aboutsummaryrefslogtreecommitdiff
path: root/src/crepe/system/CollisionSystem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/crepe/system/CollisionSystem.cpp')
-rw-r--r--src/crepe/system/CollisionSystem.cpp359
1 files changed, 358 insertions, 1 deletions
diff --git a/src/crepe/system/CollisionSystem.cpp b/src/crepe/system/CollisionSystem.cpp
index c74ca1d..1a30e3f 100644
--- a/src/crepe/system/CollisionSystem.cpp
+++ b/src/crepe/system/CollisionSystem.cpp
@@ -1,5 +1,362 @@
+#include <cmath>
+#include <algorithm>
+#include <cstddef>
+#include <utility>
+#include <variant>
+
+#include "api/Event.h"
+#include "api/EventManager.h"
+#include "api/BoxCollider.h"
+#include "api/CircleCollider.h"
+#include "api/Vector2.h"
+#include "api/Rigidbody.h"
+#include "api/Transform.h"
+
+#include "ComponentManager.h"
#include "CollisionSystem.h"
+#include "Collider.h"
using namespace crepe;
-void CollisionSystem::update() {}
+void CollisionSystem::update() {
+ // Get collider components and keep them seperate
+ ComponentManager & mgr = this->component_manager;
+ std::vector<std::reference_wrapper<BoxCollider>> boxcolliders = mgr.get_components_by_type<BoxCollider>();
+ std::vector<std::reference_wrapper<CircleCollider>> circlecolliders = mgr.get_components_by_type<CircleCollider>();
+
+ // Check between all colliders if there is a collision
+ std::vector<std::pair<CollidedInfoStor,CollidedInfoStor>> collided = check_collisions(boxcolliders,circlecolliders);
+
+ // For both objects call the collision handler
+ for (auto& collision_pair : collided) {
+ collision_handler(collision_pair.first,collision_pair.second);
+ collision_handler(collision_pair.second,collision_pair.first);
+ }
+}
+
+void CollisionSystem::collision_handler(CollidedInfoStor& data1,CollidedInfoStor& data2){
+
+ // Data needed for collision handler info
+ const Collider* collider1 = nullptr;
+ const Collider* collider2 = nullptr;
+ Vector2 move_back;
+
+ // Check collision type and get values for handler
+ if (std::holds_alternative<BoxCollider>(data1.collider)) {
+ if (std::holds_alternative<BoxCollider>(data2.collider)) {
+
+ // Get colliders from variant to be used to determine collision handler info
+ const BoxCollider& box_collider1 = std::get<BoxCollider>(data1.collider);
+ const BoxCollider& box_collider2 = std::get<BoxCollider>(data2.collider);
+ collider1 = &box_collider1;
+ collider2 = &box_collider2;
+
+ // TODO: send with the collider info to this function because this is calculated previously
+ // Get the current position of the collider
+ Vector2 final_position1 = current_position(box_collider1,data1.transform,data1.rigidbody);
+ Vector2 final_position2 = current_position(box_collider2,data2.transform,data2.rigidbody);
+
+ // Determine move_back value for smallest overlap (x or y)
+ move_back = box_box_collision_move_back(box_collider1,box_collider2,final_position1,final_position2);
+
+ }
+ else {
+ // TODO: calcualte Box - Circle collision info
+ const BoxCollider& box_collider = std::get<BoxCollider>(data1.collider);
+ const CircleCollider& circle_collider = std::get<CircleCollider>(data2.collider);
+ collider1 = &box_collider;
+ collider2 = &circle_collider;
+ }
+ }
+ else {
+ if (std::holds_alternative<CircleCollider>(data2.collider)) {
+ // TODO: calcualte Circle - Circle collision info
+ const CircleCollider& circle_collider1 = std::get<CircleCollider>(data1.collider);
+ const CircleCollider& circle_collider2 = std::get<CircleCollider>(data2.collider);
+ collider1 = &circle_collider1;
+ collider2 = &circle_collider2;
+ }
+ else {
+ // TODO: calcualte Circle - Box collision info
+ const CircleCollider& circle_collider = std::get<CircleCollider>(data1.collider);
+ const BoxCollider& box_collider = std::get<BoxCollider>(data2.collider);
+ collider1 = &circle_collider;
+ collider2 = &box_collider;
+ }
+ }
+
+ // One vaue is calculated for moving back. Calculate the other value (x or y) relateive to the move_back value.
+ Direction move_back_direction = Direction::NONE;
+ if(move_back.x != 0 && move_back.y > 0) {
+ move_back_direction = Direction::BOTH;
+ } else if (move_back.x != 0) {
+ move_back_direction = Direction::X_DIRECTION;
+ move_back.y = data1.rigidbody.data.linear_velocity.y * (move_back.x/data1.rigidbody.data.linear_velocity.x);
+ } else if (move_back.y != 0) {
+ move_back_direction = Direction::Y_DIRECTION;
+ move_back.x = data1.rigidbody.data.linear_velocity.x * (move_back.y/data1.rigidbody.data.linear_velocity.y);
+ }
+
+ // collision info
+ crepe::CollisionSystem::CollisionInfo collision_info{
+ .first={ *collider1, data1.transform, data1.rigidbody },
+ .second={ *collider2, data2.transform, data2.rigidbody },
+ .move_back_value = move_back,
+ .move_back_direction = move_back_direction,
+ };
+
+ // Determine if static needs to be called
+ determine_collision_handler(collision_info);
+}
+
+
+Vector2 CollisionSystem::box_box_collision_move_back(const BoxCollider& box_collider1,const BoxCollider& box_collider2,Vector2 final_position1,Vector2 final_position2)
+{
+ Vector2 resolution; // Default resolution vector
+ Vector2 delta = final_position2 - final_position1;
+
+ // Compute half-dimensions of the boxes
+ double half_width1 = box_collider1.width / 2.0;
+ double half_height1 = box_collider1.height / 2.0;
+ double half_width2 = box_collider2.width / 2.0;
+ double half_height2 = box_collider2.height / 2.0;
+
+ // Calculate overlaps along X and Y axes
+ double overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
+ double overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
+
+ // Check if there is a collision
+ if (overlap_x > 0 && overlap_y > 0) {//should always be true check if this can be removed
+ // Determine the direction of resolution
+ if (overlap_x < overlap_y) {
+ // Resolve along the X-axis (smallest overlap)
+ resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
+ } else if (overlap_y < overlap_x) {
+ // Resolve along the Y-axis (smallest overlap)
+ resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
+ } else {
+ // Equal overlap, resolve both directions with preference
+ resolution.x = (delta.x > 0) ? -overlap_x : overlap_x;
+ resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
+ }
+ }
+
+ return resolution;
+}
+
+void CollisionSystem::determine_collision_handler(CollisionInfo& info){
+ // Check rigidbody type for static
+ if(info.first.rigidbody.data.body_type != Rigidbody::BodyType::STATIC)
+ {
+ // If second body is static perform the static collision handler in this system
+ if(info.second.rigidbody.data.body_type == Rigidbody::BodyType::STATIC){
+ static_collision_handler(info);
+ };
+ // Call collision event for user
+ CollisionEvent data(info);
+ EventManager::get_instance().trigger_event<CollisionEvent>(data, info.first.collider.game_object_id);
+ }
+}
+
+void CollisionSystem::static_collision_handler(CollisionInfo& info){
+ // Move object back using calculate move back value
+ info.first.transform.position += info.move_back_value;
+
+ // If bounce is enabled mirror velocity
+ if(info.first.rigidbody.data.bounce) {
+ if(info.move_back_direction == Direction::BOTH)
+ {
+ info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.elastisity;
+ info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.elastisity;
+ }
+ else if(info.move_back_direction == Direction::Y_DIRECTION) {
+ info.first.rigidbody.data.linear_velocity.y = -info.first.rigidbody.data.linear_velocity.y * info.first.rigidbody.data.elastisity;
+ }
+ else if(info.move_back_direction == Direction::X_DIRECTION){
+ info.first.rigidbody.data.linear_velocity.x = -info.first.rigidbody.data.linear_velocity.x * info.first.rigidbody.data.elastisity;
+ }
+ }
+ // Stop movement if bounce is disabled
+ else {
+ info.first.rigidbody.data.linear_velocity = {0,0};
+ }
+}
+
+std::vector<std::pair<CollisionSystem::CollidedInfoStor,CollisionSystem::CollidedInfoStor>> CollisionSystem::check_collisions(const std::vector<std::reference_wrapper<BoxCollider>>& boxcolliders, const std::vector<std::reference_wrapper<CircleCollider>>& circlecolliders) {
+ ComponentManager & mgr = this->component_manager;
+ std::vector<std::pair<CollidedInfoStor,CollidedInfoStor>> collisions_ret;
+
+ // TODO:
+ // If no colliders skip
+ // Check if colliders has rigidbody if not skip
+
+ // TODO:
+ // If amount is higer than lets say 16 for now use quadtree otwerwise skip
+ // Quadtree code
+ // Quadtree is placed over the input vector
+
+ // Check collisions for each collider
+ for (size_t i = 0; i < boxcolliders.size(); ++i) {
+ // Fetch components for the first box collider
+ if(!boxcolliders[i].get().active) continue;
+ int game_object_id_1 = boxcolliders[i].get().game_object_id;
+ Transform& transform1 = mgr.get_components_by_id<Transform>(game_object_id_1).front().get();
+ if(!transform1.active) continue;
+ Rigidbody& rigidbody1 = mgr.get_components_by_id<Rigidbody>(game_object_id_1).front().get();
+ if(!rigidbody1.active) continue;
+
+ // Check BoxCollider vs BoxCollider
+ for (size_t j = i + 1; j < boxcolliders.size(); ++j) {
+ if(!boxcolliders[j].get().active) continue;
+ // Skip self collision
+ int game_object_id_2 = boxcolliders[j].get().game_object_id;
+ if (game_object_id_1 == game_object_id_2) continue;
+
+ // Fetch components for the second box collider
+ Transform & transform2 = mgr.get_components_by_id<Transform>(boxcolliders[j].get().game_object_id).front().get();
+ if(!transform2.active) continue;
+ Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(boxcolliders[j].get().game_object_id).front().get();
+ if(!rigidbody2.active) continue;
+ // Check collision
+ if (check_box_box_collision(boxcolliders[i], boxcolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
+ collisions_ret.emplace_back(std::make_pair(
+ CollidedInfoStor{boxcolliders[i], transform1, rigidbody1},
+ CollidedInfoStor{boxcolliders[j], transform2, rigidbody2}
+ ));
+ }
+ }
+
+ // Check BoxCollider vs CircleCollider
+ for (size_t j = 0; j < circlecolliders.size(); ++j) {
+ if(!circlecolliders[j].get().active) continue;
+ // Skip self collision
+ int game_object_id_2 = circlecolliders[j].get().game_object_id;
+ if (game_object_id_1 == game_object_id_2) continue;
+
+ // Fetch components for the second collider (circle)
+ Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
+ if(!transform2.active) continue;
+ Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
+ if(!rigidbody2.active) continue;
+
+ // Check collision
+ if (check_box_circle_collision(boxcolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
+
+ collisions_ret.emplace_back(std::make_pair(
+ CollidedInfoStor{boxcolliders[i], transform1, rigidbody1},
+ CollidedInfoStor{circlecolliders[j], transform2, rigidbody2}
+ ));
+ }
+ }
+ }
+ // Check CircleCollider vs CircleCollider
+ for (size_t i = 0; i < circlecolliders.size(); ++i) {
+ if(!circlecolliders[i].get().active) continue;
+ // Fetch components for the first circle collider
+ int game_object_id_1 = circlecolliders[i].get().game_object_id;
+ Transform & transform1 = mgr.get_components_by_id<Transform>(circlecolliders[i].get().game_object_id).front().get();
+ if(!transform1.active) continue;
+ Rigidbody & rigidbody1 = mgr.get_components_by_id<Rigidbody>(circlecolliders[i].get().game_object_id).front().get();
+ if(!rigidbody1.active) continue;
+
+ for (size_t j = i + 1; j < circlecolliders.size(); ++j) {
+ if(!circlecolliders[j].get().active) continue;
+ // Skip self collision
+ int game_object_id_2 = circlecolliders[j].get().game_object_id;
+ if (game_object_id_1 == game_object_id_2) continue;
+
+ // Fetch components for the second circle collider
+ Transform & transform2 = mgr.get_components_by_id<Transform>(circlecolliders[j].get().game_object_id).front().get();
+ if(!transform2.active) continue;
+ Rigidbody & rigidbody2 = mgr.get_components_by_id<Rigidbody>(circlecolliders[j].get().game_object_id).front().get();
+ if(!rigidbody2.active) continue;
+
+ // Check collision
+ if (check_circle_circle_collision(circlecolliders[i], circlecolliders[j], transform1, transform2, rigidbody1, rigidbody2)) {
+ collisions_ret.emplace_back(std::make_pair(
+ CollidedInfoStor{circlecolliders[i], transform1, rigidbody1},
+ CollidedInfoStor{circlecolliders[j], transform2, rigidbody2}
+ ));
+ }
+ }
+ }
+ return collisions_ret;
+}
+
+bool CollisionSystem::check_box_box_collision(const BoxCollider& box1, const BoxCollider& box2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2)
+{
+ // Get current positions of colliders
+ Vector2 final_position1 = current_position(box1,transform1,rigidbody1);
+ Vector2 final_position2 = current_position(box2,transform2,rigidbody2);
+
+ // Calculate half-extents (half width and half height)
+ double half_width1 = box1.width / 2.0;
+ double half_height1 = box1.height / 2.0;
+ double half_width2 = box2.width / 2.0;
+ double half_height2 = box2.height / 2.0;
+
+ // Check if the boxes overlap along the X and Y axes
+ return !(final_position1.x + half_width1 <= final_position2.x - half_width2 || // box1 is left of box2
+ final_position1.x - half_width1 >= final_position2.x + half_width2 || // box1 is right of box2
+ final_position1.y + half_height1 <= final_position2.y - half_height2 || // box1 is above box2
+ final_position1.y - half_height1 >= final_position2.y + half_height2); // box1 is below box2
+}
+
+bool CollisionSystem::check_box_circle_collision(const BoxCollider& box1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
+ // Get current positions of colliders
+ Vector2 final_position1 = current_position(box1, transform1, rigidbody1);
+ Vector2 final_position2 = current_position(circle2, transform2, rigidbody2);
+
+ // Calculate box half-extents
+ double half_width = box1.width / 2.0;
+ double half_height = box1.height / 2.0;
+
+ // Find the closest point on the box to the circle's center
+ double closest_x = std::max(final_position1.x - half_width, std::min(final_position2.x, final_position1.x + half_width));
+ double closest_y = std::max(final_position1.y - half_height, std::min(final_position2.y, final_position1.y + half_height));
+
+ // Calculate the distance squared between the circle's center and the closest point on the box
+ double distance_x = final_position2.x - closest_x;
+ double distance_y = final_position2.y - closest_y;
+ double distance_squared = distance_x * distance_x + distance_y * distance_y;
+
+ // Compare distance squared with the square of the circle's radius
+ return distance_squared <= circle2.radius * circle2.radius;
+}
+
+bool CollisionSystem::check_circle_circle_collision(const CircleCollider& circle1, const CircleCollider& circle2, const Transform& transform1, const Transform& transform2, const Rigidbody& rigidbody1, const Rigidbody& rigidbody2) {
+ // Get current positions of colliders
+ Vector2 final_position1 = current_position(circle1,transform1,rigidbody1);
+ Vector2 final_position2 = current_position(circle2,transform2,rigidbody2);
+
+ double distance_x = final_position1.x - final_position2.x;
+ double distance_y = final_position1.y - final_position2.y;
+ double distance_squared = distance_x * distance_x + distance_y * distance_y;
+
+ // Calculate the sum of the radii
+ double radius_sum = circle1.radius + circle2.radius;
+
+ // Check if the distance between the centers is less than or equal to the sum of the radii
+ return distance_squared <= radius_sum * radius_sum;
+}
+
+Vector2 CollisionSystem::current_position(const Collider& collider, const Transform& transform, const Rigidbody& rigidbody) {
+ // Function to convert degrees to radians
+ auto degrees_to_radians = [](double degrees) {
+ return degrees * (M_PI / 180.0);
+ };
+
+ // Get the rotation in radians
+ double radians1 = degrees_to_radians(transform.rotation);
+
+ // Calculate total offset with scale
+ Vector2 total_offset = (rigidbody.data.offset + collider.offset) * transform.scale;
+
+ // Rotate
+ double rotated_total_offset_x1 = total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
+ double rotated_total_offset_y1 = total_offset.x * sin(radians1) + total_offset.y * cos(radians1);
+
+ // Final positions considering scaling and rotation
+ return(transform.position + Vector2(rotated_total_offset_x1, rotated_total_offset_y1));
+
+}