/LoopTimer.h" #include "manager/ComponentManager.h" #include "manager/Mediator.h" #include "AISystem.h" using namespace crepe; void AISystem::update() { const Mediator & mediator = this->mediator; ComponentManager & mgr = mediator.component_manager; RefVector ai_components = mgr.get_components_by_type(); //TODO: Use fixed loop dt (this is not available at master at the moment) double dt = LoopTimer::get_instance().get_delta_time(); // Loop through all AI components for (AI & ai : ai_components) { if (!ai.active) { continue; } RefVector rigidbodies = mgr.get_components_by_id(ai.game_object_id); if (rigidbodies.empty()) { throw std::runtime_error( "AI component must be attached to a GameObject with a Rigidbody component"); } Rigidbody & rigidbody = rigidbodies.front().get(); if (!rigidbody.active) { continue; } if (rigidbody.data.mass <= 0) { throw std::runtime_error("Mass must be greater than 0"); } // Calculate the force to apply to the entity vec2 force = this->calculate(ai, rigidbody); // Calculate the acceleration (using the above calculated force) vec2 acceleration = force / rigidbody.data.mass; // Finally, update Rigidbody's velocity rigidbody.data.linear_velocity += acceleration * dt; } } vec2 AISystem::calculate(AI & ai, const Rigidbody & rigidbody) { const Mediator & mediator = this->mediator; ComponentManager & mgr = mediator.component_manager; RefVector transforms = mgr.get_components_by_id(ai.game_object_id); Transform & transform = transforms.front().get(); vec2 force; // Run all the behaviors that are on, and stop if the force gets too high if (ai.on(AI::BehaviorTypeMask::FLEE)) { vec2 force_to_add = this->flee(ai, rigidbody, transform); if (!this->accumulate_force(ai, force, force_to_add)) { return force; } } if (ai.on(AI::BehaviorTypeMask::ARRIVE)) { vec2 force_to_add = this->arrive(ai, rigidbody, transform); if (!this->accumulate_force(ai, force, force_to_add)) { return force; } } if (ai.on(AI::BehaviorTypeMask::SEEK)) { vec2 force_to_add = this->seek(ai, rigidbody, transform); if (!this->accumulate_force(ai, force, force_to_add)) { return force; } } if (ai.on(AI::BehaviorTypeMask::PATH_FOLLOW)) { vec2 force_to_add = this->path_follow(ai, rigidbody, transform); if (!this->accumulate_force(ai, force, force_to_add)) { return force; } } return force; } bool AISystem::accumulate_force(const AI & ai, vec2 & running_total, vec2 & force_to_add) { float magnitude = running_total.length(); float magnitude_remaining = ai.max_force - magnitude; if (magnitude_remaining <= 0.0f) { // If the force is already at/above the max force, return false return false; } float magnitude_to_add = force_to_add.length(); if (magnitude_to_add < magnitude_remaining) { // If the force to add is less than the remaining force, add it running_total += force_to_add; } else { // If the force to add is greater than the remaining force, add a fraction of it force_to_add.normalize(); running_total += force_to_add * magnitude_remaining; } return true; } vec2 AISystem::seek(const AI & ai, const Rigidbody & rigidbody, const Transform & transform) const { // Calculate the desired velocity vec2 desired_velocity = ai.seek_target - transform.position; desired_velocity.normalize(); desired_velocity *= rigidbody.data.max_linear_velocity; return desired_velocity - rigidbody.data.linear_velocity; } vec2 AISystem::flee(const AI & ai, const Rigidbody & rigidbody, const Transform & transform) const { // Calculate the desired velocity if the entity is within the panic distance vec2 desired_velocity = transform.position - ai.flee_target; if (desired_velocity.length_squared() > ai.square_flee_panic_distance) { return vec2{0, 0}; } desired_velocity.normalize(); desired_velocity *= rigidbody.data.max_linear_velocity; return desired_velocity - rigidbody.data.linear_velocity; } vec2 AISystem::arrive(const AI & ai, const Rigidbody & rigidbody, const Transform & transform) const { // Calculate the desired velocity (taking into account the deceleration rate) vec2 to_target = ai.arrive_target - transform.position; float distance = to_target.length(); if (distance > 0.0f) { if (ai.arrive_deceleration <= 0.0f) { throw std::runtime_error("Deceleration rate must be greater than 0"); } float speed = distance / ai.arrive_deceleration; speed = std::min(speed, rigidbody.data.max_linear_velocity.length()); vec2 desired_velocity = to_target * (speed / distance); return desired_velocity - rigidbody.data.linear_velocity; } return vec2{0, 0}; } vec2 AISystem::path_follow(AI & ai, const Rigidbody & rigidbody, const Transform & transform) { if (ai.path.empty()) { return vec2{0, 0}; } // Get the target node vec2 target = ai.path.at(ai.path_index); // Calculate the force to apply to the entity vec2 to_target = target - transform.position; if (to_target.length_squared() > ai.path_node_distance * ai.path_node_distance) { // If the entity is not close enough to the target node, seek it ai.seek_target = target; ai.arrive_target = target; } else { // If the entity is close enough to the target node, move to the next node ai.path_index++; if (ai.path_index >= ai.path.size()) { if (ai.path_loop) { // If the path is looping, reset the path index ai.path_index = 0; } else { // If the path is not looping, arrive at the last node ai.path_index = ai.path.size() - 1; return this->arrive(ai, rigidbody, transform); } } } // Seek the target node return this->seek(ai, rigidbody, transform); }