aboutsummaryrefslogtreecommitdiff
path: root/docs/architecture.md
diff options
context:
space:
mode:
authorlonkaars <loek@pipeframe.xyz>2023-02-15 21:23:07 +0100
committerlonkaars <loek@pipeframe.xyz>2023-02-15 21:23:07 +0100
commit0730ad350a3a58de3a60ebe00e141a66875c5c33 (patch)
treeae540b0b0af9964e0dde82d12a866becc691a69a /docs/architecture.md
parent533ac91079738dc4b957c836f92113fee3b2c8ce (diff)
merge #11
Diffstat (limited to 'docs/architecture.md')
-rw-r--r--docs/architecture.md10
1 files changed, 5 insertions, 5 deletions
diff --git a/docs/architecture.md b/docs/architecture.md
index 9c1e5f5..c1a2a95 100644
--- a/docs/architecture.md
+++ b/docs/architecture.md
@@ -24,7 +24,7 @@ To perform these action there will be 6 buttons for the user to use.
A joystick is not needed for the movement because the movement is not complex, so button fulfill this.
The layout will be as follows:
-![Example controller layout](https://user-images.githubusercontent.com/17066065/219126294-b3fe11eb-e216-433a-9317-38f3e2ca4743.png)
+![Example controller layout](https://user-images.githubusercontent.com/17066065/219142627-4fde02c2-edfc-43c5-8a3b-dd739cb472aa.png)
## Input handling:
@@ -32,15 +32,15 @@ The hardware consist out of a microcontroller and a FPGA.
The microcontroller will process the game logic.
For this reason the input will be handled by the microcontroller as this will improve playability (stated in research).
-The controller will have four buttons, so 4 data pins are needed on the microcontroller plus a ground and 3.3V or 5V pin.
-In total there are 6 pins needed.
-If the game is going to be played by 2 person, there are 4 more data pins needed so 8 data pins for both controllers.
+The controller will have six buttons, so six data pins are needed on the microcontroller plus a ground and 3.3V or 5V pin.
+In total there are eight pins needed.
+If the game is going to be played by 2 persons, there are six more data pins needed so 8 data pins for both controllers.
For data transfer between STM32 and FPGA there are 4 pins needed at maximum (SPI for instance).
The STM32 will be used and most STM32 boards have enough I/O pins for our needs.
The STM32 F030 and F091 provided by Avans both have 15 digital pins and 6 analog pins.
The buttons will be connected as follows:
-![Logic lines between processor and controller](https://user-images.githubusercontent.com/17066065/219113354-cbda7776-bc95-4d1f-8eb9-364f7d4f1b8d.png)
+![Logic lines between processor and controller](https://user-images.githubusercontent.com/17066065/219143412-d6fb80b6-c5ab-4504-8151-864f6e4693a2.png)
To implement the input in the game, the input should be checked at the start of each game cycle. In this case there are no interrupts needed.