diff options
Diffstat (limited to 'src/crepe')
-rw-r--r-- | src/crepe/api/Rigidbody.h | 46 | ||||
-rw-r--r-- | src/crepe/system/CollisionSystem.cpp | 850 | ||||
-rw-r--r-- | src/crepe/system/CollisionSystem.h | 288 | ||||
-rw-r--r-- | src/crepe/system/ParticleSystem.cpp | 5 | ||||
-rw-r--r-- | src/crepe/system/RenderSystem.cpp | 5 |
5 files changed, 611 insertions, 583 deletions
diff --git a/src/crepe/api/Rigidbody.h b/src/crepe/api/Rigidbody.h index 6900295..28c376b 100644 --- a/src/crepe/api/Rigidbody.h +++ b/src/crepe/api/Rigidbody.h @@ -2,6 +2,7 @@ #include <cmath> #include <set> +#include <string> #include "../Component.h" @@ -120,26 +121,51 @@ public: * above 0.0. * */ - float elastisity_coefficient = 0.0; + float elasticity_coefficient = 0.0; /** - * \brief Offset of all colliders relative to the object's transform position. + * \brief Enables collision handling for objects colliding with kinematic objects. + * + * Enables collision handling for objects colliding with kinematic objects in the collision system. + * If `kinematic_collision` is true, dynamic objects cannot pass through this kinematic object. + * This ensures that kinematic objects delegate collision handling to the collision system. + */ + bool kinematic_collision = true; + + /** + * \brief Defines the collision layers a GameObject interacts with. * - * The `offset` defines a positional shift applied to all colliders associated with the object, relative to the object's - * transform position. This allows for the colliders to be placed at a different position than the object's actual - * position, without modifying the object's transform itself. + * The `collision_layers` represent the set of layers the GameObject can detect collisions with. + * Each element in this set corresponds to a layer ID. The GameObject will only collide with other + * GameObjects that belong to one these layers. + */ + std::set<int> collision_layers = {0}; + + /** + * \brief Specifies the collision layer of the GameObject. * + * The `collision_layer` indicates the single layer that this GameObject belongs to. + * This determines which layers other objects must match to detect collisions with this object. */ - vec2 offset; + int collision_layer = 0; /** * \brief Defines the collision layers of a GameObject. * - * The `collision_layers` specifies the layers that the GameObject will collide with. - * Each element represents a layer ID, and the GameObject will only detect - * collisions with other GameObjects that belong to these layers. + * The `collision_names` specifies where the GameObject will collide with. + * Each element represents a name from the Metadata of the gameobject. */ - std::set<int> collision_layers = {0}; + std::set<std::string> collision_names; + + /** + * \brief Defines the collision layers of a GameObject. + * + * The `collision_tags` specifies where the GameObject will collide with. + * Each element represents a tag from the Metadata of the gameobject. + */ + std::set<std::string> collision_tags; + + }; public: diff --git a/src/crepe/system/CollisionSystem.cpp b/src/crepe/system/CollisionSystem.cpp index af8adce..00b56a4 100644 --- a/src/crepe/system/CollisionSystem.cpp +++ b/src/crepe/system/CollisionSystem.cpp @@ -1,6 +1,7 @@ #include <algorithm> #include <cmath> #include <cstddef> +#include <emmintrin.h> #include <functional> #include <optional> #include <utility> @@ -15,13 +16,23 @@ #include "api/Rigidbody.h" #include "api/Transform.h" #include "api/Vector2.h" +#include "util/AbsolutePosition.h" +#include "util/OptionalRef.h" -#include "Collider.h" #include "CollisionSystem.h" #include "types.h" -#include "util/OptionalRef.h" using namespace crepe; +using enum Rigidbody::BodyType; + +CollisionSystem::CollisionInfo CollisionSystem::CollisionInfo::operator-() const { + return { + .self = this->other, + .other = this->self, + .resolution = -this->resolution, + .resolution_direction = this->resolution_direction, + }; +} void CollisionSystem::update() { std::vector<CollisionInternal> all_colliders; @@ -33,6 +44,7 @@ void CollisionSystem::update() { if (!rigidbody.active) continue; id = rigidbody.game_object_id; Transform & transform = mgr.get_components_by_id<Transform>(id).front().get(); + Metadata & metadata = mgr.get_components_by_id<Metadata>(id).front().get(); // Check if the boxcollider is active and has the same id as the rigidbody. RefVector<BoxCollider> boxcolliders = mgr.get_components_by_type<BoxCollider>(); for (BoxCollider & boxcollider : boxcolliders) { @@ -40,8 +52,8 @@ void CollisionSystem::update() { if (!boxcollider.active) continue; all_colliders.push_back({.id = id, .collider = collider_variant{boxcollider}, - .transform = transform, - .rigidbody = rigidbody}); + .info = {transform,rigidbody, metadata} + }); } // Check if the circlecollider is active and has the same id as the rigidbody. RefVector<CircleCollider> circlecolliders @@ -51,183 +63,217 @@ void CollisionSystem::update() { if (!circlecollider.active) continue; all_colliders.push_back({.id = id, .collider = collider_variant{circlecollider}, - .transform = transform, - .rigidbody = rigidbody}); + .info = {transform,rigidbody, metadata} + }); } } - // Check between all colliders if there is a collision + // Check between all colliders if there is a collision (collision handling) std::vector<std::pair<CollisionInternal, CollisionInternal>> collided = this->gather_collisions(all_colliders); - // For both objects call the collision handler + // For the object convert the info and call the collision handler if needed for (auto & collision_pair : collided) { - this->collision_handler_request(collision_pair.first, collision_pair.second); - this->collision_handler_request(collision_pair.second, collision_pair.first); + // Convert internal struct to external struct + CollisionInfo info = this->get_collision_info(collision_pair.first, collision_pair.second); + // Determine if and/or what collison handler is needed. + this->determine_collision_handler(info); } } -void CollisionSystem::collision_handler_request(CollisionInternal & this_data, - CollisionInternal & other_data) { +// Below is for collision detection +std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>> +CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) { - CollisionInternalType type - = this->get_collider_type(this_data.collider, other_data.collider); - std::pair<vec2, CollisionSystem::Direction> resolution_data - = this->collision_handler(this_data, other_data, type); - ComponentManager & mgr = this->mediator.component_manager; - OptionalRef<Metadata> this_metadata - = mgr.get_components_by_id<Metadata>(this_data.id).front().get(); - OptionalRef<Metadata> other_metadata - = mgr.get_components_by_id<Metadata>(other_data.id).front().get(); - OptionalRef<Collider> this_collider; - OptionalRef<Collider> other_collider; - switch (type) { - case CollisionInternalType::BOX_BOX: { - this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider); - other_collider - = std::get<std::reference_wrapper<BoxCollider>>(other_data.collider); - break; - } - case CollisionInternalType::BOX_CIRCLE: { - this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider); - other_collider - = std::get<std::reference_wrapper<CircleCollider>>(other_data.collider); - break; - } - case CollisionInternalType::CIRCLE_BOX: { - this_collider - = std::get<std::reference_wrapper<CircleCollider>>(this_data.collider); - other_collider - = std::get<std::reference_wrapper<BoxCollider>>(other_data.collider); - break; - } - case CollisionInternalType::CIRCLE_CIRCLE: { - this_collider - = std::get<std::reference_wrapper<CircleCollider>>(this_data.collider); - other_collider - = std::get<std::reference_wrapper<CircleCollider>>(other_data.collider); - break; + // TODO: + // If no colliders skip + // Check if colliders has rigidbody if not skip + + // TODO: + // If amount is higer than lets say 16 for now use quadtree otwerwise skip + // Quadtree code + // Quadtree is placed over the input vector + + // Return data of collided colliders which are variants + std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret; + //using visit to visit the variant to access the active and id. + for (size_t i = 0; i < colliders.size(); ++i) { + for (size_t j = i + 1; j < colliders.size(); ++j) { + if (colliders[i].id == colliders[j].id) continue; + if (!should_collide(colliders[i], colliders[j])) continue; + CollisionInternalType type = get_collider_type(colliders[i].collider, colliders[j].collider); + if (!detect_collision(colliders[i],colliders[j],type)) continue; + //fet + collisions_ret.emplace_back(colliders[i], colliders[j]); } } + return collisions_ret; +} - // collision info - crepe::CollisionSystem::CollisionInfo collision_info{ - .this_collider = this_collider, - .this_transform = this_data.transform, - .this_rigidbody = this_data.rigidbody, - .this_metadata = this_metadata, - .other_collider = other_collider, - .other_transform = other_data.transform, - .other_rigidbody = other_data.rigidbody, - .other_metadata = other_metadata, - .resolution = resolution_data.first, - .resolution_direction = resolution_data.second, - }; - // Determine if static needs to be called - this->determine_collision_handler(collision_info); +bool CollisionSystem::should_collide(const CollisionInternal & self, const CollisionInternal & other) const{ + + const Rigidbody::Data & self_rigidbody = self.info.rigidbody.data; + const Rigidbody::Data & other_rigidbody = other.info.rigidbody.data; + const Metadata & self_metadata = self.info.metadata; + const Metadata & other_metadata = other.info.metadata; + + // Check collision layers + if(self_rigidbody.collision_layers.contains(other_rigidbody.collision_layer)) return true; + if(other_rigidbody.collision_layers.contains(self_rigidbody.collision_layer)) return true; + + // Check names + if(self_rigidbody.collision_names.contains(other_metadata.name)) return true; + if(other_rigidbody.collision_names.contains(self_metadata.name)) return true; + + // Check tags + if(self_rigidbody.collision_tags.contains(other_metadata.tag)) return true; + if(other_rigidbody.collision_tags.contains(self_metadata.tag)) return true; + + return false; +} + + +CollisionSystem::CollisionInternalType +CollisionSystem::get_collider_type(const collider_variant & collider1, + const collider_variant & collider2) const { + if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) { + if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) { + return CollisionInternalType::CIRCLE_CIRCLE; + } else { + return CollisionInternalType::CIRCLE_BOX; + } + } else { + if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) { + return CollisionInternalType::BOX_CIRCLE; + } else { + return CollisionInternalType::BOX_BOX; + } + } } -std::pair<vec2, CollisionSystem::Direction> -CollisionSystem::collision_handler(CollisionInternal & data1, CollisionInternal & data2, - CollisionInternalType type) { +bool CollisionSystem::detect_collision(CollisionInternal & self,CollisionInternal & other,const CollisionInternalType & type) { vec2 resolution; switch (type) { - case CollisionInternalType::BOX_BOX: { - const BoxCollider & collider1 - = std::get<std::reference_wrapper<BoxCollider>>(data1.collider); - const BoxCollider & collider2 - = std::get<std::reference_wrapper<BoxCollider>>(data2.collider); - vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, - data1.rigidbody); - vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, - data2.rigidbody); - resolution = this->get_box_box_resolution(collider1, collider2, collider_pos1, - collider_pos2); + case CollisionInternalType::BOX_BOX: { + // Box-Box collision detection + const BoxColliderInternal BOX1 = { + .collider = std::get<std::reference_wrapper<BoxCollider>>(self.collider), + .transform = self.info.transform, + .rigidbody = self.info.rigidbody + }; + const BoxColliderInternal BOX2 = { + .collider = std::get<std::reference_wrapper<BoxCollider>>(other.collider), + .transform = other.info.transform, + .rigidbody = other.info.rigidbody + }; + // Get resolution vector from box-box collision detection + resolution = this->get_box_box_detection(BOX1, BOX2); + // If no collision (NaN values), return false + if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false; break; + } case CollisionInternalType::BOX_CIRCLE: { - const BoxCollider & collider1 - = std::get<std::reference_wrapper<BoxCollider>>(data1.collider); - const CircleCollider & collider2 - = std::get<std::reference_wrapper<CircleCollider>>(data2.collider); - vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, - data1.rigidbody); - vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, - data2.rigidbody); - resolution = -this->get_circle_box_resolution(collider2, collider1, collider_pos2, - collider_pos1); + // Box-Circle collision detection + const BoxColliderInternal BOX1 = { + .collider = std::get<std::reference_wrapper<BoxCollider>>(self.collider), + .transform = self.info.transform, + .rigidbody = self.info.rigidbody + }; + const CircleColliderInternal CIRCLE2 = { + .collider = std::get<std::reference_wrapper<CircleCollider>>(other.collider), + .transform = other.info.transform, + .rigidbody = other.info.rigidbody + }; + // Get resolution vector from box-circle collision detection + resolution = this->get_box_circle_detection(BOX1, CIRCLE2); + // If no collision (NaN values), return false + if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false; + // Invert the resolution vector for proper collision response + resolution = -resolution; break; } - case CollisionInternalType::CIRCLE_CIRCLE: { - const CircleCollider & collider1 - = std::get<std::reference_wrapper<CircleCollider>>(data1.collider); - const CircleCollider & collider2 - = std::get<std::reference_wrapper<CircleCollider>>(data2.collider); - vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, - data1.rigidbody); - vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, - data2.rigidbody); - resolution = this->get_circle_circle_resolution(collider1, collider2, - collider_pos1, collider_pos2); + case CollisionInternalType::CIRCLE_CIRCLE: { + // Circle-Circle collision detection + const CircleColliderInternal CIRCLE1 = { + .collider = std::get<std::reference_wrapper<CircleCollider>>(self.collider), + .transform = self.info.transform, + .rigidbody = self.info.rigidbody + }; + const CircleColliderInternal CIRCLE2 = { + .collider = std::get<std::reference_wrapper<CircleCollider>>(other.collider), + .transform = other.info.transform, + .rigidbody = other.info.rigidbody + }; + // Get resolution vector from circle-circle collision detection + resolution = this->get_circle_circle_detection(CIRCLE1,CIRCLE2); + // If no collision (NaN values), return false + if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false; break; } - case CollisionInternalType::CIRCLE_BOX: { - const CircleCollider & collider1 - = std::get<std::reference_wrapper<CircleCollider>>(data1.collider); - const BoxCollider & collider2 - = std::get<std::reference_wrapper<BoxCollider>>(data2.collider); - vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform, - data1.rigidbody); - vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform, - data2.rigidbody); - resolution = this->get_circle_box_resolution(collider1, collider2, collider_pos1, - collider_pos2); + case CollisionInternalType::CIRCLE_BOX: { + // Circle-Box collision detection + const CircleColliderInternal CIRCLE1 = { + .collider = std::get<std::reference_wrapper<CircleCollider>>(self.collider), + .transform = self.info.transform, + .rigidbody = self.info.rigidbody + }; + const BoxColliderInternal BOX2 = { + .collider = std::get<std::reference_wrapper<BoxCollider>>(other.collider), + .transform = other.info.transform, + .rigidbody = other.info.rigidbody + }; + // Get resolution vector from box-circle collision detection (order swapped) + resolution = this->get_box_circle_detection(BOX2, CIRCLE1); + // If no collision (NaN values), return false + if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false; break; } + case CollisionInternalType::NONE: + // No collision detection needed if the type is NONE + return false; + break; } + // Store the calculated resolution vector for the 'self' collider + self.resolution = resolution; + // Calculate the resolution direction based on the rigidbody data + self.resolution_direction = this->resolution_correction(self.resolution, self.info.rigidbody.data); + // For the 'other' collider, the resolution is the opposite direction of 'self' + other.resolution = -self.resolution; + other.resolution_direction = self.resolution_direction; + + // Return true if a collision was detected and resolution was calculated + return true; +} - Direction resolution_direction = Direction::NONE; - if (resolution.x != 0 && resolution.y != 0) { - resolution_direction = Direction::BOTH; - } else if (resolution.x != 0) { - resolution_direction = Direction::X_DIRECTION; - //checks if the other velocity has a value and if this object moved - if (data1.rigidbody.data.linear_velocity.x != 0 - && data1.rigidbody.data.linear_velocity.y != 0) - resolution.y = -data1.rigidbody.data.linear_velocity.y - * (resolution.x / data1.rigidbody.data.linear_velocity.x); - } else if (resolution.y != 0) { - resolution_direction = Direction::Y_DIRECTION; - //checks if the other velocity has a value and if this object moved - if (data1.rigidbody.data.linear_velocity.x != 0 - && data1.rigidbody.data.linear_velocity.y != 0) - resolution.x = -data1.rigidbody.data.linear_velocity.x - * (resolution.y / data1.rigidbody.data.linear_velocity.y); - } +vec2 CollisionSystem::get_box_box_detection(const BoxColliderInternal & box1, const BoxColliderInternal & box2) const { + vec2 resolution{std::nanf(""), std::nanf("")}; + // Get current positions of colliders + vec2 pos1 = AbsolutePosition::get_position(box1.transform, box1.collider.offset); + vec2 pos2 = AbsolutePosition::get_position(box2.transform, box2.collider.offset); + + // Scale dimensions + vec2 scaled_box1 = box1.collider.dimensions * box1.transform.scale; + vec2 scaled_box2 = box2.collider.dimensions * box2.transform.scale; + vec2 delta = pos2 - pos1; - return std::make_pair(resolution, resolution_direction); -} -vec2 CollisionSystem::get_box_box_resolution(const BoxCollider & box_collider1, - const BoxCollider & box_collider2, - const vec2 & final_position1, - const vec2 & final_position2) const { - vec2 resolution; // Default resolution vector - vec2 delta = final_position2 - final_position1; - - // Compute half-dimensions of the boxes - float half_width1 = box_collider1.dimensions.x / 2.0; - float half_height1 = box_collider1.dimensions.y / 2.0; - float half_width2 = box_collider2.dimensions.x / 2.0; - float half_height2 = box_collider2.dimensions.y / 2.0; - - // Calculate overlaps along X and Y axes - float overlap_x = (half_width1 + half_width2) - std::abs(delta.x); - float overlap_y = (half_height1 + half_height2) - std::abs(delta.y); - - // Check if there is a collision should always be true - if (overlap_x > 0 && overlap_y > 0) { + // Calculate half-extents (half width and half height) + float half_width1 = scaled_box1.x / 2.0; + float half_height1 = scaled_box1.y / 2.0; + float half_width2 = scaled_box2.x / 2.0; + float half_height2 = scaled_box2.y / 2.0; + + if (pos1.x + half_width1 > pos2.x - half_width2 + && pos1.x - half_width1 < pos2.x + half_width2 + && pos1.y + half_height1 > pos2.y - half_height2 + && pos1.y - half_height1 < pos2.y + half_height2) + { + resolution = {0,0}; + float overlap_x = (half_width1 + half_width2) - std::abs(delta.x); + float overlap_y = (half_height1 + half_height2) - std::abs(delta.y); + if (overlap_x > 0 && overlap_y > 0) { // Determine the direction of resolution if (overlap_x < overlap_y) { // Resolve along the X-axis (smallest overlap) @@ -241,120 +287,224 @@ vec2 CollisionSystem::get_box_box_resolution(const BoxCollider & box_collider1, resolution.y = (delta.y > 0) ? -overlap_y : overlap_y; } } - + } return resolution; } -vec2 CollisionSystem::get_circle_circle_resolution(const CircleCollider & circle_collider1, - const CircleCollider & circle_collider2, - const vec2 & final_position1, - const vec2 & final_position2) const { - vec2 delta = final_position2 - final_position1; +vec2 CollisionSystem::get_box_circle_detection(const BoxColliderInternal & box, const CircleColliderInternal & circle) const { + /// Get current positions of colliders + vec2 box_pos = AbsolutePosition::get_position(box.transform, box.collider.offset); + vec2 circle_pos = AbsolutePosition::get_position(circle.transform, circle.collider.offset); + + // Scale dimensions + vec2 scaled_box = box.collider.dimensions * box.transform.scale; + float scaled_circle_radius = circle.collider.radius * circle.transform.scale; + + // Calculate box half-extents + float half_width = scaled_box.x / 2.0f; + float half_height = scaled_box.y / 2.0f; + + // Find the closest point on the box to the circle's center + float closest_x = std::max(box_pos.x - half_width, std::min(circle_pos.x, box_pos.x + half_width)); + float closest_y = std::max(box_pos.y - half_height, std::min(circle_pos.y, box_pos.y + half_height)); + + float distance_x = circle_pos.x - closest_x; + float distance_y = circle_pos.y - closest_y; + float distance_squared = distance_x * distance_x + distance_y * distance_y; + if(distance_squared < scaled_circle_radius * scaled_circle_radius){ + vec2 delta = circle_pos - box_pos; + + // Clamp circle center to the nearest point on the box + vec2 closest_point; + closest_point.x = std::clamp(delta.x, -half_width, half_width); + closest_point.y = std::clamp(delta.y, -half_height, half_height); + + // Find the vector from the circle center to the closest point + vec2 closest_delta = delta - closest_point; + + float distance = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y); + vec2 collision_normal = closest_delta / distance; + + // Compute penetration depth + float penetration_depth = scaled_circle_radius - distance; + + // Compute the resolution vector + return vec2{collision_normal * penetration_depth}; + } + // No collision + return vec2{std::nanf(""), std::nanf("")}; +} - // Compute the distance between the two circle centers - float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y); +vec2 CollisionSystem::get_circle_circle_detection(const CircleColliderInternal & circle1, const CircleColliderInternal & circle2) const { + // Get current positions of colliders + vec2 final_position1 = AbsolutePosition::get_position(circle1.transform, circle1.collider.offset); + vec2 final_position2 = AbsolutePosition::get_position(circle2.transform, circle2.collider.offset); - // Compute the combined radii of the two circles - float combined_radius = circle_collider1.radius + circle_collider2.radius; + // Scale dimensions + float scaled_circle1 = circle1.collider.radius * circle1.transform.scale; + float scaled_circle2 = circle2.collider.radius * circle2.transform.scale; - // Compute the penetration depth - float penetration_depth = combined_radius - distance; + float distance_x = final_position1.x - final_position2.x; + float distance_y = final_position1.y - final_position2.y; + float distance_squared = distance_x * distance_x + distance_y * distance_y; - // Normalize the delta vector to get the collision direction - vec2 collision_normal = delta / distance; + // Calculate the sum of the radii + float radius_sum = scaled_circle1 + scaled_circle2; - // Compute the resolution vector - vec2 resolution = -collision_normal * penetration_depth; + // Check for collision (distance squared must be less than the square of the radius sum) + if (distance_squared < radius_sum * radius_sum) { + vec2 delta = final_position2 - final_position1; - return resolution; -} + // Compute the distance between the two circle centers + float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y); -vec2 CollisionSystem::get_circle_box_resolution(const CircleCollider & circle_collider, - const BoxCollider & box_collider, - const vec2 & circle_position, - const vec2 & box_position) const { - vec2 delta = circle_position - box_position; + // Compute the combined radii of the two circles + float combined_radius = scaled_circle1 + scaled_circle2; - // Compute half-dimensions of the box - float half_width = box_collider.dimensions.x / 2.0f; - float half_height = box_collider.dimensions.y / 2.0f; + // Compute the penetration depth + float penetration_depth = combined_radius - distance; - // Clamp circle center to the nearest point on the box - vec2 closest_point; - closest_point.x = std::clamp(delta.x, -half_width, half_width); - closest_point.y = std::clamp(delta.y, -half_height, half_height); + // Normalize the delta vector to get the collision direction + vec2 collision_normal = delta / distance; - // Find the vector from the circle center to the closest point - vec2 closest_delta = delta - closest_point; + // Compute the resolution vector + vec2 resolution = -collision_normal * penetration_depth; - // Normalize the delta to get the collision direction - float distance - = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y); - vec2 collision_normal = closest_delta / distance; + return resolution; + } + // No collision + return vec2{std::nanf(""), std::nanf("")}; +} - // Compute penetration depth - float penetration_depth = circle_collider.radius - distance; +CollisionSystem::Direction CollisionSystem::resolution_correction(vec2 & resolution,const Rigidbody::Data & rigidbody) { - // Compute the resolution vector - vec2 resolution = collision_normal * penetration_depth; + // Calculate the other value to move back correctly + // If only X or Y has a value determine what is should be to move back. + Direction resolution_direction = Direction::NONE; + // If both are not zero a perfect corner has been hit + if (resolution.x != 0 && resolution.y != 0) { + resolution_direction = Direction::BOTH; + // If x is not zero a horizontal action was latest action. + } else if (resolution.x != 0) { + resolution_direction = Direction::X_DIRECTION; + // If both are 0 resolution y should not be changed (y_velocity can be 0 by kinematic object movement) + if (rigidbody.linear_velocity.x != 0 && rigidbody.linear_velocity.y != 0) + resolution.y = -rigidbody.linear_velocity.y * (resolution.x / rigidbody.linear_velocity.x); + } else if (resolution.y != 0) { + resolution_direction = Direction::Y_DIRECTION; + // If both are 0 resolution x should not be changed (x_velocity can be 0 by kinematic object movement) + if (rigidbody.linear_velocity.x != 0 && rigidbody.linear_velocity.y != 0) + resolution.x = -rigidbody.linear_velocity.x * (resolution.y / rigidbody.linear_velocity.y); + } - return resolution; + return resolution_direction; } -void CollisionSystem::determine_collision_handler(CollisionInfo & info) { - // Check rigidbody type for static - if (info.this_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) return; - // If second body is static perform the static collision handler in this system - if (info.other_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) { - this->static_collision_handler(info); +CollisionSystem::CollisionInfo CollisionSystem::get_collision_info(const CollisionInternal & in_self, const CollisionInternal & in_other) const{ + + crepe::CollisionSystem::ColliderInfo self { + .transform = in_self.info.transform, + .rigidbody = in_self.info.rigidbody, + .metadata = in_self.info.metadata, }; - // Call collision event for user - CollisionEvent data(info); - EventManager & emgr = this->mediator.event_manager; - emgr.trigger_event<CollisionEvent>(data, info.this_collider.game_object_id); + + crepe::CollisionSystem::ColliderInfo other { + .transform = in_other.info.transform, + .rigidbody = in_other.info.rigidbody, + .metadata = in_other.info.metadata, + }; + + struct CollisionInfo collision_info{ + .self = self, + .other = other, + .resolution = in_self.resolution, + .resolution_direction = in_self.resolution_direction, + }; + return collision_info; } -void CollisionSystem::static_collision_handler(CollisionInfo & info) { +void CollisionSystem::determine_collision_handler(const CollisionInfo & info) { + Rigidbody::BodyType self_type = info.self.rigidbody.data.body_type; + Rigidbody::BodyType other_type = info.other.rigidbody.data.body_type; + bool self_kinematic = info.self.rigidbody.data.kinematic_collision; + bool other_kinematic = info.other.rigidbody.data.kinematic_collision; + // Inverted collision info + CollisionInfo inverted = -info; + // If both objects are static skip handle call collision script + if (self_type == STATIC + && other_type == STATIC) + return; + + // First body is not dynamic + if (self_type != DYNAMIC) { + bool static_collision = self_type == STATIC && other_type == DYNAMIC; + bool kinematic_collision = self_type == KINEMATIC && other_type == DYNAMIC && self_kinematic; + + // Handle collision + if (static_collision || kinematic_collision) this->static_collision_handler(inverted); + // Call scripts + this->call_collision_events(inverted); + return; + } + + // Second body is not dynamic + if (other_type != DYNAMIC) { + bool static_collision = other_type == STATIC; + bool kinematic_collision = other_type == KINEMATIC && other_kinematic; + // Handle collision + if (static_collision || kinematic_collision) this->static_collision_handler(info); + // Call scripts + this->call_collision_events(info); + return; + } + + // Dynamic + // Handle collision + this->dynamic_collision_handler(info); + // Call scripts + this->call_collision_events(info); +} + +void CollisionSystem::static_collision_handler(const CollisionInfo & info) { + + vec2 & transform_pos = info.self.transform.position; + float elasticity = info.self.rigidbody.data.elasticity_coefficient; + vec2 & rigidbody_vel = info.self.rigidbody.data.linear_velocity; + // Move object back using calculate move back value - info.this_transform.position += info.resolution; + transform_pos += info.resolution; switch (info.resolution_direction) { case Direction::BOTH: //bounce - if (info.this_rigidbody.data.elastisity_coefficient > 0) { - info.this_rigidbody.data.linear_velocity - = -info.this_rigidbody.data.linear_velocity - * info.this_rigidbody.data.elastisity_coefficient; + if (elasticity > 0) { + rigidbody_vel = -rigidbody_vel * elasticity; } //stop movement else { - info.this_rigidbody.data.linear_velocity = {0, 0}; + rigidbody_vel = {0, 0}; } break; case Direction::Y_DIRECTION: // Bounce - if (info.this_rigidbody.data.elastisity_coefficient > 0) { - info.this_rigidbody.data.linear_velocity.y - = -info.this_rigidbody.data.linear_velocity.y - * info.this_rigidbody.data.elastisity_coefficient; + if (elasticity > 0) { + rigidbody_vel.y = -rigidbody_vel.y * elasticity; } // Stop movement else { - info.this_rigidbody.data.linear_velocity.y = 0; - info.this_transform.position.x -= info.resolution.x; + rigidbody_vel.y = 0; + transform_pos.x -= info.resolution.x; } break; case Direction::X_DIRECTION: // Bounce - if (info.this_rigidbody.data.elastisity_coefficient > 0) { - info.this_rigidbody.data.linear_velocity.x - = -info.this_rigidbody.data.linear_velocity.x - * info.this_rigidbody.data.elastisity_coefficient; + if (elasticity > 0) { + rigidbody_vel.x = -rigidbody_vel.x * elasticity; } // Stop movement else { - info.this_rigidbody.data.linear_velocity.x = 0; - info.this_transform.position.y -= info.resolution.y; + rigidbody_vel.x = 0; + transform_pos.y -= info.resolution.y; } break; case Direction::NONE: @@ -363,213 +513,85 @@ void CollisionSystem::static_collision_handler(CollisionInfo & info) { } } -std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>> -CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) { - - // TODO: - // If no colliders skip - // Check if colliders has rigidbody if not skip - - // TODO: - // If amount is higer than lets say 16 for now use quadtree otwerwise skip - // Quadtree code - // Quadtree is placed over the input vector +void CollisionSystem::dynamic_collision_handler(const CollisionInfo & info) { - // Return data of collided colliders which are variants - std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret; - //using visit to visit the variant to access the active and id. - for (size_t i = 0; i < colliders.size(); ++i) { - for (size_t j = i + 1; j < colliders.size(); ++j) { - if (colliders[i].id == colliders[j].id) continue; - if (!have_common_layer(colliders[i].rigidbody.data.collision_layers, - colliders[j].rigidbody.data.collision_layers)) - continue; - CollisionInternalType type - = get_collider_type(colliders[i].collider, colliders[j].collider); - if (!get_collision( - { - .collider = colliders[i].collider, - .transform = colliders[i].transform, - .rigidbody = colliders[i].rigidbody, - }, - { - .collider = colliders[j].collider, - .transform = colliders[j].transform, - .rigidbody = colliders[j].rigidbody, - }, - type)) - continue; - collisions_ret.emplace_back(colliders[i], colliders[j]); - } - } + vec2 & self_transform_pos = info.self.transform.position; + vec2 & other_transform_pos = info.other.transform.position; + float self_elasticity = info.self.rigidbody.data.elasticity_coefficient; + float other_elasticity = info.other.rigidbody.data.elasticity_coefficient; + vec2 & self_rigidbody_vel = info.self.rigidbody.data.linear_velocity; + vec2 & other_rigidbody_vel = info.other.rigidbody.data.linear_velocity; - return collisions_ret; -} + self_transform_pos += info.resolution / 2; + other_transform_pos += -(info.resolution / 2); -bool CollisionSystem::have_common_layer(const std::set<int> & layers1, - const std::set<int> & layers2) { + switch (info.resolution_direction) { + case Direction::BOTH: + if (self_elasticity > 0) { + self_rigidbody_vel = -self_rigidbody_vel * self_elasticity; + } else { + self_rigidbody_vel = {0, 0}; + } - // Check if any number is equal in the layers - for (int num : layers1) { - if (layers2.contains(num)) { - // Common layer found - return true; + if (other_elasticity > 0) { + other_rigidbody_vel = -other_rigidbody_vel * other_elasticity; + } else { + other_rigidbody_vel = {0, 0}; + } break; - } - } - // No common layer found - return false; -} + case Direction::Y_DIRECTION: + if (self_elasticity > 0) { + self_rigidbody_vel.y = -self_rigidbody_vel.y * self_elasticity; + } + // Stop movement + else { + self_rigidbody_vel.y = 0; + self_transform_pos.x -= info.resolution.x; + } -CollisionSystem::CollisionInternalType -CollisionSystem::get_collider_type(const collider_variant & collider1, - const collider_variant & collider2) const { - if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) { - if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) { - return CollisionInternalType::CIRCLE_CIRCLE; - } else { - return CollisionInternalType::CIRCLE_BOX; - } - } else { - if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) { - return CollisionInternalType::BOX_CIRCLE; - } else { - return CollisionInternalType::BOX_BOX; - } - } -} + if (other_elasticity > 0) { + other_rigidbody_vel.y = -other_rigidbody_vel.y * other_elasticity; + } + // Stop movement + else { + other_rigidbody_vel.y = 0; + other_transform_pos.x -= info.resolution.x; + } + break; + case Direction::X_DIRECTION: + if (self_elasticity > 0) { + self_rigidbody_vel.x = -self_rigidbody_vel.x * self_elasticity; + } + // Stop movement + else { + self_rigidbody_vel.x = 0; + self_transform_pos.y -= info.resolution.y; + } -bool CollisionSystem::get_collision(const CollisionInternal & first_info, - const CollisionInternal & second_info, - CollisionInternalType type) const { - switch (type) { - case CollisionInternalType::BOX_BOX: { - const BoxCollider & box_collider1 - = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider); - const BoxCollider & box_collider2 - = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider); - return this->get_box_box_collision(box_collider1, box_collider2, - first_info.transform, second_info.transform, - second_info.rigidbody, second_info.rigidbody); - } - case CollisionInternalType::BOX_CIRCLE: { - const BoxCollider & box_collider - = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider); - const CircleCollider & circle_collider - = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider); - return this->get_box_circle_collision( - box_collider, circle_collider, first_info.transform, second_info.transform, - second_info.rigidbody, second_info.rigidbody); - } - case CollisionInternalType::CIRCLE_CIRCLE: { - const CircleCollider & circle_collider1 - = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider); - const CircleCollider & circle_collider2 - = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider); - return this->get_circle_circle_collision( - circle_collider1, circle_collider2, first_info.transform, - second_info.transform, second_info.rigidbody, second_info.rigidbody); - } - case CollisionInternalType::CIRCLE_BOX: { - const CircleCollider & circle_collider - = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider); - const BoxCollider & box_collider - = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider); - return this->get_box_circle_collision( - box_collider, circle_collider, first_info.transform, second_info.transform, - second_info.rigidbody, second_info.rigidbody); - } + if (other_elasticity > 0) { + other_rigidbody_vel.x = -other_rigidbody_vel.x * other_elasticity; + } + // Stop movement + else { + other_rigidbody_vel.x = 0; + other_transform_pos.y -= info.resolution.y; + } + break; + case Direction::NONE: + // Not possible + break; } - return false; } -bool CollisionSystem::get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2, - const Transform & transform1, - const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const { - // Get current positions of colliders - vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1); - vec2 final_position2 = this->get_current_position(box2.offset, transform2, rigidbody2); - - // Calculate half-extents (half width and half height) - float half_width1 = box1.dimensions.x / 2.0; - float half_height1 = box1.dimensions.y / 2.0; - float half_width2 = box2.dimensions.x / 2.0; - float half_height2 = box2.dimensions.y / 2.0; - - // Check if the boxes overlap along the X and Y axes - return (final_position1.x + half_width1 > final_position2.x - half_width2 - && final_position1.x - half_width1 < final_position2.x + half_width2 - && final_position1.y + half_height1 > final_position2.y - half_height2 - && final_position1.y - half_height1 < final_position2.y + half_height2); -} - -bool CollisionSystem::get_box_circle_collision(const BoxCollider & box1, - const CircleCollider & circle2, - const Transform & transform1, - const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const { - // Get current positions of colliders - vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1); - vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2); - - // Calculate box half-extents - float half_width = box1.dimensions.x / 2.0; - float half_height = box1.dimensions.y / 2.0; - - // Find the closest point on the box to the circle's center - float closest_x = std::max(final_position1.x - half_width, - std::min(final_position2.x, final_position1.x + half_width)); - float closest_y = std::max(final_position1.y - half_height, - std::min(final_position2.y, final_position1.y + half_height)); - - // Calculate the distance squared between the circle's center and the closest point on the box - float distance_x = final_position2.x - closest_x; - float distance_y = final_position2.y - closest_y; - float distance_squared = distance_x * distance_x + distance_y * distance_y; - - // Compare distance squared with the square of the circle's radius - return distance_squared < circle2.radius * circle2.radius; -} - -bool CollisionSystem::get_circle_circle_collision(const CircleCollider & circle1, - const CircleCollider & circle2, - const Transform & transform1, - const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const { - // Get current positions of colliders - vec2 final_position1 = this->get_current_position(circle1.offset, transform1, rigidbody1); - vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2); - - float distance_x = final_position1.x - final_position2.x; - float distance_y = final_position1.y - final_position2.y; - float distance_squared = distance_x * distance_x + distance_y * distance_y; - - // Calculate the sum of the radii - float radius_sum = circle1.radius + circle2.radius; - - // Check if the distance between the centers is less than or equal to the sum of the radii - return distance_squared < radius_sum * radius_sum; +void CollisionSystem::call_collision_events(const CollisionInfo & info) { + CollisionEvent data(info); + CollisionEvent data_inverted(-info); + EventManager & emgr = this->mediator.event_manager; + emgr.trigger_event<CollisionEvent>(data, info.self.transform.game_object_id); + emgr.trigger_event<CollisionEvent>(data_inverted, + -info.self.transform.game_object_id); } -vec2 CollisionSystem::get_current_position(const vec2 & collider_offset, - const Transform & transform, - const Rigidbody & rigidbody) const { - // Get the rotation in radians - float radians1 = transform.rotation * (M_PI / 180.0); - // Calculate total offset with scale - vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale; - // Rotate - float rotated_total_offset_x1 - = total_offset.x * cos(radians1) - total_offset.y * sin(radians1); - float rotated_total_offset_y1 - = total_offset.x * sin(radians1) + total_offset.y * cos(radians1); - // Final positions considering scaling and rotation - return (transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1)); -} diff --git a/src/crepe/system/CollisionSystem.h b/src/crepe/system/CollisionSystem.h index 5b136c6..b7808f1 100644 --- a/src/crepe/system/CollisionSystem.h +++ b/src/crepe/system/CollisionSystem.h @@ -21,6 +21,41 @@ namespace crepe { class CollisionSystem : public System { public: using System::System; +private: + //! Enum representing movement directions during collision resolution. + enum class Direction { + //! No movement required. + NONE, + //! Movement in the X direction. + X_DIRECTION, + //! Movement in the Y direction. + Y_DIRECTION, + //! Movement in both X and Y directions. + BOTH, + }; +public: + + //! Structure representing components of the collider + struct ColliderInfo { + Transform & transform; + Rigidbody & rigidbody; + Metadata & metadata; + }; + + /** + * \brief Structure representing detailed collision information between two colliders. + * + * Includes information about the colliding objects and the resolution data for handling the collision. + */ + struct CollisionInfo { + ColliderInfo self; + ColliderInfo other; + //! The resolution vector for the collision. + vec2 resolution; + //! The direction of movement for resolving the collision. + Direction resolution_direction = Direction::NONE; + CollisionInfo operator - () const; + }; private: //! A variant type that can hold either a BoxCollider or a CircleCollider. @@ -33,12 +68,13 @@ private: CIRCLE_CIRCLE, BOX_CIRCLE, CIRCLE_BOX, + NONE, }; /** * \brief A structure to store the collision data of a single collider. * - * This structure all components and id that are for needed within this system when calculating or handeling collisions. + * This structure all components and id that are for needed within this system when calculating or handling collisions. * The transform and rigidbody are mostly needed for location and rotation. * In rigidbody additional info is written about what the body of the object is, * and how it should respond on a collision. @@ -46,43 +82,23 @@ private: struct CollisionInternal { game_object_id_t id = 0; collider_variant collider; - Transform & transform; - Rigidbody & rigidbody; - }; - - //! Enum representing movement directions during collision resolution. - enum class Direction { - //! No movement required. - NONE, - //! Movement in the X direction. - X_DIRECTION, - //! Movement in the Y direction. - Y_DIRECTION, - //! Movement in both X and Y directions. - BOTH - }; - -public: - /** - * \brief Structure representing detailed collision information between two colliders. - * - * Includes information about the colliding objects and the resolution data for handling the collision. - */ - struct CollisionInfo { - Collider & this_collider; - Transform & this_transform; - Rigidbody & this_rigidbody; - Metadata & this_metadata; - Collider & other_collider; - Transform & other_transform; - Rigidbody & other_rigidbody; - Metadata & other_metadata; - //! The resolution vector for the collision. + ColliderInfo info; vec2 resolution; - //! The direction of movement for resolving the collision. Direction resolution_direction = Direction::NONE; }; + //! Structure of a collider with additional components + template <typename ColliderType> + struct ColliderInternal { + ColliderType& collider; + Transform& transform; + Rigidbody& rigidbody; + }; + //! Predefined BoxColliderInternal. (System is only made for this type) + using BoxColliderInternal = ColliderInternal<BoxCollider>; + //! Predefined CircleColliderInternal. (System is only made for this type) + using CircleColliderInternal = ColliderInternal<CircleCollider>; + public: //! Updates the collision system by checking for collisions between colliders and handling them. void update() override; @@ -97,117 +113,93 @@ private: * \param collider2 Second collider variant (BoxCollider or CircleCollider). * \return The combined type of the two colliders. */ - CollisionInternalType get_collider_type(const collider_variant & collider1, - const collider_variant & collider2) const; - - /** - * \brief Calculates the current position of a collider. - * - * Combines the Collider offset, Transform position, and Rigidbody offset to compute the position of the collider. - * - * \param collider_offset The offset of the collider. - * \param transform The Transform of the associated game object. - * \param rigidbody The Rigidbody of the associated game object. - * \return The calculated position of the collider. - */ - vec2 get_current_position(const vec2 & collider_offset, const Transform & transform, - const Rigidbody & rigidbody) const; + CollisionInternalType get_collider_type(const collider_variant & collider1, const collider_variant & collider2) const; private: /** - * \brief Handles collision resolution between two colliders. + * \brief Converts internal collision data into user-accessible collision information. * - * Processes collision data and adjusts objects to resolve collisions and/or calls the user oncollision script function. + * This function processes collision data from two colliding entities and packages it + * into a structured format that is accessible for further use, + * such as resolving collisions and triggering user-defined collision scripts. * * \param data1 Collision data for the first collider. * \param data2 Collision data for the second collider. */ - void collision_handler_request(CollisionInternal & data1, CollisionInternal & data2); + CollisionInfo get_collision_info(const CollisionInternal & data1, const CollisionInternal & data2) const; - /** - * \brief Resolves collision between two colliders and calculates the movement required. - * - * Determines the displacement and direction needed to separate colliders based on their types. - * - * \param data1 Collision data for the first collider. - * \param data2 Collision data for the second collider. - * \param type The type of collider pair. - * \return A pair containing the resolution vector and direction for the first collider. - */ - std::pair<vec2, Direction> collision_handler(CollisionInternal & data1, - CollisionInternal & data2, - CollisionInternalType type); /** - * \brief Calculates the resolution vector for two BoxColliders. + * \brief Corrects the collision resolution vector and determines its direction. * - * Computes the displacement required to separate two overlapping BoxColliders. + * This function adjusts the provided resolution vector based on the + * rigidbody's linear velocity to ensure consistent collision correction. If the resolution + * vector has only one non-zero component (either x or y), the missing component is computed + * based on the rigidbody's velocity. If both components are non-zero, it indicates a corner + * collision. The function also identifies the direction of the resolution and returns it. * - * \param box_collider1 The first BoxCollider. - * \param box_collider2 The second BoxCollider. - * \param position1 The position of the first BoxCollider. - * \param position2 The position of the second BoxCollider. - * \return The resolution vector for the collision. + * \param resolution resolution vector that needs to be corrected + * \param rigidbody rigidbody data used to correct resolution + * \return A Direction indicating the resolution direction */ - vec2 get_box_box_resolution(const BoxCollider & box_collider1, - const BoxCollider & box_collider2, const vec2 & position1, - const vec2 & position2) const; + Direction resolution_correction(vec2 & resolution,const Rigidbody::Data & rigidbody); + /** - * \brief Calculates the resolution vector for two CircleCollider. + * \brief Determines the appropriate collision handler for a given collision event. * - * Computes the displacement required to separate two overlapping CircleCollider. + * This function identifies the correct collision resolution process based on the body types + * of the colliders involved in the collision. It delegates + * collision handling to specific handlers and calls collision event scripts + * as needed. * - * \param circle_collider1 The first CircleCollider. - * \param circle_collider2 The second CircleCollider. - * \param final_position1 The position of the first CircleCollider. - * \param final_position2 The position of the second CircleCollider. - * \return The resolution vector for the collision. + * \param info Collision information containing data about both colliders. */ - vec2 get_circle_circle_resolution(const CircleCollider & circle_collider1, - const CircleCollider & circle_collider2, - const vec2 & final_position1, - const vec2 & final_position2) const; + void determine_collision_handler(const CollisionInfo & info); /** - * \brief Calculates the resolution vector for two CircleCollider. + * \brief Calls both collision script * - * Computes the displacement required to separate two overlapping CircleCollider. + * Calls both collision script to let user add additonal handling or handle full collision. * - * \param circle_collider The first CircleCollider. - * \param box_collider The second CircleCollider. - * \param circle_position The position of the CircleCollider. - * \param box_position The position of the BoxCollider. - * \return The resolution vector for the collision. + * \param info Collision information containing data about both colliders. */ - vec2 get_circle_box_resolution(const CircleCollider & circle_collider, - const BoxCollider & box_collider, - const vec2 & circle_position, - const vec2 & box_position) const; + void call_collision_events(const CollisionInfo & info); /** - * \brief Determines the appropriate collision handler for a collision. + * \brief Handles collisions involving static objects. + * + * This function resolves collisions between static and dynamic objects by adjusting + * the position of the static object and modifying the velocity of the dynamic object + * if elasticity is enabled. The position of the static object is corrected + * based on the collision resolution, and the dynamic object's velocity is adjusted + * accordingly to reflect the collision response. * - * Decides the correct resolution process based on the dynamic or static nature of the colliders involved. + * The handling includes stopping movement, applying bouncing based on the elasticity + * coefficient, and adjusting the position of the dynamic object if needed. * * \param info Collision information containing data about both colliders. */ - void determine_collision_handler(CollisionInfo & info); + void static_collision_handler(const CollisionInfo & info); /** - * \brief Handles collisions involving static objects. + * \brief Handles collisions involving dynamic objects. * - * Resolves collisions by adjusting positions and modifying velocities if bounce is enabled. + * Resolves collisions between two dynamic objects by adjusting their positions and modifying + * their velocities based on the collision resolution. If elasticity is enabled, + * the velocity of both objects is reversed and scaled by the respective elasticity coefficient. + * The positions of the objects are adjusted based on the collision resolution. * * \param info Collision information containing data about both colliders. */ - void static_collision_handler(CollisionInfo & info); + void dynamic_collision_handler(const CollisionInfo & info); private: /** * \brief Checks for collisions between colliders. * - * Identifies collisions and generates pairs of colliding objects for further processing. + * This function checks all active colliders and identifies pairs of colliding objects. + * For each identified collision, the appropriate collision data is returned as pairs for further processing. * * \param colliders A collection of all active colliders. * \return A list of collision pairs with their associated data. @@ -216,86 +208,72 @@ private: gather_collisions(std::vector<CollisionInternal> & colliders); /** - * \brief Checks if two collision layers have at least one common layer. + * \brief Checks if the settings allow collision * - * This function checks if there is any overlapping layer between the two inputs. - * It compares each layer from the first input to see - * if it exists in the second input. If at least one common layer is found, - * the function returns true, indicating that the two colliders share a common - * collision layer. + * This function checks if there is any collison layer where each object is located in. + * After checking the layers it checks the names and at last the tags. + * if in all three sets nothing is found collision can not happen. * - * \param layers1 all collision layers for the first collider. - * \param layers2 all collision layers for the second collider. - * \return Returns true if there is at least one common layer, false otherwise. + * \param this_rigidbody Rigidbody of first object + * \param other_rigidbody Rigidbody of second collider + * \param this_metadata Rigidbody of first object + * \param other_metadata Rigidbody of second object + * \return Returns true if there is at least one comparison found. */ - - bool have_common_layer(const std::set<int> & layers1, const std::set<int> & layers2); + bool should_collide(const CollisionInternal & self, const CollisionInternal & other) const; //done /** * \brief Checks for collision between two colliders. * - * Calls the appropriate collision detection function based on the collider types. + * This function determines whether two colliders are colliding based on their types. + * It calls the appropriate collision detection function based on the collider pair type and stores the collision resolution data. + * If a collision is detected, it returns true, otherwise false. * * \param first_info Collision data for the first collider. * \param second_info Collision data for the second collider. * \param type The type of collider pair. * \return True if a collision is detected, otherwise false. */ - bool get_collision(const CollisionInternal & first_info, - const CollisionInternal & second_info, - CollisionInternalType type) const; + bool detect_collision(CollisionInternal & first_info, CollisionInternal & second_info, const CollisionInternalType & type); /** * \brief Detects collisions between two BoxColliders. * - * \param box1 The first BoxCollider. - * \param box2 The second BoxCollider. - * \param transform1 Transform of the first object. - * \param transform2 Transform of the second object. - * \param rigidbody1 Rigidbody of the first object. - * \param rigidbody2 Rigidbody of the second object. - * \return True if a collision is detected, otherwise false. + * This function checks whether two `BoxCollider` are colliding based on their positions and scaled dimensions. + * If a collision is detected, it calculates the overlap along the X and Y axes and returns the resolution vector. + * If no collision is detected, it returns a vector with NaN values. + + * \param box1 Information about the first BoxCollider. + * \param box2 Information about the second BoxCollider. + * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}. */ - bool get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2, - const Transform & transform1, const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const; + vec2 get_box_box_detection(const BoxColliderInternal & box1, const BoxColliderInternal & box2) const; /** * \brief Check collision for box on circle collider * - * \param box1 The BoxCollider - * \param circle2 The CircleCollider - * \param transform1 Transform of the first object. - * \param transform2 Transform of the second object. - * \param rigidbody1 Rigidbody of the first object. - * \param rigidbody2 Rigidbody of the second object. - * \return True if a collision is detected, otherwise false. + * This function detects if a collision occurs between a rectangular box and a circular collider. + * If a collision is detected, the function calculates the resolution vector to resolve the collision. + * If no collision is detected, it returns a vector with NaN values + * + * \param box1 Information about the BoxCollider. + * \param circle2 Information about the circleCollider. + * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}. */ - bool get_box_circle_collision(const BoxCollider & box1, const CircleCollider & circle2, - const Transform & transform1, const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const; + vec2 get_box_circle_detection(const BoxColliderInternal & box1, const CircleColliderInternal & circle2) const; /** * \brief Check collision for circle on circle collider * - * \param circle1 First CircleCollider - * \param circle2 Second CircleCollider - * \param transform1 Transform of the first object. - * \param transform2 Transform of the second object. - * \param rigidbody1 Rigidbody of the first object. - * \param rigidbody2 Rigidbody of the second object. - * \return True if a collision is detected, otherwise false. + * This function detects if a collision occurs between two circular colliders. + * If a collision is detected, it calculates the resolution vector to resolve the collision. + * If no collision is detected, it returns a vector with NaN values. * - * \return status of collision + * \param circle1 Information about the first circleCollider. + * \param circle2 Information about the second circleCollider. + * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}. */ - bool get_circle_circle_collision(const CircleCollider & circle1, - const CircleCollider & circle2, - const Transform & transform1, - const Transform & transform2, - const Rigidbody & rigidbody1, - const Rigidbody & rigidbody2) const; + vec2 get_circle_circle_detection(const CircleColliderInternal & circle1, const CircleColliderInternal & circle2) const; }; /** diff --git a/src/crepe/system/ParticleSystem.cpp b/src/crepe/system/ParticleSystem.cpp index 35a1d41..31c1800 100644 --- a/src/crepe/system/ParticleSystem.cpp +++ b/src/crepe/system/ParticleSystem.cpp @@ -7,6 +7,7 @@ #include "../api/Transform.h" #include "../manager/ComponentManager.h" #include "../manager/LoopTimerManager.h" +#include "util/AbsolutePosition.h" #include "ParticleSystem.h" @@ -48,9 +49,9 @@ void ParticleSystem::update() { void ParticleSystem::emit_particle(ParticleEmitter & emitter, const Transform & transform) { constexpr float DEG_TO_RAD = M_PI / 180.0; - vec2 initial_position = emitter.data.offset + transform.position; + vec2 initial_position = AbsolutePosition::get_position(transform, emitter.data.offset); float random_angle - = this->generate_random_angle(emitter.data.min_angle, emitter.data.max_angle); + = this->generate_random_angle(emitter.data.min_angle+transform.rotation, emitter.data.max_angle+transform.rotation); float random_speed = this->generate_random_speed(emitter.data.min_speed, emitter.data.max_speed); diff --git a/src/crepe/system/RenderSystem.cpp b/src/crepe/system/RenderSystem.cpp index e8339c3..9d8e683 100644 --- a/src/crepe/system/RenderSystem.cpp +++ b/src/crepe/system/RenderSystem.cpp @@ -16,6 +16,7 @@ #include "../facade/Texture.h" #include "../manager/ComponentManager.h" #include "../manager/ResourceManager.h" +#include "util/AbsolutePosition.h" #include "api/Text.h" #include "facade/Font.h" @@ -134,11 +135,11 @@ void RenderSystem::render_normal(const Sprite & sprite, const Transform & transf SDLContext & ctx = this->mediator.sdl_context; ResourceManager & resource_manager = this->mediator.resource_manager; const Texture & res = resource_manager.get<Texture>(sprite.source); - + vec2 pos = AbsolutePosition::get_position(transform, sprite.data.position_offset); ctx.draw(SDLContext::RenderContext{ .sprite = sprite, .texture = res, - .pos = transform.position, + .pos = pos, .angle = transform.rotation, .scale = transform.scale, }); |