1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
#include "mode_grid.h"
void w2_mode_grid() {
initialize(); //only keep this when using this module on its own
set_motors(0,0);
//int gridMode = 0; //robot is in the grid
//coordinates of the orders
orderOne();
orderTwo();
orderThree();
orderFour();
beginLocation();
for (int i = 0; i < 4; i++ ){
destination.x = order[i].x;
destination.y = order[i].y;
locationMessage();
delay(1000);
if (location.x != destination.x ){
while(location.x != destination.x ){
if (location.x > destination.x){
turn_West();
gridFollowLine();
grid_crossway_detection();
location.x--;
locationMessage();
if (location.x == destination.x){
arrivedMessage();
}
}
else if(location.x < destination.x){
turn_East();
gridFollowLine();
grid_crossway_detection();
location.x++;
locationMessage();
if (location.x == destination.x){
arrivedMessage();
}
}
}
}
if (location.y != destination.y ){
while(location.y != destination.y ){
if (location.y > destination.y){
turn_South();
gridFollowLine();
grid_crossway_detection();
location.y--;
locationMessage();
if (location.y == destination.y){
arrivedMessage();
}
}
else if(location.y < destination.y){
turn_North();
gridFollowLine();
grid_crossway_detection();
location.y++;
locationMessage();
if (location.y == destination.y){
arrivedMessage();
}
}
}
}
}
}
void full_rotation(){
delay_ms(500);
set_motors(60,-60);
delay_ms(540);
set_motors(0,0);
position = read_line(sensors,IR_EMITTERS_ON);
delay_ms(500);
}
void grid_rotation_left(){
delay_ms(500);
set_motors(-30,30);
delay_ms(600);
set_motors(0,0);
position = read_line(sensors,IR_EMITTERS_ON);
delay_ms(500);
}
void grid_rotation_right(){
delay_ms(500);
set_motors(30,-30);
delay_ms(600);
set_motors(0,0);
position = read_line(sensors,IR_EMITTERS_ON);
delay_ms(500);
}
void grid_crossway_detection(){
set_motors(0,0);
set_motors(50,50);
delay_ms(150); //150
set_motors(0,0);
position = read_line(sensors,IR_EMITTERS_ON);
delay_ms(500);
}
//variation on "void w2_mode_maze()"
void gridFollowLine(){
unsigned int last_proportional=0;
long integral=0;
// This is the "main loop" - it will run forever.
while(1)
{
// Get the position of the line. Note that we *must* provide
// the "sensors" argument to read_line() here, even though we
// are not interested in the individual sensor readings.
position = read_line(sensors,IR_EMITTERS_ON);
// The "proportional" term should be 0 when we are on the line.
int proportional = ((int)position) - 2000;
// Compute the derivative (change) and integral (sum) of the
// position.
int derivative = proportional - last_proportional;
integral += proportional;
// Remember the last position.
last_proportional = proportional;
// Compute the difference between the two motor power settings,
// m1 - m2. If this is a positive number the robot will turn
// to the right. If it is a negative number, the robot will
// turn to the left, and the magnitude of the number determines
// the sharpness of the turn.
int power_difference = proportional/20 + integral/10000 + derivative*3/2;
// Compute the actual motor settings. We never set either motor
// to a negative value.
const int max = 60;
if(power_difference > max)
power_difference = max;
if(power_difference < -max)
power_difference = -max;
if(sensors[0] >= 500 && sensors[1] >= 250 && sensors[2] >= 500 && sensors[3] >= 250 &&sensors[4] >= 500){
break;
}
else if (sensors[0] >= 500 && sensors[1] >= 200 && sensors[4] < 100){
break;
}
else if(sensors[4] >= 500 && sensors[3] >= 200 && sensors[0] < 100){ //for the south and west borders of the grid
break;
}
else if(sensors[4] >= 500 && sensors[3] >= 200 && sensors[2] <100 && sensors[0] < 100){
break;
}
else{
if(power_difference < 0 && (sensors[2] > 100 || sensors[3] > 100 || sensors[1] > 100) ){
set_motors(max+power_difference, max);}
else if( power_difference > 0 && ( sensors[2] > 100 || sensors[3] > 100 || sensors[1] > 100)){
set_motors(max, max-power_difference);}
}
}
}
//coördinates of the orders
void orderOne(){
order[0].x = 1; //1
order[0].y = 3; //0
}
void orderTwo(){
order[1].x = 3; //2
order[1].y = 2; //2
}
void orderThree(){
order[2].x = 1; //0
order[2].y = 4; //4
}
void orderFour(){
order[3].x = 0; //3
order[3].y = 0; //1
}
//setting coördinate and direction when entering the grid from the maze
void beginLocation(){
location.x = 4;
location.y = 0;
direction = West;
}
void turn_North()
{
clear();
print("North");
switch (direction)
{
case North:
break;
case East:
grid_rotation_left();
break;
case South:
full_rotation();
break;
case West:
grid_rotation_right();
break;
}
direction = North;
}
void turn_West()
{
clear();
print("West");
switch (direction)
{
case West:
break;
case North:
grid_rotation_left();
break;
case East:
full_rotation();
break;
case South:
grid_rotation_right();;
break;
}
direction = West;
}
void turn_South()
{
clear();
print("South");
switch (direction)
{
case South:
break;
case West:
grid_rotation_left();
break;
case North:
full_rotation();
break;
case East:
grid_rotation_right();;
break;
}
direction = South;
}
void turn_East()
{
clear();
print("East");
switch (direction)
{
case East:
break;
case South:
grid_rotation_left();
break;
case West:
full_rotation();
break;
case North:
grid_rotation_right();;
break;
}
direction = East;
}
void locationMessage(){
clear();
print_long(location.x);
print(",");
print_long(location.y);
delay(200); //1000
}
void arrivedMessage(){
clear();
print("ARRIVED");
}
//!UNDER THIS CAN ALL BE TAKEN AWAY, THIS IS USED IN MODE_MAZE & Callibration!
// Initializes the 3pi, displays a welcome message, calibrates, and
// plays the initial music.
// Initializes the 3pi, displays a welcome message, calibrates, and
// plays the initial music.
void initialize()
{
unsigned int counter; // used as a simple timer
// This must be called at the beginning of 3pi code, to set up the
// sensors. We use a value of 2000 for the timeout, which
// corresponds to 2000*0.4 us = 0.8 ms on our 20 MHz processor.
pololu_3pi_init(2000);
load_custom_characters(); // load the custom characters
// Play welcome music and display a message
print_from_program_space(welcome_line1);
lcd_goto_xy(0,1);
print_from_program_space(welcome_line2);
play_from_program_space(welcome);
delay_ms(1000);
clear();
print_from_program_space(demo_name_line1);
lcd_goto_xy(0,1);
print_from_program_space(demo_name_line2);
delay_ms(1000);
// Display battery voltage and wait for button press
while(!button_is_pressed(BUTTON_B))
{
int bat = read_battery_millivolts();
clear();
print_long(bat);
print("mV");
lcd_goto_xy(0,1);
print("Press B");
delay_ms(100);
}
// Always wait for the button to be released so that 3pi doesn't
// start moving until your hand is away from it.
wait_for_button_release(BUTTON_B);
delay_ms(1000);
// Auto-calibration: turn right and left while calibrating the
// sensors.
for(counter=0;counter<80;counter++)
{
if(counter < 20 || counter >= 60)
set_motors(40,-40);
else
set_motors(-40,40);
// This function records a set of sensor readings and keeps
// track of the minimum and maximum values encountered. The
// IR_EMITTERS_ON argument means that the IR LEDs will be
// turned on during the reading, which is usually what you
// want.
calibrate_line_sensors(IR_EMITTERS_ON);
// Since our counter runs to 80, the total delay will be
// 80*20 = 1600 ms.
delay_ms(20);
}
set_motors(0,0);
// Display calibrated values as a bar graph.
while(!button_is_pressed(BUTTON_B))
{
// Read the sensor values and get the position measurement.
unsigned int position = read_line(sensors,IR_EMITTERS_ON);
// Display the position measurement, which will go from 0
// (when the leftmost sensor is over the line) to 4000 (when
// the rightmost sensor is over the line) on the 3pi, along
// with a bar graph of the sensor readings. This allows you
// to make sure the robot is ready to go.
clear();
print_long(position);
lcd_goto_xy(0,1);
display_readings(sensors);
delay_ms(100);
}
wait_for_button_release(BUTTON_B);
clear();
print("Go!");
// Play music and wait for it to finish before we start driving.
play_from_program_space(go);
while(is_playing());
}
// This function loads custom characters into the LCD. Up to 8
// characters can be loaded; we use them for 7 levels of a bar graph.
void load_custom_characters()
{
lcd_load_custom_character(levels+0,0); // no offset, e.g. one bar
lcd_load_custom_character(levels+1,1); // two bars
lcd_load_custom_character(levels+2,2); // etc...
lcd_load_custom_character(levels+3,3);
lcd_load_custom_character(levels+4,4);
lcd_load_custom_character(levels+5,5);
lcd_load_custom_character(levels+6,6);
clear(); // the LCD must be cleared for the characters to take effect
}
// This function displays the sensor readings using a bar graph.
void display_readings(const unsigned int *calibrated_values)
{
unsigned char i;
for(i=0;i<5;i++) {
// Initialize the array of characters that we will use for the
// graph. Using the space, an extra copy of the one-bar
// character, and character 255 (a full black box), we get 10
// characters in the array.
const char display_characters[10] = {' ',0,0,1,2,3,4,5,6,255};
// The variable c will have values from 0 to 9, since
// calibrated values are in the range of 0 to 1000, and
// 1000/101 is 9 with integer math.
char c = display_characters[calibrated_values[i]/101];
// Display the bar graph character.
print_character(c);
}
}
void full_rotation(){
set_motors(0,0);
delay_ms(500);
set_motors(60,-60);
delay_ms(540);
set_motors(0,0);
position = read_line(sensors,IR_EMITTERS_ON);
delay_ms(500);
}
|