#include "mode_chrg.h" #include "mode_grid.h" #include "orangutan_shim.h" #include "movement.h" #include "modes.h" int g_w2_charged_status; void w2_short_drive() { set_motors(50, 50); delay(150); set_motors(0, 0); } void w2_home() { set_motors(0, 0); delay_ms(150); clear(); print("CHARGING"); set_motors(30, 30); delay_ms(600); set_motors(0, 0); play_frequency(300, 500, 7); delay_ms(600); g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); g_w2_charged_status = 1; clear(); delay_ms(2000); } void w2_charge_cross_walk() { if (g_w2_transition == 0) { set_motors(-30, 30); delay(50); } while (g_w2_sensors[0] < 100 && g_w2_sensors[1] < 100 && g_w2_sensors[2] < 100 && g_w2_sensors[3] < 100 && g_w2_sensors[4] < 100) { set_motors(15, 15); delay(550); g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); if (g_w2_sensors[2] > 100 || g_w2_sensors[3] > 100 || g_w2_sensors[1] > 100) { set_motors(0, 0); // clear(); print("WALK"); g_w2_transition++; if (g_w2_transition == 3) { //TODO: document g_w2_transition set_motors(40, 40); delay(600); set_motors(0, 0); g_w2_transition = 0; w2_modes_swap(W2_M_MAZE); break; } } else { g_w2_transition = 0; w2_maze_rotation_full(); } } } void w2_mode_chrg() { unsigned int last_proportional = 0; long integral = 0; // initialize(); clear(); print("CHARGE"); while (1) { // Get the position of the line. Note that we *must* provide // the "sensors" argument to read_line() here, even though we // are not interested in the individual sensor readings. g_w2_position = read_line(g_w2_sensors, IR_EMITTERS_ON); // The "proportional" term should be 0 when we are on the line. int proportional = ((int)g_w2_position) - 2000; // Compute the derivative (change) and integral (sum) of the // position. int derivative = proportional - last_proportional; integral += proportional; // Remember the last position. last_proportional = proportional; // Compute the difference between the two motor power settings, // m1 - m2. If this is a positive number the robot will turn // to the right. If it is a negative number, the robot will // turn to the left, and the magnitude of the number determines // the sharpness of the turn. int power_difference = proportional / 20 + integral / 10000 + derivative * 3 / 2; // Compute the actual motor settings. We never set either motor // to a negative value. const int max = 60; if (power_difference > max) power_difference = max; if (power_difference < -max) power_difference = -max; if (g_w2_sensors[0] < 100 && g_w2_sensors[1] < 100 && g_w2_sensors[2] < 100 && g_w2_sensors[3] < 100 && g_w2_sensors[4] < 100) { w2_charge_cross_walk(); if (g_w2_mode_history[g_w2_mode_history_index] == W2_M_MAZE) { break; } } else if ((g_w2_sensors[0] >= 500 && g_w2_sensors[1] >= 500 && g_w2_sensors[2] >= 500 && g_w2_sensors[3] >= 500 && g_w2_sensors[4] >= 500) && g_w2_charged_status == 0) { w2_home(); delay(200); w2_maze_rotation_full(); w2_short_drive(); } else if (g_w2_sensors[0] >= 500 && g_w2_sensors[1] >= 200 && g_w2_sensors[4] < 100) { clear(); w2_maze_rotation_half_left(); } else if (g_w2_sensors[0] >= 500 && g_w2_sensors[1] >= 250 && g_w2_sensors[2] >= 500 && g_w2_sensors[3] >= 250 && g_w2_sensors[4] >= 500) { clear(); w2_maze_rotation_half_left(); } else { if (power_difference < 0 && (g_w2_sensors[2] > 100 || g_w2_sensors[3] > 100 || g_w2_sensors[1] > 100)) { set_motors(max + power_difference, max); } else if (power_difference > 0 && (g_w2_sensors[2] > 100 || g_w2_sensors[3] > 100 || g_w2_sensors[1] > 100)) { set_motors(max, max - power_difference); } } } }