diff options
author | heavydemon21 <nielsstunnebrink1@gmail.com> | 2024-12-06 20:03:12 +0100 |
---|---|---|
committer | heavydemon21 <nielsstunnebrink1@gmail.com> | 2024-12-06 20:03:12 +0100 |
commit | 5eedba3a070c3a7a4f27ae3ec7dd41812695f7e9 (patch) | |
tree | 666955b4308e2d59f6958119f3efbcbf179c493d /src/crepe/api/Rigidbody.h | |
parent | 75ca0750dcc07b6ca043320397917e33638e97b4 (diff) | |
parent | cfd578dd0b7d5894ff0b0a0796d85cd5e9ae6e56 (diff) |
Merge branch 'master' into niels/decoupling_pixel_and_pos
Diffstat (limited to 'src/crepe/api/Rigidbody.h')
-rw-r--r-- | src/crepe/api/Rigidbody.h | 124 |
1 files changed, 100 insertions, 24 deletions
diff --git a/src/crepe/api/Rigidbody.h b/src/crepe/api/Rigidbody.h index 3b0588f..8265ba5 100644 --- a/src/crepe/api/Rigidbody.h +++ b/src/crepe/api/Rigidbody.h @@ -1,5 +1,8 @@ #pragma once +#include <cmath> +#include <set> + #include "../Component.h" #include "types.h" @@ -34,11 +37,11 @@ public: * the systems will not move the object. */ struct PhysicsConstraints { - //! X constraint + //! Prevent movement along X axis bool x = false; - //! Y constraint + //! Prevent movement along Y axis bool y = false; - //! rotation constraint + //! Prevent rotation bool rotation = false; }; @@ -50,29 +53,93 @@ public: */ struct Data { //! objects mass - double mass = 0.0; - //! gravtiy scale - double gravity_scale = 0.0; - //! Changes if physics apply + float mass = 0.0; + /** + * \brief Gravity scale factor. + * + * The `gravity_scale` controls how much gravity affects the object. It is a multiplier applied to the default + * gravity force, allowing for fine-grained control over how the object responds to gravity. + * + */ + float gravity_scale = 0; + + //! Defines the type of the physics body, which determines how the physics system interacts with the object. BodyType body_type = BodyType::DYNAMIC; - //! linear velocity of object + + /** + * \name Linear (positional) motion + * + * These variables define the linear motion (movement along the position) of an object. + * The linear velocity is applied to the object's position in each update of the PhysicsSystem. + * The motion is affected by the object's linear velocity, its maximum velocity, and a coefficient + * that can scale the velocity over time. + * + * \{ + */ + //! Linear velocity of the object (speed and direction). vec2 linear_velocity; - //! maximum linear velocity of object - vec2 max_linear_velocity; - //! linear damping of object - vec2 linear_damping; - //! angular velocity of object - double angular_velocity = 0.0; - //! max angular velocity of object - double max_angular_velocity = 0.0; - //! angular damping of object - double angular_damping = 0.0; - //! movements constraints of object + //! Maximum linear velocity of the object. This limits the object's speed. + vec2 max_linear_velocity = {INFINITY, INFINITY}; + //! Linear velocity coefficient. This scales the object's velocity for adjustment or damping. + vec2 linear_velocity_coefficient = {1, 1}; + //! \} + + /** + * \name Angular (rotational) motion + * + * These variables define the angular motion (rotation) of an object. + * The angular velocity determines how quickly the object rotates, while the maximum angular velocity + * sets a limit on the rotation speed. The angular velocity coefficient applies damping or scaling + * to the angular velocity, which can be used to simulate friction or other effects that slow down rotation. + * + * \{ + */ + //! Angular velocity of the object, representing the rate of rotation (in degrees). + float angular_velocity = 0; + //! Maximum angular velocity of the object. This limits the maximum rate of rotation. + float max_angular_velocity = INFINITY; + //! Angular velocity coefficient. This scales the object's angular velocity, typically used for damping. + float angular_velocity_coefficient = 1; + //! \} + + /** + * \brief Movement constraints for an object. + * + * The `PhysicsConstraints` struct defines the constraints that restrict an object's movement + * in certain directions or prevent rotation. These constraints effect only the physics system + * to prevent the object from moving or rotating in specified ways. + * + */ PhysicsConstraints constraints; - //! if gravity applies - bool use_gravity = true; - //! if object bounces - bool bounce = false; + + /** + * \brief Elasticity factor of the material (bounce factor). + * + * The `elasticity_coefficient` controls how much of the object's velocity is retained after a collision. + * It represents the material's ability to bounce or recover velocity upon impact. The coefficient is a value + * above 0.0. + * + */ + float elastisity_coefficient = 0.0; + + /** + * \brief Offset of all colliders relative to the object's transform position. + * + * The `offset` defines a positional shift applied to all colliders associated with the object, relative to the object's + * transform position. This allows for the colliders to be placed at a different position than the object's actual + * position, without modifying the object's transform itself. + * + */ + vec2 offset; + + /** + * \brief Defines the collision layers of a GameObject. + * + * The `collision_layers` specifies the layers that the GameObject will collide with. + * Each element represents a layer ID, and the GameObject will only detect + * collisions with other GameObjects that belong to these layers. + */ + std::set<int> collision_layers; }; public: @@ -96,7 +163,16 @@ public: * * \param force Vector2 that is added to the angular force. */ - void add_force_angular(double force); + void add_force_angular(float force); + +protected: + /** + * Ensures there is at most one Rigidbody component per entity. + * \return Always returns 1, indicating this constraint. + */ + virtual int get_instances_max() const { return 1; } + //! ComponentManager instantiates all components + friend class ComponentManager; }; } // namespace crepe |