#include "mode_maze.h" #include "orangutan_shim.h" unsigned int g_w2_sensors[5] = {0}; unsigned int g_w2_position = 0; unsigned int g_w2_last_proportional = 0; long g_w2_integral = 0; void w2_full_rotation() { set_motors(0, 0); delay_ms(500); set_motors(60, -60); delay_ms(540); set_motors(0, 0); g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); delay_ms(500); } void w2_half_rotation_left() { set_motors(0, 0); set_motors(50, 50); delay_ms(150); set_motors(-30, 30); delay_ms(600); set_motors(0, 0); g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); delay_ms(500); } void w2_half_rotation_right() { set_motors(0, 0); set_motors(50, 50); delay_ms(150); set_motors(30, -30); delay_ms(600); set_motors(0, 0); set_motors(50, 50); delay_ms(150); g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); delay_ms(500); } void w2_crossway_detection() { w2_half_rotation_left(); } void w2_intersection_detection() { w2_half_rotation_left(); } void w2_mode_maze() { // Get the position of the line. Note that we *must* provide // the "sensors" argument to read_line() here, even though we // are not interested in the individual sensor readings. g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); // The "proportional" term should be 0 when we are on the line. int proportional = ((int)g_w2_position) - 2000; // Compute the derivative (change) and integral (sum) of the // position. int derivative = proportional - g_w2_last_proportional; g_w2_integral += proportional; // Remember the last position. g_w2_last_proportional = proportional; // Compute the difference between the two motor power settings, // m1 - m2. If this is a positive number the robot will turn // to the right. If it is a negative number, the robot will // turn to the left, and the magnitude of the number determines // the sharpness of the turn. int power_difference = proportional / 20 + g_w2_integral / 10000 + derivative * 3 / 2; // Compute the actual motor settings. We never set either motor // to a negative value. const int max = 60; if (power_difference > max) power_difference = max; if (power_difference < -max) power_difference = -max; if (g_w2_sensors[0] < 100 && g_w2_sensors[1] < 100 && g_w2_sensors[2] < 100 && g_w2_sensors[3] < 100 && g_w2_sensors[4] < 100) { // grid detectie /*set_motors(0,0); delay_ms(450); set_motors(50,50); delay_ms(180); if ( g_w2_sensors[2] >= 100 || g_w2_sensors[3] >= 100 || g_w2_sensors[1] >= 100 || g_w2_sensors[0] >= 100 || g_w2_sensors[4] >= 100) { set_motors(0,0); delay_ms(15000); set_motors(50,50); delay_ms(180); if (g_w2_sensors[2] >= 100 || g_w2_sensors[3] >= 100 || g_w2_sensors[1] >= 100 || g_w2_sensors[0] >= 100 || g_w2_sensors[4] >= 100 ) { set_motors(0,0); delay_ms(1500); set_motors(50,50); delay_ms(180); if (g_w2_sensors[2] >= 100 || g_w2_sensors[3] >= 100 || g_w2_sensors[1] >= 100 || g_w2_sensors[0] >= 100 || g_w2_sensors[4] >= 100) { print("GRID!"); set_motors(0,0); delay_ms(10000); } } } else if(g_w2_sensors[0] < 100 && g_w2_sensors[1] <100 && g_w2_sensors[2] < 100 && g_w2_sensors[3] < 100 && g_w2_sensors[4] < 100){*/ w2_full_rotation(); //} } else if (g_w2_sensors[0] >= 500 && g_w2_sensors[1] >= 250 && g_w2_sensors[2] >= 500 && g_w2_sensors[3] >= 250 && g_w2_sensors[4] >= 500) { w2_crossway_detection(); } // else if(g_w2_sensors[0] >= 500 && g_w2_sensors[2] < 50 &&g_w2_sensors[4] >= 500){ // intersection_detection(); //} else if (g_w2_sensors[0] >= 500 && g_w2_sensors[1] >= 200 && g_w2_sensors[4] < 100) { w2_half_rotation_left(); } // else if(g_w2_sensors[4] >= 500 && g_w2_sensors[3] >= 200 && g_w2_sensors[0] < 100){ // half_rotation_right(); //} else { if (power_difference < 0 && (g_w2_sensors[2] > 100 || g_w2_sensors[3] > 100 || g_w2_sensors[1] > 100)) set_motors(max + power_difference, max); else if (power_difference > 0 && (g_w2_sensors[2] > 100 || g_w2_sensors[3] > 100 || g_w2_sensors[1] > 100)) set_motors(max, max - power_difference); } }