aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/crepe/api/Rigidbody.h46
-rw-r--r--src/crepe/system/CollisionSystem.cpp850
-rw-r--r--src/crepe/system/CollisionSystem.h288
-rw-r--r--src/crepe/system/ParticleSystem.cpp5
-rw-r--r--src/crepe/system/RenderSystem.cpp5
-rw-r--r--src/example/CMakeLists.txt1
-rw-r--r--src/example/game.cpp71
-rw-r--r--src/test/CollisionTest.cpp94
-rw-r--r--src/test/Profiling.cpp2
9 files changed, 691 insertions, 671 deletions
diff --git a/src/crepe/api/Rigidbody.h b/src/crepe/api/Rigidbody.h
index 6900295..28c376b 100644
--- a/src/crepe/api/Rigidbody.h
+++ b/src/crepe/api/Rigidbody.h
@@ -2,6 +2,7 @@
#include <cmath>
#include <set>
+#include <string>
#include "../Component.h"
@@ -120,26 +121,51 @@ public:
* above 0.0.
*
*/
- float elastisity_coefficient = 0.0;
+ float elasticity_coefficient = 0.0;
/**
- * \brief Offset of all colliders relative to the object's transform position.
+ * \brief Enables collision handling for objects colliding with kinematic objects.
+ *
+ * Enables collision handling for objects colliding with kinematic objects in the collision system.
+ * If `kinematic_collision` is true, dynamic objects cannot pass through this kinematic object.
+ * This ensures that kinematic objects delegate collision handling to the collision system.
+ */
+ bool kinematic_collision = true;
+
+ /**
+ * \brief Defines the collision layers a GameObject interacts with.
*
- * The `offset` defines a positional shift applied to all colliders associated with the object, relative to the object's
- * transform position. This allows for the colliders to be placed at a different position than the object's actual
- * position, without modifying the object's transform itself.
+ * The `collision_layers` represent the set of layers the GameObject can detect collisions with.
+ * Each element in this set corresponds to a layer ID. The GameObject will only collide with other
+ * GameObjects that belong to one these layers.
+ */
+ std::set<int> collision_layers = {0};
+
+ /**
+ * \brief Specifies the collision layer of the GameObject.
*
+ * The `collision_layer` indicates the single layer that this GameObject belongs to.
+ * This determines which layers other objects must match to detect collisions with this object.
*/
- vec2 offset;
+ int collision_layer = 0;
/**
* \brief Defines the collision layers of a GameObject.
*
- * The `collision_layers` specifies the layers that the GameObject will collide with.
- * Each element represents a layer ID, and the GameObject will only detect
- * collisions with other GameObjects that belong to these layers.
+ * The `collision_names` specifies where the GameObject will collide with.
+ * Each element represents a name from the Metadata of the gameobject.
*/
- std::set<int> collision_layers = {0};
+ std::set<std::string> collision_names;
+
+ /**
+ * \brief Defines the collision layers of a GameObject.
+ *
+ * The `collision_tags` specifies where the GameObject will collide with.
+ * Each element represents a tag from the Metadata of the gameobject.
+ */
+ std::set<std::string> collision_tags;
+
+
};
public:
diff --git a/src/crepe/system/CollisionSystem.cpp b/src/crepe/system/CollisionSystem.cpp
index af8adce..00b56a4 100644
--- a/src/crepe/system/CollisionSystem.cpp
+++ b/src/crepe/system/CollisionSystem.cpp
@@ -1,6 +1,7 @@
#include <algorithm>
#include <cmath>
#include <cstddef>
+#include <emmintrin.h>
#include <functional>
#include <optional>
#include <utility>
@@ -15,13 +16,23 @@
#include "api/Rigidbody.h"
#include "api/Transform.h"
#include "api/Vector2.h"
+#include "util/AbsolutePosition.h"
+#include "util/OptionalRef.h"
-#include "Collider.h"
#include "CollisionSystem.h"
#include "types.h"
-#include "util/OptionalRef.h"
using namespace crepe;
+using enum Rigidbody::BodyType;
+
+CollisionSystem::CollisionInfo CollisionSystem::CollisionInfo::operator-() const {
+ return {
+ .self = this->other,
+ .other = this->self,
+ .resolution = -this->resolution,
+ .resolution_direction = this->resolution_direction,
+ };
+}
void CollisionSystem::update() {
std::vector<CollisionInternal> all_colliders;
@@ -33,6 +44,7 @@ void CollisionSystem::update() {
if (!rigidbody.active) continue;
id = rigidbody.game_object_id;
Transform & transform = mgr.get_components_by_id<Transform>(id).front().get();
+ Metadata & metadata = mgr.get_components_by_id<Metadata>(id).front().get();
// Check if the boxcollider is active and has the same id as the rigidbody.
RefVector<BoxCollider> boxcolliders = mgr.get_components_by_type<BoxCollider>();
for (BoxCollider & boxcollider : boxcolliders) {
@@ -40,8 +52,8 @@ void CollisionSystem::update() {
if (!boxcollider.active) continue;
all_colliders.push_back({.id = id,
.collider = collider_variant{boxcollider},
- .transform = transform,
- .rigidbody = rigidbody});
+ .info = {transform,rigidbody, metadata}
+ });
}
// Check if the circlecollider is active and has the same id as the rigidbody.
RefVector<CircleCollider> circlecolliders
@@ -51,183 +63,217 @@ void CollisionSystem::update() {
if (!circlecollider.active) continue;
all_colliders.push_back({.id = id,
.collider = collider_variant{circlecollider},
- .transform = transform,
- .rigidbody = rigidbody});
+ .info = {transform,rigidbody, metadata}
+ });
}
}
- // Check between all colliders if there is a collision
+ // Check between all colliders if there is a collision (collision handling)
std::vector<std::pair<CollisionInternal, CollisionInternal>> collided
= this->gather_collisions(all_colliders);
- // For both objects call the collision handler
+ // For the object convert the info and call the collision handler if needed
for (auto & collision_pair : collided) {
- this->collision_handler_request(collision_pair.first, collision_pair.second);
- this->collision_handler_request(collision_pair.second, collision_pair.first);
+ // Convert internal struct to external struct
+ CollisionInfo info = this->get_collision_info(collision_pair.first, collision_pair.second);
+ // Determine if and/or what collison handler is needed.
+ this->determine_collision_handler(info);
}
}
-void CollisionSystem::collision_handler_request(CollisionInternal & this_data,
- CollisionInternal & other_data) {
+// Below is for collision detection
+std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>>
+CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) {
- CollisionInternalType type
- = this->get_collider_type(this_data.collider, other_data.collider);
- std::pair<vec2, CollisionSystem::Direction> resolution_data
- = this->collision_handler(this_data, other_data, type);
- ComponentManager & mgr = this->mediator.component_manager;
- OptionalRef<Metadata> this_metadata
- = mgr.get_components_by_id<Metadata>(this_data.id).front().get();
- OptionalRef<Metadata> other_metadata
- = mgr.get_components_by_id<Metadata>(other_data.id).front().get();
- OptionalRef<Collider> this_collider;
- OptionalRef<Collider> other_collider;
- switch (type) {
- case CollisionInternalType::BOX_BOX: {
- this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider);
- other_collider
- = std::get<std::reference_wrapper<BoxCollider>>(other_data.collider);
- break;
- }
- case CollisionInternalType::BOX_CIRCLE: {
- this_collider = std::get<std::reference_wrapper<BoxCollider>>(this_data.collider);
- other_collider
- = std::get<std::reference_wrapper<CircleCollider>>(other_data.collider);
- break;
- }
- case CollisionInternalType::CIRCLE_BOX: {
- this_collider
- = std::get<std::reference_wrapper<CircleCollider>>(this_data.collider);
- other_collider
- = std::get<std::reference_wrapper<BoxCollider>>(other_data.collider);
- break;
- }
- case CollisionInternalType::CIRCLE_CIRCLE: {
- this_collider
- = std::get<std::reference_wrapper<CircleCollider>>(this_data.collider);
- other_collider
- = std::get<std::reference_wrapper<CircleCollider>>(other_data.collider);
- break;
+ // TODO:
+ // If no colliders skip
+ // Check if colliders has rigidbody if not skip
+
+ // TODO:
+ // If amount is higer than lets say 16 for now use quadtree otwerwise skip
+ // Quadtree code
+ // Quadtree is placed over the input vector
+
+ // Return data of collided colliders which are variants
+ std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret;
+ //using visit to visit the variant to access the active and id.
+ for (size_t i = 0; i < colliders.size(); ++i) {
+ for (size_t j = i + 1; j < colliders.size(); ++j) {
+ if (colliders[i].id == colliders[j].id) continue;
+ if (!should_collide(colliders[i], colliders[j])) continue;
+ CollisionInternalType type = get_collider_type(colliders[i].collider, colliders[j].collider);
+ if (!detect_collision(colliders[i],colliders[j],type)) continue;
+ //fet
+ collisions_ret.emplace_back(colliders[i], colliders[j]);
}
}
+ return collisions_ret;
+}
- // collision info
- crepe::CollisionSystem::CollisionInfo collision_info{
- .this_collider = this_collider,
- .this_transform = this_data.transform,
- .this_rigidbody = this_data.rigidbody,
- .this_metadata = this_metadata,
- .other_collider = other_collider,
- .other_transform = other_data.transform,
- .other_rigidbody = other_data.rigidbody,
- .other_metadata = other_metadata,
- .resolution = resolution_data.first,
- .resolution_direction = resolution_data.second,
- };
- // Determine if static needs to be called
- this->determine_collision_handler(collision_info);
+bool CollisionSystem::should_collide(const CollisionInternal & self, const CollisionInternal & other) const{
+
+ const Rigidbody::Data & self_rigidbody = self.info.rigidbody.data;
+ const Rigidbody::Data & other_rigidbody = other.info.rigidbody.data;
+ const Metadata & self_metadata = self.info.metadata;
+ const Metadata & other_metadata = other.info.metadata;
+
+ // Check collision layers
+ if(self_rigidbody.collision_layers.contains(other_rigidbody.collision_layer)) return true;
+ if(other_rigidbody.collision_layers.contains(self_rigidbody.collision_layer)) return true;
+
+ // Check names
+ if(self_rigidbody.collision_names.contains(other_metadata.name)) return true;
+ if(other_rigidbody.collision_names.contains(self_metadata.name)) return true;
+
+ // Check tags
+ if(self_rigidbody.collision_tags.contains(other_metadata.tag)) return true;
+ if(other_rigidbody.collision_tags.contains(self_metadata.tag)) return true;
+
+ return false;
+}
+
+
+CollisionSystem::CollisionInternalType
+CollisionSystem::get_collider_type(const collider_variant & collider1,
+ const collider_variant & collider2) const {
+ if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) {
+ if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
+ return CollisionInternalType::CIRCLE_CIRCLE;
+ } else {
+ return CollisionInternalType::CIRCLE_BOX;
+ }
+ } else {
+ if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
+ return CollisionInternalType::BOX_CIRCLE;
+ } else {
+ return CollisionInternalType::BOX_BOX;
+ }
+ }
}
-std::pair<vec2, CollisionSystem::Direction>
-CollisionSystem::collision_handler(CollisionInternal & data1, CollisionInternal & data2,
- CollisionInternalType type) {
+bool CollisionSystem::detect_collision(CollisionInternal & self,CollisionInternal & other,const CollisionInternalType & type) {
vec2 resolution;
switch (type) {
- case CollisionInternalType::BOX_BOX: {
- const BoxCollider & collider1
- = std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
- const BoxCollider & collider2
- = std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
- vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
- data1.rigidbody);
- vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
- data2.rigidbody);
- resolution = this->get_box_box_resolution(collider1, collider2, collider_pos1,
- collider_pos2);
+ case CollisionInternalType::BOX_BOX: {
+ // Box-Box collision detection
+ const BoxColliderInternal BOX1 = {
+ .collider = std::get<std::reference_wrapper<BoxCollider>>(self.collider),
+ .transform = self.info.transform,
+ .rigidbody = self.info.rigidbody
+ };
+ const BoxColliderInternal BOX2 = {
+ .collider = std::get<std::reference_wrapper<BoxCollider>>(other.collider),
+ .transform = other.info.transform,
+ .rigidbody = other.info.rigidbody
+ };
+ // Get resolution vector from box-box collision detection
+ resolution = this->get_box_box_detection(BOX1, BOX2);
+ // If no collision (NaN values), return false
+ if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
break;
+
}
case CollisionInternalType::BOX_CIRCLE: {
- const BoxCollider & collider1
- = std::get<std::reference_wrapper<BoxCollider>>(data1.collider);
- const CircleCollider & collider2
- = std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
- vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
- data1.rigidbody);
- vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
- data2.rigidbody);
- resolution = -this->get_circle_box_resolution(collider2, collider1, collider_pos2,
- collider_pos1);
+ // Box-Circle collision detection
+ const BoxColliderInternal BOX1 = {
+ .collider = std::get<std::reference_wrapper<BoxCollider>>(self.collider),
+ .transform = self.info.transform,
+ .rigidbody = self.info.rigidbody
+ };
+ const CircleColliderInternal CIRCLE2 = {
+ .collider = std::get<std::reference_wrapper<CircleCollider>>(other.collider),
+ .transform = other.info.transform,
+ .rigidbody = other.info.rigidbody
+ };
+ // Get resolution vector from box-circle collision detection
+ resolution = this->get_box_circle_detection(BOX1, CIRCLE2);
+ // If no collision (NaN values), return false
+ if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
+ // Invert the resolution vector for proper collision response
+ resolution = -resolution;
break;
}
- case CollisionInternalType::CIRCLE_CIRCLE: {
- const CircleCollider & collider1
- = std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
- const CircleCollider & collider2
- = std::get<std::reference_wrapper<CircleCollider>>(data2.collider);
- vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
- data1.rigidbody);
- vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
- data2.rigidbody);
- resolution = this->get_circle_circle_resolution(collider1, collider2,
- collider_pos1, collider_pos2);
+ case CollisionInternalType::CIRCLE_CIRCLE: {
+ // Circle-Circle collision detection
+ const CircleColliderInternal CIRCLE1 = {
+ .collider = std::get<std::reference_wrapper<CircleCollider>>(self.collider),
+ .transform = self.info.transform,
+ .rigidbody = self.info.rigidbody
+ };
+ const CircleColliderInternal CIRCLE2 = {
+ .collider = std::get<std::reference_wrapper<CircleCollider>>(other.collider),
+ .transform = other.info.transform,
+ .rigidbody = other.info.rigidbody
+ };
+ // Get resolution vector from circle-circle collision detection
+ resolution = this->get_circle_circle_detection(CIRCLE1,CIRCLE2);
+ // If no collision (NaN values), return false
+ if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
break;
}
- case CollisionInternalType::CIRCLE_BOX: {
- const CircleCollider & collider1
- = std::get<std::reference_wrapper<CircleCollider>>(data1.collider);
- const BoxCollider & collider2
- = std::get<std::reference_wrapper<BoxCollider>>(data2.collider);
- vec2 collider_pos1 = this->get_current_position(collider1.offset, data1.transform,
- data1.rigidbody);
- vec2 collider_pos2 = this->get_current_position(collider2.offset, data2.transform,
- data2.rigidbody);
- resolution = this->get_circle_box_resolution(collider1, collider2, collider_pos1,
- collider_pos2);
+ case CollisionInternalType::CIRCLE_BOX: {
+ // Circle-Box collision detection
+ const CircleColliderInternal CIRCLE1 = {
+ .collider = std::get<std::reference_wrapper<CircleCollider>>(self.collider),
+ .transform = self.info.transform,
+ .rigidbody = self.info.rigidbody
+ };
+ const BoxColliderInternal BOX2 = {
+ .collider = std::get<std::reference_wrapper<BoxCollider>>(other.collider),
+ .transform = other.info.transform,
+ .rigidbody = other.info.rigidbody
+ };
+ // Get resolution vector from box-circle collision detection (order swapped)
+ resolution = this->get_box_circle_detection(BOX2, CIRCLE1);
+ // If no collision (NaN values), return false
+ if(std::isnan(resolution.x) && std::isnan(resolution.y)) return false;
break;
}
+ case CollisionInternalType::NONE:
+ // No collision detection needed if the type is NONE
+ return false;
+ break;
}
+ // Store the calculated resolution vector for the 'self' collider
+ self.resolution = resolution;
+ // Calculate the resolution direction based on the rigidbody data
+ self.resolution_direction = this->resolution_correction(self.resolution, self.info.rigidbody.data);
+ // For the 'other' collider, the resolution is the opposite direction of 'self'
+ other.resolution = -self.resolution;
+ other.resolution_direction = self.resolution_direction;
+
+ // Return true if a collision was detected and resolution was calculated
+ return true;
+}
- Direction resolution_direction = Direction::NONE;
- if (resolution.x != 0 && resolution.y != 0) {
- resolution_direction = Direction::BOTH;
- } else if (resolution.x != 0) {
- resolution_direction = Direction::X_DIRECTION;
- //checks if the other velocity has a value and if this object moved
- if (data1.rigidbody.data.linear_velocity.x != 0
- && data1.rigidbody.data.linear_velocity.y != 0)
- resolution.y = -data1.rigidbody.data.linear_velocity.y
- * (resolution.x / data1.rigidbody.data.linear_velocity.x);
- } else if (resolution.y != 0) {
- resolution_direction = Direction::Y_DIRECTION;
- //checks if the other velocity has a value and if this object moved
- if (data1.rigidbody.data.linear_velocity.x != 0
- && data1.rigidbody.data.linear_velocity.y != 0)
- resolution.x = -data1.rigidbody.data.linear_velocity.x
- * (resolution.y / data1.rigidbody.data.linear_velocity.y);
- }
+vec2 CollisionSystem::get_box_box_detection(const BoxColliderInternal & box1, const BoxColliderInternal & box2) const {
+ vec2 resolution{std::nanf(""), std::nanf("")};
+ // Get current positions of colliders
+ vec2 pos1 = AbsolutePosition::get_position(box1.transform, box1.collider.offset);
+ vec2 pos2 = AbsolutePosition::get_position(box2.transform, box2.collider.offset);
+
+ // Scale dimensions
+ vec2 scaled_box1 = box1.collider.dimensions * box1.transform.scale;
+ vec2 scaled_box2 = box2.collider.dimensions * box2.transform.scale;
+ vec2 delta = pos2 - pos1;
- return std::make_pair(resolution, resolution_direction);
-}
-vec2 CollisionSystem::get_box_box_resolution(const BoxCollider & box_collider1,
- const BoxCollider & box_collider2,
- const vec2 & final_position1,
- const vec2 & final_position2) const {
- vec2 resolution; // Default resolution vector
- vec2 delta = final_position2 - final_position1;
-
- // Compute half-dimensions of the boxes
- float half_width1 = box_collider1.dimensions.x / 2.0;
- float half_height1 = box_collider1.dimensions.y / 2.0;
- float half_width2 = box_collider2.dimensions.x / 2.0;
- float half_height2 = box_collider2.dimensions.y / 2.0;
-
- // Calculate overlaps along X and Y axes
- float overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
- float overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
-
- // Check if there is a collision should always be true
- if (overlap_x > 0 && overlap_y > 0) {
+ // Calculate half-extents (half width and half height)
+ float half_width1 = scaled_box1.x / 2.0;
+ float half_height1 = scaled_box1.y / 2.0;
+ float half_width2 = scaled_box2.x / 2.0;
+ float half_height2 = scaled_box2.y / 2.0;
+
+ if (pos1.x + half_width1 > pos2.x - half_width2
+ && pos1.x - half_width1 < pos2.x + half_width2
+ && pos1.y + half_height1 > pos2.y - half_height2
+ && pos1.y - half_height1 < pos2.y + half_height2)
+ {
+ resolution = {0,0};
+ float overlap_x = (half_width1 + half_width2) - std::abs(delta.x);
+ float overlap_y = (half_height1 + half_height2) - std::abs(delta.y);
+ if (overlap_x > 0 && overlap_y > 0) {
// Determine the direction of resolution
if (overlap_x < overlap_y) {
// Resolve along the X-axis (smallest overlap)
@@ -241,120 +287,224 @@ vec2 CollisionSystem::get_box_box_resolution(const BoxCollider & box_collider1,
resolution.y = (delta.y > 0) ? -overlap_y : overlap_y;
}
}
-
+ }
return resolution;
}
-vec2 CollisionSystem::get_circle_circle_resolution(const CircleCollider & circle_collider1,
- const CircleCollider & circle_collider2,
- const vec2 & final_position1,
- const vec2 & final_position2) const {
- vec2 delta = final_position2 - final_position1;
+vec2 CollisionSystem::get_box_circle_detection(const BoxColliderInternal & box, const CircleColliderInternal & circle) const {
+ /// Get current positions of colliders
+ vec2 box_pos = AbsolutePosition::get_position(box.transform, box.collider.offset);
+ vec2 circle_pos = AbsolutePosition::get_position(circle.transform, circle.collider.offset);
+
+ // Scale dimensions
+ vec2 scaled_box = box.collider.dimensions * box.transform.scale;
+ float scaled_circle_radius = circle.collider.radius * circle.transform.scale;
+
+ // Calculate box half-extents
+ float half_width = scaled_box.x / 2.0f;
+ float half_height = scaled_box.y / 2.0f;
+
+ // Find the closest point on the box to the circle's center
+ float closest_x = std::max(box_pos.x - half_width, std::min(circle_pos.x, box_pos.x + half_width));
+ float closest_y = std::max(box_pos.y - half_height, std::min(circle_pos.y, box_pos.y + half_height));
+
+ float distance_x = circle_pos.x - closest_x;
+ float distance_y = circle_pos.y - closest_y;
+ float distance_squared = distance_x * distance_x + distance_y * distance_y;
+ if(distance_squared < scaled_circle_radius * scaled_circle_radius){
+ vec2 delta = circle_pos - box_pos;
+
+ // Clamp circle center to the nearest point on the box
+ vec2 closest_point;
+ closest_point.x = std::clamp(delta.x, -half_width, half_width);
+ closest_point.y = std::clamp(delta.y, -half_height, half_height);
+
+ // Find the vector from the circle center to the closest point
+ vec2 closest_delta = delta - closest_point;
+
+ float distance = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y);
+ vec2 collision_normal = closest_delta / distance;
+
+ // Compute penetration depth
+ float penetration_depth = scaled_circle_radius - distance;
+
+ // Compute the resolution vector
+ return vec2{collision_normal * penetration_depth};
+ }
+ // No collision
+ return vec2{std::nanf(""), std::nanf("")};
+}
- // Compute the distance between the two circle centers
- float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y);
+vec2 CollisionSystem::get_circle_circle_detection(const CircleColliderInternal & circle1, const CircleColliderInternal & circle2) const {
+ // Get current positions of colliders
+ vec2 final_position1 = AbsolutePosition::get_position(circle1.transform, circle1.collider.offset);
+ vec2 final_position2 = AbsolutePosition::get_position(circle2.transform, circle2.collider.offset);
- // Compute the combined radii of the two circles
- float combined_radius = circle_collider1.radius + circle_collider2.radius;
+ // Scale dimensions
+ float scaled_circle1 = circle1.collider.radius * circle1.transform.scale;
+ float scaled_circle2 = circle2.collider.radius * circle2.transform.scale;
- // Compute the penetration depth
- float penetration_depth = combined_radius - distance;
+ float distance_x = final_position1.x - final_position2.x;
+ float distance_y = final_position1.y - final_position2.y;
+ float distance_squared = distance_x * distance_x + distance_y * distance_y;
- // Normalize the delta vector to get the collision direction
- vec2 collision_normal = delta / distance;
+ // Calculate the sum of the radii
+ float radius_sum = scaled_circle1 + scaled_circle2;
- // Compute the resolution vector
- vec2 resolution = -collision_normal * penetration_depth;
+ // Check for collision (distance squared must be less than the square of the radius sum)
+ if (distance_squared < radius_sum * radius_sum) {
+ vec2 delta = final_position2 - final_position1;
- return resolution;
-}
+ // Compute the distance between the two circle centers
+ float distance = std::sqrt(delta.x * delta.x + delta.y * delta.y);
-vec2 CollisionSystem::get_circle_box_resolution(const CircleCollider & circle_collider,
- const BoxCollider & box_collider,
- const vec2 & circle_position,
- const vec2 & box_position) const {
- vec2 delta = circle_position - box_position;
+ // Compute the combined radii of the two circles
+ float combined_radius = scaled_circle1 + scaled_circle2;
- // Compute half-dimensions of the box
- float half_width = box_collider.dimensions.x / 2.0f;
- float half_height = box_collider.dimensions.y / 2.0f;
+ // Compute the penetration depth
+ float penetration_depth = combined_radius - distance;
- // Clamp circle center to the nearest point on the box
- vec2 closest_point;
- closest_point.x = std::clamp(delta.x, -half_width, half_width);
- closest_point.y = std::clamp(delta.y, -half_height, half_height);
+ // Normalize the delta vector to get the collision direction
+ vec2 collision_normal = delta / distance;
- // Find the vector from the circle center to the closest point
- vec2 closest_delta = delta - closest_point;
+ // Compute the resolution vector
+ vec2 resolution = -collision_normal * penetration_depth;
- // Normalize the delta to get the collision direction
- float distance
- = std::sqrt(closest_delta.x * closest_delta.x + closest_delta.y * closest_delta.y);
- vec2 collision_normal = closest_delta / distance;
+ return resolution;
+ }
+ // No collision
+ return vec2{std::nanf(""), std::nanf("")};
+}
- // Compute penetration depth
- float penetration_depth = circle_collider.radius - distance;
+CollisionSystem::Direction CollisionSystem::resolution_correction(vec2 & resolution,const Rigidbody::Data & rigidbody) {
- // Compute the resolution vector
- vec2 resolution = collision_normal * penetration_depth;
+ // Calculate the other value to move back correctly
+ // If only X or Y has a value determine what is should be to move back.
+ Direction resolution_direction = Direction::NONE;
+ // If both are not zero a perfect corner has been hit
+ if (resolution.x != 0 && resolution.y != 0) {
+ resolution_direction = Direction::BOTH;
+ // If x is not zero a horizontal action was latest action.
+ } else if (resolution.x != 0) {
+ resolution_direction = Direction::X_DIRECTION;
+ // If both are 0 resolution y should not be changed (y_velocity can be 0 by kinematic object movement)
+ if (rigidbody.linear_velocity.x != 0 && rigidbody.linear_velocity.y != 0)
+ resolution.y = -rigidbody.linear_velocity.y * (resolution.x / rigidbody.linear_velocity.x);
+ } else if (resolution.y != 0) {
+ resolution_direction = Direction::Y_DIRECTION;
+ // If both are 0 resolution x should not be changed (x_velocity can be 0 by kinematic object movement)
+ if (rigidbody.linear_velocity.x != 0 && rigidbody.linear_velocity.y != 0)
+ resolution.x = -rigidbody.linear_velocity.x * (resolution.y / rigidbody.linear_velocity.y);
+ }
- return resolution;
+ return resolution_direction;
}
-void CollisionSystem::determine_collision_handler(CollisionInfo & info) {
- // Check rigidbody type for static
- if (info.this_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) return;
- // If second body is static perform the static collision handler in this system
- if (info.other_rigidbody.data.body_type == Rigidbody::BodyType::STATIC) {
- this->static_collision_handler(info);
+CollisionSystem::CollisionInfo CollisionSystem::get_collision_info(const CollisionInternal & in_self, const CollisionInternal & in_other) const{
+
+ crepe::CollisionSystem::ColliderInfo self {
+ .transform = in_self.info.transform,
+ .rigidbody = in_self.info.rigidbody,
+ .metadata = in_self.info.metadata,
};
- // Call collision event for user
- CollisionEvent data(info);
- EventManager & emgr = this->mediator.event_manager;
- emgr.trigger_event<CollisionEvent>(data, info.this_collider.game_object_id);
+
+ crepe::CollisionSystem::ColliderInfo other {
+ .transform = in_other.info.transform,
+ .rigidbody = in_other.info.rigidbody,
+ .metadata = in_other.info.metadata,
+ };
+
+ struct CollisionInfo collision_info{
+ .self = self,
+ .other = other,
+ .resolution = in_self.resolution,
+ .resolution_direction = in_self.resolution_direction,
+ };
+ return collision_info;
}
-void CollisionSystem::static_collision_handler(CollisionInfo & info) {
+void CollisionSystem::determine_collision_handler(const CollisionInfo & info) {
+ Rigidbody::BodyType self_type = info.self.rigidbody.data.body_type;
+ Rigidbody::BodyType other_type = info.other.rigidbody.data.body_type;
+ bool self_kinematic = info.self.rigidbody.data.kinematic_collision;
+ bool other_kinematic = info.other.rigidbody.data.kinematic_collision;
+ // Inverted collision info
+ CollisionInfo inverted = -info;
+ // If both objects are static skip handle call collision script
+ if (self_type == STATIC
+ && other_type == STATIC)
+ return;
+
+ // First body is not dynamic
+ if (self_type != DYNAMIC) {
+ bool static_collision = self_type == STATIC && other_type == DYNAMIC;
+ bool kinematic_collision = self_type == KINEMATIC && other_type == DYNAMIC && self_kinematic;
+
+ // Handle collision
+ if (static_collision || kinematic_collision) this->static_collision_handler(inverted);
+ // Call scripts
+ this->call_collision_events(inverted);
+ return;
+ }
+
+ // Second body is not dynamic
+ if (other_type != DYNAMIC) {
+ bool static_collision = other_type == STATIC;
+ bool kinematic_collision = other_type == KINEMATIC && other_kinematic;
+ // Handle collision
+ if (static_collision || kinematic_collision) this->static_collision_handler(info);
+ // Call scripts
+ this->call_collision_events(info);
+ return;
+ }
+
+ // Dynamic
+ // Handle collision
+ this->dynamic_collision_handler(info);
+ // Call scripts
+ this->call_collision_events(info);
+}
+
+void CollisionSystem::static_collision_handler(const CollisionInfo & info) {
+
+ vec2 & transform_pos = info.self.transform.position;
+ float elasticity = info.self.rigidbody.data.elasticity_coefficient;
+ vec2 & rigidbody_vel = info.self.rigidbody.data.linear_velocity;
+
// Move object back using calculate move back value
- info.this_transform.position += info.resolution;
+ transform_pos += info.resolution;
switch (info.resolution_direction) {
case Direction::BOTH:
//bounce
- if (info.this_rigidbody.data.elastisity_coefficient > 0) {
- info.this_rigidbody.data.linear_velocity
- = -info.this_rigidbody.data.linear_velocity
- * info.this_rigidbody.data.elastisity_coefficient;
+ if (elasticity > 0) {
+ rigidbody_vel = -rigidbody_vel * elasticity;
}
//stop movement
else {
- info.this_rigidbody.data.linear_velocity = {0, 0};
+ rigidbody_vel = {0, 0};
}
break;
case Direction::Y_DIRECTION:
// Bounce
- if (info.this_rigidbody.data.elastisity_coefficient > 0) {
- info.this_rigidbody.data.linear_velocity.y
- = -info.this_rigidbody.data.linear_velocity.y
- * info.this_rigidbody.data.elastisity_coefficient;
+ if (elasticity > 0) {
+ rigidbody_vel.y = -rigidbody_vel.y * elasticity;
}
// Stop movement
else {
- info.this_rigidbody.data.linear_velocity.y = 0;
- info.this_transform.position.x -= info.resolution.x;
+ rigidbody_vel.y = 0;
+ transform_pos.x -= info.resolution.x;
}
break;
case Direction::X_DIRECTION:
// Bounce
- if (info.this_rigidbody.data.elastisity_coefficient > 0) {
- info.this_rigidbody.data.linear_velocity.x
- = -info.this_rigidbody.data.linear_velocity.x
- * info.this_rigidbody.data.elastisity_coefficient;
+ if (elasticity > 0) {
+ rigidbody_vel.x = -rigidbody_vel.x * elasticity;
}
// Stop movement
else {
- info.this_rigidbody.data.linear_velocity.x = 0;
- info.this_transform.position.y -= info.resolution.y;
+ rigidbody_vel.x = 0;
+ transform_pos.y -= info.resolution.y;
}
break;
case Direction::NONE:
@@ -363,213 +513,85 @@ void CollisionSystem::static_collision_handler(CollisionInfo & info) {
}
}
-std::vector<std::pair<CollisionSystem::CollisionInternal, CollisionSystem::CollisionInternal>>
-CollisionSystem::gather_collisions(std::vector<CollisionInternal> & colliders) {
-
- // TODO:
- // If no colliders skip
- // Check if colliders has rigidbody if not skip
-
- // TODO:
- // If amount is higer than lets say 16 for now use quadtree otwerwise skip
- // Quadtree code
- // Quadtree is placed over the input vector
+void CollisionSystem::dynamic_collision_handler(const CollisionInfo & info) {
- // Return data of collided colliders which are variants
- std::vector<std::pair<CollisionInternal, CollisionInternal>> collisions_ret;
- //using visit to visit the variant to access the active and id.
- for (size_t i = 0; i < colliders.size(); ++i) {
- for (size_t j = i + 1; j < colliders.size(); ++j) {
- if (colliders[i].id == colliders[j].id) continue;
- if (!have_common_layer(colliders[i].rigidbody.data.collision_layers,
- colliders[j].rigidbody.data.collision_layers))
- continue;
- CollisionInternalType type
- = get_collider_type(colliders[i].collider, colliders[j].collider);
- if (!get_collision(
- {
- .collider = colliders[i].collider,
- .transform = colliders[i].transform,
- .rigidbody = colliders[i].rigidbody,
- },
- {
- .collider = colliders[j].collider,
- .transform = colliders[j].transform,
- .rigidbody = colliders[j].rigidbody,
- },
- type))
- continue;
- collisions_ret.emplace_back(colliders[i], colliders[j]);
- }
- }
+ vec2 & self_transform_pos = info.self.transform.position;
+ vec2 & other_transform_pos = info.other.transform.position;
+ float self_elasticity = info.self.rigidbody.data.elasticity_coefficient;
+ float other_elasticity = info.other.rigidbody.data.elasticity_coefficient;
+ vec2 & self_rigidbody_vel = info.self.rigidbody.data.linear_velocity;
+ vec2 & other_rigidbody_vel = info.other.rigidbody.data.linear_velocity;
- return collisions_ret;
-}
+ self_transform_pos += info.resolution / 2;
+ other_transform_pos += -(info.resolution / 2);
-bool CollisionSystem::have_common_layer(const std::set<int> & layers1,
- const std::set<int> & layers2) {
+ switch (info.resolution_direction) {
+ case Direction::BOTH:
+ if (self_elasticity > 0) {
+ self_rigidbody_vel = -self_rigidbody_vel * self_elasticity;
+ } else {
+ self_rigidbody_vel = {0, 0};
+ }
- // Check if any number is equal in the layers
- for (int num : layers1) {
- if (layers2.contains(num)) {
- // Common layer found
- return true;
+ if (other_elasticity > 0) {
+ other_rigidbody_vel = -other_rigidbody_vel * other_elasticity;
+ } else {
+ other_rigidbody_vel = {0, 0};
+ }
break;
- }
- }
- // No common layer found
- return false;
-}
+ case Direction::Y_DIRECTION:
+ if (self_elasticity > 0) {
+ self_rigidbody_vel.y = -self_rigidbody_vel.y * self_elasticity;
+ }
+ // Stop movement
+ else {
+ self_rigidbody_vel.y = 0;
+ self_transform_pos.x -= info.resolution.x;
+ }
-CollisionSystem::CollisionInternalType
-CollisionSystem::get_collider_type(const collider_variant & collider1,
- const collider_variant & collider2) const {
- if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider1)) {
- if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
- return CollisionInternalType::CIRCLE_CIRCLE;
- } else {
- return CollisionInternalType::CIRCLE_BOX;
- }
- } else {
- if (std::holds_alternative<std::reference_wrapper<CircleCollider>>(collider2)) {
- return CollisionInternalType::BOX_CIRCLE;
- } else {
- return CollisionInternalType::BOX_BOX;
- }
- }
-}
+ if (other_elasticity > 0) {
+ other_rigidbody_vel.y = -other_rigidbody_vel.y * other_elasticity;
+ }
+ // Stop movement
+ else {
+ other_rigidbody_vel.y = 0;
+ other_transform_pos.x -= info.resolution.x;
+ }
+ break;
+ case Direction::X_DIRECTION:
+ if (self_elasticity > 0) {
+ self_rigidbody_vel.x = -self_rigidbody_vel.x * self_elasticity;
+ }
+ // Stop movement
+ else {
+ self_rigidbody_vel.x = 0;
+ self_transform_pos.y -= info.resolution.y;
+ }
-bool CollisionSystem::get_collision(const CollisionInternal & first_info,
- const CollisionInternal & second_info,
- CollisionInternalType type) const {
- switch (type) {
- case CollisionInternalType::BOX_BOX: {
- const BoxCollider & box_collider1
- = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider);
- const BoxCollider & box_collider2
- = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider);
- return this->get_box_box_collision(box_collider1, box_collider2,
- first_info.transform, second_info.transform,
- second_info.rigidbody, second_info.rigidbody);
- }
- case CollisionInternalType::BOX_CIRCLE: {
- const BoxCollider & box_collider
- = std::get<std::reference_wrapper<BoxCollider>>(first_info.collider);
- const CircleCollider & circle_collider
- = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider);
- return this->get_box_circle_collision(
- box_collider, circle_collider, first_info.transform, second_info.transform,
- second_info.rigidbody, second_info.rigidbody);
- }
- case CollisionInternalType::CIRCLE_CIRCLE: {
- const CircleCollider & circle_collider1
- = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider);
- const CircleCollider & circle_collider2
- = std::get<std::reference_wrapper<CircleCollider>>(second_info.collider);
- return this->get_circle_circle_collision(
- circle_collider1, circle_collider2, first_info.transform,
- second_info.transform, second_info.rigidbody, second_info.rigidbody);
- }
- case CollisionInternalType::CIRCLE_BOX: {
- const CircleCollider & circle_collider
- = std::get<std::reference_wrapper<CircleCollider>>(first_info.collider);
- const BoxCollider & box_collider
- = std::get<std::reference_wrapper<BoxCollider>>(second_info.collider);
- return this->get_box_circle_collision(
- box_collider, circle_collider, first_info.transform, second_info.transform,
- second_info.rigidbody, second_info.rigidbody);
- }
+ if (other_elasticity > 0) {
+ other_rigidbody_vel.x = -other_rigidbody_vel.x * other_elasticity;
+ }
+ // Stop movement
+ else {
+ other_rigidbody_vel.x = 0;
+ other_transform_pos.y -= info.resolution.y;
+ }
+ break;
+ case Direction::NONE:
+ // Not possible
+ break;
}
- return false;
}
-bool CollisionSystem::get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2,
- const Transform & transform1,
- const Transform & transform2,
- const Rigidbody & rigidbody1,
- const Rigidbody & rigidbody2) const {
- // Get current positions of colliders
- vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1);
- vec2 final_position2 = this->get_current_position(box2.offset, transform2, rigidbody2);
-
- // Calculate half-extents (half width and half height)
- float half_width1 = box1.dimensions.x / 2.0;
- float half_height1 = box1.dimensions.y / 2.0;
- float half_width2 = box2.dimensions.x / 2.0;
- float half_height2 = box2.dimensions.y / 2.0;
-
- // Check if the boxes overlap along the X and Y axes
- return (final_position1.x + half_width1 > final_position2.x - half_width2
- && final_position1.x - half_width1 < final_position2.x + half_width2
- && final_position1.y + half_height1 > final_position2.y - half_height2
- && final_position1.y - half_height1 < final_position2.y + half_height2);
-}
-
-bool CollisionSystem::get_box_circle_collision(const BoxCollider & box1,
- const CircleCollider & circle2,
- const Transform & transform1,
- const Transform & transform2,
- const Rigidbody & rigidbody1,
- const Rigidbody & rigidbody2) const {
- // Get current positions of colliders
- vec2 final_position1 = this->get_current_position(box1.offset, transform1, rigidbody1);
- vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2);
-
- // Calculate box half-extents
- float half_width = box1.dimensions.x / 2.0;
- float half_height = box1.dimensions.y / 2.0;
-
- // Find the closest point on the box to the circle's center
- float closest_x = std::max(final_position1.x - half_width,
- std::min(final_position2.x, final_position1.x + half_width));
- float closest_y = std::max(final_position1.y - half_height,
- std::min(final_position2.y, final_position1.y + half_height));
-
- // Calculate the distance squared between the circle's center and the closest point on the box
- float distance_x = final_position2.x - closest_x;
- float distance_y = final_position2.y - closest_y;
- float distance_squared = distance_x * distance_x + distance_y * distance_y;
-
- // Compare distance squared with the square of the circle's radius
- return distance_squared < circle2.radius * circle2.radius;
-}
-
-bool CollisionSystem::get_circle_circle_collision(const CircleCollider & circle1,
- const CircleCollider & circle2,
- const Transform & transform1,
- const Transform & transform2,
- const Rigidbody & rigidbody1,
- const Rigidbody & rigidbody2) const {
- // Get current positions of colliders
- vec2 final_position1 = this->get_current_position(circle1.offset, transform1, rigidbody1);
- vec2 final_position2 = this->get_current_position(circle2.offset, transform2, rigidbody2);
-
- float distance_x = final_position1.x - final_position2.x;
- float distance_y = final_position1.y - final_position2.y;
- float distance_squared = distance_x * distance_x + distance_y * distance_y;
-
- // Calculate the sum of the radii
- float radius_sum = circle1.radius + circle2.radius;
-
- // Check if the distance between the centers is less than or equal to the sum of the radii
- return distance_squared < radius_sum * radius_sum;
+void CollisionSystem::call_collision_events(const CollisionInfo & info) {
+ CollisionEvent data(info);
+ CollisionEvent data_inverted(-info);
+ EventManager & emgr = this->mediator.event_manager;
+ emgr.trigger_event<CollisionEvent>(data, info.self.transform.game_object_id);
+ emgr.trigger_event<CollisionEvent>(data_inverted,
+ -info.self.transform.game_object_id);
}
-vec2 CollisionSystem::get_current_position(const vec2 & collider_offset,
- const Transform & transform,
- const Rigidbody & rigidbody) const {
- // Get the rotation in radians
- float radians1 = transform.rotation * (M_PI / 180.0);
- // Calculate total offset with scale
- vec2 total_offset = (rigidbody.data.offset + collider_offset) * transform.scale;
- // Rotate
- float rotated_total_offset_x1
- = total_offset.x * cos(radians1) - total_offset.y * sin(radians1);
- float rotated_total_offset_y1
- = total_offset.x * sin(radians1) + total_offset.y * cos(radians1);
- // Final positions considering scaling and rotation
- return (transform.position + vec2(rotated_total_offset_x1, rotated_total_offset_y1));
-}
diff --git a/src/crepe/system/CollisionSystem.h b/src/crepe/system/CollisionSystem.h
index 5b136c6..b7808f1 100644
--- a/src/crepe/system/CollisionSystem.h
+++ b/src/crepe/system/CollisionSystem.h
@@ -21,6 +21,41 @@ namespace crepe {
class CollisionSystem : public System {
public:
using System::System;
+private:
+ //! Enum representing movement directions during collision resolution.
+ enum class Direction {
+ //! No movement required.
+ NONE,
+ //! Movement in the X direction.
+ X_DIRECTION,
+ //! Movement in the Y direction.
+ Y_DIRECTION,
+ //! Movement in both X and Y directions.
+ BOTH,
+ };
+public:
+
+ //! Structure representing components of the collider
+ struct ColliderInfo {
+ Transform & transform;
+ Rigidbody & rigidbody;
+ Metadata & metadata;
+ };
+
+ /**
+ * \brief Structure representing detailed collision information between two colliders.
+ *
+ * Includes information about the colliding objects and the resolution data for handling the collision.
+ */
+ struct CollisionInfo {
+ ColliderInfo self;
+ ColliderInfo other;
+ //! The resolution vector for the collision.
+ vec2 resolution;
+ //! The direction of movement for resolving the collision.
+ Direction resolution_direction = Direction::NONE;
+ CollisionInfo operator - () const;
+ };
private:
//! A variant type that can hold either a BoxCollider or a CircleCollider.
@@ -33,12 +68,13 @@ private:
CIRCLE_CIRCLE,
BOX_CIRCLE,
CIRCLE_BOX,
+ NONE,
};
/**
* \brief A structure to store the collision data of a single collider.
*
- * This structure all components and id that are for needed within this system when calculating or handeling collisions.
+ * This structure all components and id that are for needed within this system when calculating or handling collisions.
* The transform and rigidbody are mostly needed for location and rotation.
* In rigidbody additional info is written about what the body of the object is,
* and how it should respond on a collision.
@@ -46,43 +82,23 @@ private:
struct CollisionInternal {
game_object_id_t id = 0;
collider_variant collider;
- Transform & transform;
- Rigidbody & rigidbody;
- };
-
- //! Enum representing movement directions during collision resolution.
- enum class Direction {
- //! No movement required.
- NONE,
- //! Movement in the X direction.
- X_DIRECTION,
- //! Movement in the Y direction.
- Y_DIRECTION,
- //! Movement in both X and Y directions.
- BOTH
- };
-
-public:
- /**
- * \brief Structure representing detailed collision information between two colliders.
- *
- * Includes information about the colliding objects and the resolution data for handling the collision.
- */
- struct CollisionInfo {
- Collider & this_collider;
- Transform & this_transform;
- Rigidbody & this_rigidbody;
- Metadata & this_metadata;
- Collider & other_collider;
- Transform & other_transform;
- Rigidbody & other_rigidbody;
- Metadata & other_metadata;
- //! The resolution vector for the collision.
+ ColliderInfo info;
vec2 resolution;
- //! The direction of movement for resolving the collision.
Direction resolution_direction = Direction::NONE;
};
+ //! Structure of a collider with additional components
+ template <typename ColliderType>
+ struct ColliderInternal {
+ ColliderType& collider;
+ Transform& transform;
+ Rigidbody& rigidbody;
+ };
+ //! Predefined BoxColliderInternal. (System is only made for this type)
+ using BoxColliderInternal = ColliderInternal<BoxCollider>;
+ //! Predefined CircleColliderInternal. (System is only made for this type)
+ using CircleColliderInternal = ColliderInternal<CircleCollider>;
+
public:
//! Updates the collision system by checking for collisions between colliders and handling them.
void update() override;
@@ -97,117 +113,93 @@ private:
* \param collider2 Second collider variant (BoxCollider or CircleCollider).
* \return The combined type of the two colliders.
*/
- CollisionInternalType get_collider_type(const collider_variant & collider1,
- const collider_variant & collider2) const;
-
- /**
- * \brief Calculates the current position of a collider.
- *
- * Combines the Collider offset, Transform position, and Rigidbody offset to compute the position of the collider.
- *
- * \param collider_offset The offset of the collider.
- * \param transform The Transform of the associated game object.
- * \param rigidbody The Rigidbody of the associated game object.
- * \return The calculated position of the collider.
- */
- vec2 get_current_position(const vec2 & collider_offset, const Transform & transform,
- const Rigidbody & rigidbody) const;
+ CollisionInternalType get_collider_type(const collider_variant & collider1, const collider_variant & collider2) const;
private:
/**
- * \brief Handles collision resolution between two colliders.
+ * \brief Converts internal collision data into user-accessible collision information.
*
- * Processes collision data and adjusts objects to resolve collisions and/or calls the user oncollision script function.
+ * This function processes collision data from two colliding entities and packages it
+ * into a structured format that is accessible for further use,
+ * such as resolving collisions and triggering user-defined collision scripts.
*
* \param data1 Collision data for the first collider.
* \param data2 Collision data for the second collider.
*/
- void collision_handler_request(CollisionInternal & data1, CollisionInternal & data2);
+ CollisionInfo get_collision_info(const CollisionInternal & data1, const CollisionInternal & data2) const;
- /**
- * \brief Resolves collision between two colliders and calculates the movement required.
- *
- * Determines the displacement and direction needed to separate colliders based on their types.
- *
- * \param data1 Collision data for the first collider.
- * \param data2 Collision data for the second collider.
- * \param type The type of collider pair.
- * \return A pair containing the resolution vector and direction for the first collider.
- */
- std::pair<vec2, Direction> collision_handler(CollisionInternal & data1,
- CollisionInternal & data2,
- CollisionInternalType type);
/**
- * \brief Calculates the resolution vector for two BoxColliders.
+ * \brief Corrects the collision resolution vector and determines its direction.
*
- * Computes the displacement required to separate two overlapping BoxColliders.
+ * This function adjusts the provided resolution vector based on the
+ * rigidbody's linear velocity to ensure consistent collision correction. If the resolution
+ * vector has only one non-zero component (either x or y), the missing component is computed
+ * based on the rigidbody's velocity. If both components are non-zero, it indicates a corner
+ * collision. The function also identifies the direction of the resolution and returns it.
*
- * \param box_collider1 The first BoxCollider.
- * \param box_collider2 The second BoxCollider.
- * \param position1 The position of the first BoxCollider.
- * \param position2 The position of the second BoxCollider.
- * \return The resolution vector for the collision.
+ * \param resolution resolution vector that needs to be corrected
+ * \param rigidbody rigidbody data used to correct resolution
+ * \return A Direction indicating the resolution direction
*/
- vec2 get_box_box_resolution(const BoxCollider & box_collider1,
- const BoxCollider & box_collider2, const vec2 & position1,
- const vec2 & position2) const;
+ Direction resolution_correction(vec2 & resolution,const Rigidbody::Data & rigidbody);
+
/**
- * \brief Calculates the resolution vector for two CircleCollider.
+ * \brief Determines the appropriate collision handler for a given collision event.
*
- * Computes the displacement required to separate two overlapping CircleCollider.
+ * This function identifies the correct collision resolution process based on the body types
+ * of the colliders involved in the collision. It delegates
+ * collision handling to specific handlers and calls collision event scripts
+ * as needed.
*
- * \param circle_collider1 The first CircleCollider.
- * \param circle_collider2 The second CircleCollider.
- * \param final_position1 The position of the first CircleCollider.
- * \param final_position2 The position of the second CircleCollider.
- * \return The resolution vector for the collision.
+ * \param info Collision information containing data about both colliders.
*/
- vec2 get_circle_circle_resolution(const CircleCollider & circle_collider1,
- const CircleCollider & circle_collider2,
- const vec2 & final_position1,
- const vec2 & final_position2) const;
+ void determine_collision_handler(const CollisionInfo & info);
/**
- * \brief Calculates the resolution vector for two CircleCollider.
+ * \brief Calls both collision script
*
- * Computes the displacement required to separate two overlapping CircleCollider.
+ * Calls both collision script to let user add additonal handling or handle full collision.
*
- * \param circle_collider The first CircleCollider.
- * \param box_collider The second CircleCollider.
- * \param circle_position The position of the CircleCollider.
- * \param box_position The position of the BoxCollider.
- * \return The resolution vector for the collision.
+ * \param info Collision information containing data about both colliders.
*/
- vec2 get_circle_box_resolution(const CircleCollider & circle_collider,
- const BoxCollider & box_collider,
- const vec2 & circle_position,
- const vec2 & box_position) const;
+ void call_collision_events(const CollisionInfo & info);
/**
- * \brief Determines the appropriate collision handler for a collision.
+ * \brief Handles collisions involving static objects.
+ *
+ * This function resolves collisions between static and dynamic objects by adjusting
+ * the position of the static object and modifying the velocity of the dynamic object
+ * if elasticity is enabled. The position of the static object is corrected
+ * based on the collision resolution, and the dynamic object's velocity is adjusted
+ * accordingly to reflect the collision response.
*
- * Decides the correct resolution process based on the dynamic or static nature of the colliders involved.
+ * The handling includes stopping movement, applying bouncing based on the elasticity
+ * coefficient, and adjusting the position of the dynamic object if needed.
*
* \param info Collision information containing data about both colliders.
*/
- void determine_collision_handler(CollisionInfo & info);
+ void static_collision_handler(const CollisionInfo & info);
/**
- * \brief Handles collisions involving static objects.
+ * \brief Handles collisions involving dynamic objects.
*
- * Resolves collisions by adjusting positions and modifying velocities if bounce is enabled.
+ * Resolves collisions between two dynamic objects by adjusting their positions and modifying
+ * their velocities based on the collision resolution. If elasticity is enabled,
+ * the velocity of both objects is reversed and scaled by the respective elasticity coefficient.
+ * The positions of the objects are adjusted based on the collision resolution.
*
* \param info Collision information containing data about both colliders.
*/
- void static_collision_handler(CollisionInfo & info);
+ void dynamic_collision_handler(const CollisionInfo & info);
private:
/**
* \brief Checks for collisions between colliders.
*
- * Identifies collisions and generates pairs of colliding objects for further processing.
+ * This function checks all active colliders and identifies pairs of colliding objects.
+ * For each identified collision, the appropriate collision data is returned as pairs for further processing.
*
* \param colliders A collection of all active colliders.
* \return A list of collision pairs with their associated data.
@@ -216,86 +208,72 @@ private:
gather_collisions(std::vector<CollisionInternal> & colliders);
/**
- * \brief Checks if two collision layers have at least one common layer.
+ * \brief Checks if the settings allow collision
*
- * This function checks if there is any overlapping layer between the two inputs.
- * It compares each layer from the first input to see
- * if it exists in the second input. If at least one common layer is found,
- * the function returns true, indicating that the two colliders share a common
- * collision layer.
+ * This function checks if there is any collison layer where each object is located in.
+ * After checking the layers it checks the names and at last the tags.
+ * if in all three sets nothing is found collision can not happen.
*
- * \param layers1 all collision layers for the first collider.
- * \param layers2 all collision layers for the second collider.
- * \return Returns true if there is at least one common layer, false otherwise.
+ * \param this_rigidbody Rigidbody of first object
+ * \param other_rigidbody Rigidbody of second collider
+ * \param this_metadata Rigidbody of first object
+ * \param other_metadata Rigidbody of second object
+ * \return Returns true if there is at least one comparison found.
*/
-
- bool have_common_layer(const std::set<int> & layers1, const std::set<int> & layers2);
+ bool should_collide(const CollisionInternal & self, const CollisionInternal & other) const; //done
/**
* \brief Checks for collision between two colliders.
*
- * Calls the appropriate collision detection function based on the collider types.
+ * This function determines whether two colliders are colliding based on their types.
+ * It calls the appropriate collision detection function based on the collider pair type and stores the collision resolution data.
+ * If a collision is detected, it returns true, otherwise false.
*
* \param first_info Collision data for the first collider.
* \param second_info Collision data for the second collider.
* \param type The type of collider pair.
* \return True if a collision is detected, otherwise false.
*/
- bool get_collision(const CollisionInternal & first_info,
- const CollisionInternal & second_info,
- CollisionInternalType type) const;
+ bool detect_collision(CollisionInternal & first_info, CollisionInternal & second_info, const CollisionInternalType & type);
/**
* \brief Detects collisions between two BoxColliders.
*
- * \param box1 The first BoxCollider.
- * \param box2 The second BoxCollider.
- * \param transform1 Transform of the first object.
- * \param transform2 Transform of the second object.
- * \param rigidbody1 Rigidbody of the first object.
- * \param rigidbody2 Rigidbody of the second object.
- * \return True if a collision is detected, otherwise false.
+ * This function checks whether two `BoxCollider` are colliding based on their positions and scaled dimensions.
+ * If a collision is detected, it calculates the overlap along the X and Y axes and returns the resolution vector.
+ * If no collision is detected, it returns a vector with NaN values.
+
+ * \param box1 Information about the first BoxCollider.
+ * \param box2 Information about the second BoxCollider.
+ * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}.
*/
- bool get_box_box_collision(const BoxCollider & box1, const BoxCollider & box2,
- const Transform & transform1, const Transform & transform2,
- const Rigidbody & rigidbody1,
- const Rigidbody & rigidbody2) const;
+ vec2 get_box_box_detection(const BoxColliderInternal & box1, const BoxColliderInternal & box2) const;
/**
* \brief Check collision for box on circle collider
*
- * \param box1 The BoxCollider
- * \param circle2 The CircleCollider
- * \param transform1 Transform of the first object.
- * \param transform2 Transform of the second object.
- * \param rigidbody1 Rigidbody of the first object.
- * \param rigidbody2 Rigidbody of the second object.
- * \return True if a collision is detected, otherwise false.
+ * This function detects if a collision occurs between a rectangular box and a circular collider.
+ * If a collision is detected, the function calculates the resolution vector to resolve the collision.
+ * If no collision is detected, it returns a vector with NaN values
+ *
+ * \param box1 Information about the BoxCollider.
+ * \param circle2 Information about the circleCollider.
+ * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}.
*/
- bool get_box_circle_collision(const BoxCollider & box1, const CircleCollider & circle2,
- const Transform & transform1, const Transform & transform2,
- const Rigidbody & rigidbody1,
- const Rigidbody & rigidbody2) const;
+ vec2 get_box_circle_detection(const BoxColliderInternal & box1, const CircleColliderInternal & circle2) const;
/**
* \brief Check collision for circle on circle collider
*
- * \param circle1 First CircleCollider
- * \param circle2 Second CircleCollider
- * \param transform1 Transform of the first object.
- * \param transform2 Transform of the second object.
- * \param rigidbody1 Rigidbody of the first object.
- * \param rigidbody2 Rigidbody of the second object.
- * \return True if a collision is detected, otherwise false.
+ * This function detects if a collision occurs between two circular colliders.
+ * If a collision is detected, it calculates the resolution vector to resolve the collision.
+ * If no collision is detected, it returns a vector with NaN values.
*
- * \return status of collision
+ * \param circle1 Information about the first circleCollider.
+ * \param circle2 Information about the second circleCollider.
+ * \return If colliding, returns the resolution vector; otherwise, returns {NaN, NaN}.
*/
- bool get_circle_circle_collision(const CircleCollider & circle1,
- const CircleCollider & circle2,
- const Transform & transform1,
- const Transform & transform2,
- const Rigidbody & rigidbody1,
- const Rigidbody & rigidbody2) const;
+ vec2 get_circle_circle_detection(const CircleColliderInternal & circle1, const CircleColliderInternal & circle2) const;
};
/**
diff --git a/src/crepe/system/ParticleSystem.cpp b/src/crepe/system/ParticleSystem.cpp
index 35a1d41..31c1800 100644
--- a/src/crepe/system/ParticleSystem.cpp
+++ b/src/crepe/system/ParticleSystem.cpp
@@ -7,6 +7,7 @@
#include "../api/Transform.h"
#include "../manager/ComponentManager.h"
#include "../manager/LoopTimerManager.h"
+#include "util/AbsolutePosition.h"
#include "ParticleSystem.h"
@@ -48,9 +49,9 @@ void ParticleSystem::update() {
void ParticleSystem::emit_particle(ParticleEmitter & emitter, const Transform & transform) {
constexpr float DEG_TO_RAD = M_PI / 180.0;
- vec2 initial_position = emitter.data.offset + transform.position;
+ vec2 initial_position = AbsolutePosition::get_position(transform, emitter.data.offset);
float random_angle
- = this->generate_random_angle(emitter.data.min_angle, emitter.data.max_angle);
+ = this->generate_random_angle(emitter.data.min_angle+transform.rotation, emitter.data.max_angle+transform.rotation);
float random_speed
= this->generate_random_speed(emitter.data.min_speed, emitter.data.max_speed);
diff --git a/src/crepe/system/RenderSystem.cpp b/src/crepe/system/RenderSystem.cpp
index e8339c3..9d8e683 100644
--- a/src/crepe/system/RenderSystem.cpp
+++ b/src/crepe/system/RenderSystem.cpp
@@ -16,6 +16,7 @@
#include "../facade/Texture.h"
#include "../manager/ComponentManager.h"
#include "../manager/ResourceManager.h"
+#include "util/AbsolutePosition.h"
#include "api/Text.h"
#include "facade/Font.h"
@@ -134,11 +135,11 @@ void RenderSystem::render_normal(const Sprite & sprite, const Transform & transf
SDLContext & ctx = this->mediator.sdl_context;
ResourceManager & resource_manager = this->mediator.resource_manager;
const Texture & res = resource_manager.get<Texture>(sprite.source);
-
+ vec2 pos = AbsolutePosition::get_position(transform, sprite.data.position_offset);
ctx.draw(SDLContext::RenderContext{
.sprite = sprite,
.texture = res,
- .pos = transform.position,
+ .pos = pos,
.angle = transform.rotation,
.scale = transform.scale,
});
diff --git a/src/example/CMakeLists.txt b/src/example/CMakeLists.txt
index f62414e..2ee3051 100644
--- a/src/example/CMakeLists.txt
+++ b/src/example/CMakeLists.txt
@@ -22,3 +22,4 @@ add_example(button)
add_example(loadfont)
add_example(FontExample)
add_example(AITest)
+add_example(collisiontest)
diff --git a/src/example/game.cpp b/src/example/game.cpp
index 3975650..76ea8c2 100644
--- a/src/example/game.cpp
+++ b/src/example/game.cpp
@@ -4,6 +4,7 @@
#include "manager/ComponentManager.h"
#include "manager/Mediator.h"
#include "types.h"
+#include <cmath>
#include <crepe/api/BoxCollider.h>
#include <crepe/api/Camera.h>
#include <crepe/api/Color.h>
@@ -23,7 +24,7 @@ using namespace std;
class MyScript1 : public Script {
bool flip = false;
bool oncollision(const CollisionEvent & test) {
- Log::logf("Box {} script on_collision()", test.info.this_collider.game_object_id);
+ Log::logf("Box {} script on_collision()", test.info.self.metadata.game_object_id);
return true;
}
bool keypressed(const KeyPressEvent & test) {
@@ -68,11 +69,6 @@ class MyScript1 : public Script {
//add collider switch
break;
}
- case Keycode::Q: {
- Rigidbody & rg = this->get_component<Rigidbody>();
- rg.data.angular_velocity = 1;
- break;
- }
default:
break;
}
@@ -97,7 +93,7 @@ class MyScript1 : public Script {
class MyScript2 : public Script {
bool flip = false;
bool oncollision(const CollisionEvent & test) {
- Log::logf("Box {} script on_collision()", test.info.this_collider.game_object_id);
+ Log::logf("Box {} script on_collision()", test.info.self.metadata.game_object_id);
return true;
}
bool keypressed(const KeyPressEvent & test) {
@@ -141,6 +137,31 @@ class MyScript2 : public Script {
//add collider switch
break;
}
+ case Keycode::J: {
+ Rigidbody & tf = this->get_component<Rigidbody>();
+ tf.data.linear_velocity.x = -10;
+ break;
+ }
+ case Keycode::I: {
+ Rigidbody & tf = this->get_component<Rigidbody>();
+ tf.data.linear_velocity.y -= 1;
+ break;
+ }
+ case Keycode::K: {
+ Rigidbody & tf = this->get_component<Rigidbody>();
+ tf.data.linear_velocity.y += 1;
+ break;
+ }
+ case Keycode::L: {
+ Rigidbody & tf = this->get_component<Rigidbody>();
+ tf.data.linear_velocity.x = 10;
+ break;
+ }
+ case Keycode::O: {
+ Rigidbody & tf = this->get_component<Rigidbody>();
+ tf.data.linear_velocity.x = 0;
+ break;
+ }
default:
break;
}
@@ -174,10 +195,9 @@ public:
GameObject world = new_object(
"Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2}, 0, 1);
world.add_component<Rigidbody>(Rigidbody::Data{
- .mass = 0,
+ .mass = 1,
.gravity_scale = 0,
- .body_type = Rigidbody::BodyType::STATIC,
- .offset = {0, 0},
+ .body_type = Rigidbody::BodyType::DYNAMIC,
});
world.add_component<BoxCollider>(
vec2{world_collider, world_collider},
@@ -200,23 +220,25 @@ public:
});
GameObject game_object1 = new_object(
- "Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2}, 0, 1);
+ "Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2+20}, 0, 1);
game_object1.add_component<Rigidbody>(Rigidbody::Data{
.mass = 1,
- .gravity_scale = 1,
+ .gravity_scale = 0,
.body_type = Rigidbody::BodyType::DYNAMIC,
- .linear_velocity = {0, 1},
+ .linear_velocity = {0, 0},
.constraints = {0, 0, 0},
- .elastisity_coefficient = 0,
- .offset = {0, 0},
+ .elasticity_coefficient = 1,
});
// add box with boxcollider
game_object1.add_component<BoxCollider>(vec2{20, 20});
game_object1.add_component<BehaviorScript>().set_script<MyScript1>();
- Asset img1{"asset/texture/square.png"};
+ Asset img1{"asset/texture/test_ap43.png"};
game_object1.add_component<Sprite>(img1, Sprite::Data{
+ .sorting_in_layer = 2,
+ .order_in_layer = 2,
.size = {20, 20},
+ .position_offset = {0, 0},
});
//add circle with cirlcecollider deactiveated
@@ -231,15 +253,14 @@ public:
= false;
GameObject game_object2 = new_object(
- "Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2}, 0, 1);
+ "Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2}, 90, 1);
game_object2.add_component<Rigidbody>(Rigidbody::Data{
.mass = 1,
.gravity_scale = 0,
.body_type = Rigidbody::BodyType::STATIC,
.linear_velocity = {0, 0},
.constraints = {0, 0, 0},
- .elastisity_coefficient = 1,
- .offset = {0, 0},
+ .elasticity_coefficient = 1,
});
// add box with boxcollider
game_object2.add_component<BoxCollider>(vec2{20, 20});
@@ -247,6 +268,9 @@ public:
game_object2.add_component<Sprite>(img1, Sprite::Data{
.size = {20, 20},
+ .angle_offset = 45,
+ .scale_offset = 1,
+ .position_offset = {0,20},
});
//add circle with cirlcecollider deactiveated
@@ -262,15 +286,17 @@ public:
Asset img5{"asset/texture/square.png"};
GameObject particle = new_object(
- "Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2}, 0, 1);
+ "Name", "Tag", vec2{screen_size_width / 2, screen_size_height / 2}, 90, 1);
auto & particle_image = particle.add_component<Sprite>(img5, Sprite::Data{
.size = {5, 5},
+ .angle_offset = 45,
+ .scale_offset = 1,
});
auto & test
= particle.add_component<ParticleEmitter>(particle_image, ParticleEmitter::Data{
.offset = {0, 0},
.max_particles = 256,
- .emission_rate = 1,
+ .emission_rate = 4,
.min_speed = 10,
.max_speed = 20,
.min_angle = -20,
@@ -278,6 +304,9 @@ public:
.begin_lifespan = 0,
.end_lifespan = 5,
});
+ particle.add_component<Rigidbody>(Rigidbody::Data{
+ .angular_velocity = 20,
+ });
}
string get_name() const { return "scene1"; }
diff --git a/src/test/CollisionTest.cpp b/src/test/CollisionTest.cpp
index baa95c1..8f566df 100644
--- a/src/test/CollisionTest.cpp
+++ b/src/test/CollisionTest.cpp
@@ -25,6 +25,7 @@ using namespace std::chrono_literals;
using namespace crepe;
using namespace testing;
+
class CollisionHandler : public Script {
public:
int box_id;
@@ -67,7 +68,6 @@ public:
world.add_component<Rigidbody>(Rigidbody::Data{
// TODO: remove unrelated properties:
.body_type = Rigidbody::BodyType::STATIC,
- .offset = {0, 0},
});
// Create a box with an inner size of 10x10 units
world.add_component<BoxCollider>(vec2{100, 100}, vec2{0, -100}); // Top
@@ -81,8 +81,7 @@ public:
.body_type = Rigidbody::BodyType::DYNAMIC,
.linear_velocity = {0, 0},
.constraints = {0, 0, 0},
- .elastisity_coefficient = 1,
- .offset = {0, 0},
+ .elasticity_coefficient = 1,
.collision_layers = {0},
});
game_object1.add_component<BoxCollider>(vec2{10, 10}, vec2{0, 0});
@@ -97,8 +96,7 @@ public:
.body_type = Rigidbody::BodyType::DYNAMIC,
.linear_velocity = {0, 0},
.constraints = {0, 0, 0},
- .elastisity_coefficient = 1,
- .offset = {0, 0},
+ .elasticity_coefficient = 1,
.collision_layers = {0},
});
game_object2.add_component<BoxCollider>(vec2{10, 10}, vec2{0, 0});
@@ -116,11 +114,11 @@ TEST_F(CollisionTest, collision_example) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
};
EXPECT_FALSE(collision_happend);
collision_sys.update();
@@ -131,16 +129,16 @@ TEST_F(CollisionTest, collision_box_box_dynamic_both_no_velocity) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, 10);
EXPECT_EQ(ev.info.resolution.y, 10);
EXPECT_EQ(ev.info.resolution_direction, crepe::CollisionSystem::Direction::BOTH);
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
- EXPECT_EQ(ev.info.resolution.x, 10);
- EXPECT_EQ(ev.info.resolution.y, 10);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
+ EXPECT_EQ(ev.info.resolution.x, -10);
+ EXPECT_EQ(ev.info.resolution.y, -10);
EXPECT_EQ(ev.info.resolution_direction, crepe::CollisionSystem::Direction::BOTH);
};
EXPECT_FALSE(collision_happend);
@@ -154,7 +152,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_x_direction_no_velocity) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, -5);
EXPECT_EQ(ev.info.resolution.y, 0);
EXPECT_EQ(ev.info.resolution_direction,
@@ -162,7 +160,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_x_direction_no_velocity) {
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
EXPECT_EQ(ev.info.resolution.x, 5);
EXPECT_EQ(ev.info.resolution.y, 0);
EXPECT_EQ(ev.info.resolution_direction,
@@ -179,7 +177,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_y_direction_no_velocity) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, 0);
EXPECT_EQ(ev.info.resolution.y, -5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -187,7 +185,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_y_direction_no_velocity) {
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
EXPECT_EQ(ev.info.resolution.x, 0);
EXPECT_EQ(ev.info.resolution.y, 5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -204,16 +202,16 @@ TEST_F(CollisionTest, collision_box_box_dynamic_both) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, 10);
EXPECT_EQ(ev.info.resolution.y, 10);
EXPECT_EQ(ev.info.resolution_direction, crepe::CollisionSystem::Direction::BOTH);
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
- EXPECT_EQ(ev.info.resolution.x, 10);
- EXPECT_EQ(ev.info.resolution.y, 10);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
+ EXPECT_EQ(ev.info.resolution.x, -10);
+ EXPECT_EQ(ev.info.resolution.y, -10);
EXPECT_EQ(ev.info.resolution_direction, crepe::CollisionSystem::Direction::BOTH);
};
EXPECT_FALSE(collision_happend);
@@ -231,7 +229,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_x_direction) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, -5);
EXPECT_EQ(ev.info.resolution.y, 5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -239,7 +237,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_x_direction) {
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
EXPECT_EQ(ev.info.resolution.x, 5);
EXPECT_EQ(ev.info.resolution.y, -5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -260,7 +258,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_y_direction) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, 5);
EXPECT_EQ(ev.info.resolution.y, -5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -268,7 +266,7 @@ TEST_F(CollisionTest, collision_box_box_dynamic_y_direction) {
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 2);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 2);
EXPECT_EQ(ev.info.resolution.x, -5);
EXPECT_EQ(ev.info.resolution.y, 5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -289,15 +287,13 @@ TEST_F(CollisionTest, collision_box_box_static_both) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, 10);
EXPECT_EQ(ev.info.resolution.y, 10);
EXPECT_EQ(ev.info.resolution_direction, crepe::CollisionSystem::Direction::BOTH);
};
- script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
- // is static should not be called
- FAIL();
- };
+ script_object2_ref->test_fn
+ = [&collision_happend](const CollisionEvent & ev) { collision_happend = true; };
EXPECT_FALSE(collision_happend);
Transform & tf = this->mgr.get_components_by_id<Transform>(1).front().get();
tf.position = {50, 30};
@@ -311,7 +307,7 @@ TEST_F(CollisionTest, collision_box_box_static_x_direction) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, -5);
EXPECT_EQ(ev.info.resolution.y, 5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -319,7 +315,7 @@ TEST_F(CollisionTest, collision_box_box_static_x_direction) {
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
// is static should not be called
- FAIL();
+ //FAIL();
};
EXPECT_FALSE(collision_happend);
Transform & tf = this->mgr.get_components_by_id<Transform>(1).front().get();
@@ -336,7 +332,7 @@ TEST_F(CollisionTest, collision_box_box_static_y_direction) {
bool collision_happend = false;
script_object1_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
+ EXPECT_EQ(ev.info.self.transform.game_object_id, 1);
EXPECT_EQ(ev.info.resolution.x, 5);
EXPECT_EQ(ev.info.resolution.y, -5);
EXPECT_EQ(ev.info.resolution_direction,
@@ -344,7 +340,7 @@ TEST_F(CollisionTest, collision_box_box_static_y_direction) {
};
script_object2_ref->test_fn = [&collision_happend](const CollisionEvent & ev) {
// is static should not be called
- FAIL();
+ //FAIL();
};
EXPECT_FALSE(collision_happend);
Transform & tf = this->mgr.get_components_by_id<Transform>(1).front().get();
@@ -356,37 +352,3 @@ TEST_F(CollisionTest, collision_box_box_static_y_direction) {
collision_sys.update();
EXPECT_TRUE(collision_happend);
}
-
-TEST_F(CollisionTest, collision_box_box_static_multiple) { //todo check visually
- bool collision_happend = false;
- float offset_value = 0;
- float resolution = 0;
- script_object1_ref->test_fn = [&](const CollisionEvent & ev) {
- collision_happend = true;
- EXPECT_EQ(ev.info.this_collider.game_object_id, 1);
- EXPECT_EQ(ev.info.this_collider.offset.x, offset_value);
- EXPECT_EQ(ev.info.resolution.x, resolution);
- };
- script_object2_ref->test_fn = [&](const CollisionEvent & ev) {
- // is static should not be called
- FAIL();
- };
- EXPECT_FALSE(collision_happend);
- Transform & tf = this->mgr.get_components_by_id<Transform>(1).front().get();
- tf.position = {45, 30};
- Rigidbody & rg1 = this->mgr.get_components_by_id<Rigidbody>(1).front().get();
- rg1.data.linear_velocity = {10, 10};
- Rigidbody & rg2 = this->mgr.get_components_by_id<Rigidbody>(2).front().get();
- rg2.data.body_type = crepe::Rigidbody::BodyType::STATIC;
- BoxCollider & bxc = this->mgr.get_components_by_id<BoxCollider>(1).front().get();
- bxc.offset = {5, 0};
- this->game_object1.add_component<BoxCollider>(vec2{-5, 0}, vec2{10, 10});
- offset_value = 5;
- resolution = 10;
- collision_sys.update();
- offset_value = -5;
- resolution = 10;
- tf.position = {55, 30};
- collision_sys.update();
- EXPECT_TRUE(collision_happend);
-}
diff --git a/src/test/Profiling.cpp b/src/test/Profiling.cpp
index 16736b8..0b2669f 100644
--- a/src/test/Profiling.cpp
+++ b/src/test/Profiling.cpp
@@ -32,7 +32,7 @@ using namespace testing;
class TestScript : public Script {
bool oncollision(const CollisionEvent & test) {
- Log::logf("Box {} script on_collision()", test.info.this_collider.game_object_id);
+ Log::logf("Box {} script on_collision()", test.info.self.transform.game_object_id);
return true;
}
void init() {