/* * xxHash - Extremely Fast Hash algorithm * Development source file for `xxh3` * Copyright (C) 2019-2020 Yann Collet * * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You can contact the author at: * - xxHash homepage: https://www.xxhash.com * - xxHash source repository: https://github.com/Cyan4973/xxHash */ /* * Note: This file is separated for development purposes. * It will be integrated into `xxhash.h` when development stage is completed. * * Credit: most of the work on vectorial and asm variants comes from @easyaspi314 */ #ifndef XXH3_H_1397135465 #define XXH3_H_1397135465 /* === Dependencies === */ #ifndef XXHASH_H_5627135585666179 /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */ # undef XXH_INLINE_ALL /* avoid redefinition */ # define XXH_INLINE_ALL #endif #include "xxhash.h" /* === Compiler specifics === */ #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ # define XXH_RESTRICT restrict #else /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ # define XXH_RESTRICT /* disable */ #endif #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ || defined(__clang__) # define XXH_likely(x) __builtin_expect(x, 1) # define XXH_unlikely(x) __builtin_expect(x, 0) #else # define XXH_likely(x) (x) # define XXH_unlikely(x) (x) #endif #if defined(__GNUC__) # if defined(__AVX2__) # include # elif defined(__SSE2__) # include # elif defined(__ARM_NEON__) || defined(__ARM_NEON) # define inline __inline__ /* clang bug */ # include # undef inline # endif #elif defined(_MSC_VER) # include #endif /* * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while * remaining a true 64-bit/128-bit hash function. * * This is done by prioritizing a subset of 64-bit operations that can be * emulated without too many steps on the average 32-bit machine. * * For example, these two lines seem similar, and run equally fast on 64-bit: * * xxh_u64 x; * x ^= (x >> 47); // good * x ^= (x >> 13); // bad * * However, to a 32-bit machine, there is a major difference. * * x ^= (x >> 47) looks like this: * * x.lo ^= (x.hi >> (47 - 32)); * * while x ^= (x >> 13) looks like this: * * // note: funnel shifts are not usually cheap. * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); * x.hi ^= (x.hi >> 13); * * The first one is significantly faster than the second, simply because the * shift is larger than 32. This means: * - All the bits we need are in the upper 32 bits, so we can ignore the lower * 32 bits in the shift. * - The shift result will always fit in the lower 32 bits, and therefore, * we can ignore the upper 32 bits in the xor. * * Thanks to this optimization, XXH3 only requires these features to be efficient: * * - Usable unaligned access * - A 32-bit or 64-bit ALU * - If 32-bit, a decent ADC instruction * - A 32 or 64-bit multiply with a 64-bit result * - For the 128-bit variant, a decent byteswap helps short inputs. * * The first two are already required by XXH32, and almost all 32-bit and 64-bit * platforms which can run XXH32 can run XXH3 efficiently. * * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one * notable exception. * * First of all, Thumb-1 lacks support for the UMULL instruction which * performs the important long multiply. This means numerous __aeabi_lmul * calls. * * Second of all, the 8 functional registers are just not enough. * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need * Lo registers, and this shuffling results in thousands more MOVs than A32. * * A32 and T32 don't have this limitation. They can access all 14 registers, * do a 32->64 multiply with UMULL, and the flexible operand allowing free * shifts is helpful, too. * * Therefore, we do a quick sanity check. * * If compiling Thumb-1 for a target which supports ARM instructions, we will * emit a warning, as it is not a "sane" platform to compile for. * * Usually, if this happens, it is because of an accident and you probably need * to specify -march, as you likely meant to compile for a newer architecture. */ #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) # warning "XXH3 is highly inefficient without ARM or Thumb-2." #endif /* ========================================== * Vectorization detection * ========================================== */ #define XXH_SCALAR 0 /* Portable scalar version */ #define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */ #define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */ #define XXH_NEON 3 /* NEON for most ARMv7-A and all AArch64 */ #define XXH_VSX 4 /* VSX and ZVector for POWER8/z13 */ #define XXH_AVX512 5 /* AVX512 for Skylake and Icelake */ #ifndef XXH_VECTOR /* can be defined on command line */ # if defined(__AVX512F__) # define XXH_VECTOR XXH_AVX512 # elif defined(__AVX2__) # define XXH_VECTOR XXH_AVX2 # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) # define XXH_VECTOR XXH_SSE2 # elif defined(__GNUC__) /* msvc support maybe later */ \ && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) # define XXH_VECTOR XXH_NEON # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ || (defined(__s390x__) && defined(__VEC__)) \ && defined(__GNUC__) /* TODO: IBM XL */ # define XXH_VECTOR XXH_VSX # else # define XXH_VECTOR XXH_SCALAR # endif #endif /* * Controls the alignment of the accumulator. * This is for compatibility with aligned vector loads, which are usually faster. */ #ifndef XXH_ACC_ALIGN # if XXH_VECTOR == XXH_SCALAR /* scalar */ # define XXH_ACC_ALIGN 8 # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ # define XXH_ACC_ALIGN 32 # elif XXH_VECTOR == XXH_NEON /* neon */ # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_VSX /* vsx */ # define XXH_ACC_ALIGN 16 # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ # define XXH_ACC_ALIGN 64 # endif #endif /* * UGLY HACK: * GCC usually generates the best code with -O3 for xxHash. * * However, when targeting AVX2, it is overzealous in its unrolling resulting * in code roughly 3/4 the speed of Clang. * * There are other issues, such as GCC splitting _mm256_loadu_si256 into * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which * only applies to Sandy and Ivy Bridge... which don't even support AVX2. * * That is why when compiling the AVX2 version, it is recommended to use either * -O2 -mavx2 -march=haswell * or * -O2 -mavx2 -mno-avx256-split-unaligned-load * for decent performance, or to use Clang instead. * * Fortunately, we can control the first one with a pragma that forces GCC into * -O2, but the other one we can't control without "failed to inline always * inline function due to target mismatch" warnings. */ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ # pragma GCC push_options # pragma GCC optimize("-O2") #endif #if XXH_VECTOR == XXH_NEON /* * NEON's setup for vmlal_u32 is a little more complicated than it is on * SSE2, AVX2, and VSX. * * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. * * To do the same operation, the 128-bit 'Q' register needs to be split into * two 64-bit 'D' registers, performing this operation:: * * [ a | b ] * | '---------. .--------' | * | x | * | .---------' '--------. | * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] * * Due to significant changes in aarch64, the fastest method for aarch64 is * completely different than the fastest method for ARMv7-A. * * ARMv7-A treats D registers as unions overlaying Q registers, so modifying * D11 will modify the high half of Q5. This is similar to how modifying AH * will only affect bits 8-15 of AX on x86. * * VZIP takes two registers, and puts even lanes in one register and odd lanes * in the other. * * On ARMv7-A, this strangely modifies both parameters in place instead of * taking the usual 3-operand form. * * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the * lower and upper halves of the Q register to end up with the high and low * halves where we want - all in one instruction. * * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } * * Unfortunately we need inline assembly for this: Instructions modifying two * registers at once is not possible in GCC or Clang's IR, and they have to * create a copy. * * aarch64 requires a different approach. * * In order to make it easier to write a decent compiler for aarch64, many * quirks were removed, such as conditional execution. * * NEON was also affected by this. * * aarch64 cannot access the high bits of a Q-form register, and writes to a * D-form register zero the high bits, similar to how writes to W-form scalar * registers (or DWORD registers on x86_64) work. * * The formerly free vget_high intrinsics now require a vext (with a few * exceptions) * * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one * operand. * * The equivalent of the VZIP.32 on the lower and upper halves would be this * mess: * * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } * * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): * * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); * * This is available on ARMv7-A, but is less efficient than a single VZIP.32. */ /* * Function-like macro: * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) * { * outLo = (uint32x2_t)(in & 0xFFFFFFFF); * outHi = (uint32x2_t)(in >> 32); * in = UNDEFINED; * } */ # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ && defined(__GNUC__) \ && !defined(__aarch64__) && !defined(__arm64__) # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ do { \ /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ } while (0) # else # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ do { \ (outLo) = vmovn_u64 (in); \ (outHi) = vshrn_n_u64 ((in), 32); \ } while (0) # endif #endif /* XXH_VECTOR == XXH_NEON */ /* * VSX and Z Vector helpers. * * This is very messy, and any pull requests to clean this up are welcome. * * There are a lot of problems with supporting VSX and s390x, due to * inconsistent intrinsics, spotty coverage, and multiple endiannesses. */ #if XXH_VECTOR == XXH_VSX # if defined(__s390x__) # include # else # include # endif # undef vector /* Undo the pollution */ typedef __vector unsigned long long xxh_u64x2; typedef __vector unsigned char xxh_u8x16; typedef __vector unsigned xxh_u32x4; # ifndef XXH_VSX_BE # if defined(__BIG_ENDIAN__) \ || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) # define XXH_VSX_BE 1 # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ # warning "-maltivec=be is not recommended. Please use native endianness." # define XXH_VSX_BE 1 # else # define XXH_VSX_BE 0 # endif # endif /* !defined(XXH_VSX_BE) */ # if XXH_VSX_BE /* A wrapper for POWER9's vec_revb. */ # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) # define XXH_vec_revb vec_revb # else XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) { xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; return vec_perm(val, val, vByteSwap); } # endif # endif /* XXH_VSX_BE */ /* * Performs an unaligned load and byte swaps it on big endian. */ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) { xxh_u64x2 ret; memcpy(&ret, ptr, sizeof(xxh_u64x2)); # if XXH_VSX_BE ret = XXH_vec_revb(ret); # endif return ret; } /* * vec_mulo and vec_mule are very problematic intrinsics on PowerPC * * These intrinsics weren't added until GCC 8, despite existing for a while, * and they are endian dependent. Also, their meaning swap depending on version. * */ # if defined(__s390x__) /* s390x is always big endian, no issue on this platform */ # define XXH_vec_mulo vec_mulo # define XXH_vec_mule vec_mule # elif defined(__clang__) && __has_builtin(__builtin_altivec_vmuleuw) /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ # define XXH_vec_mulo __builtin_altivec_vmulouw # define XXH_vec_mule __builtin_altivec_vmuleuw # else /* gcc needs inline assembly */ /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) { xxh_u64x2 result; __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); return result; } XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) { xxh_u64x2 result; __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); return result; } # endif /* XXH_vec_mulo, XXH_vec_mule */ #endif /* XXH_VECTOR == XXH_VSX */ /* prefetch * can be disabled, by declaring XXH_NO_PREFETCH build macro */ #if defined(XXH_NO_PREFETCH) # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ #else # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ # include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) # else # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ # endif #endif /* XXH_NO_PREFETCH */ /* ========================================== * XXH3 default settings * ========================================== */ #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) # error "default keyset is not large enough" #endif /* Pseudorandom secret taken directly from FARSH */ XXH_ALIGN(64) static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = { 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, }; /* * Calculates a 32-bit to 64-bit long multiply. * * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't * need to (but it shouldn't need to anyways, it is about 7 instructions to do * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we * use that instead of the normal method. * * If you are compiling for platforms like Thumb-1 and don't have a better option, * you may also want to write your own long multiply routine here. * * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) * { * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); * } */ #if defined(_MSC_VER) && defined(_M_IX86) # include # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) #else /* * Downcast + upcast is usually better than masking on older compilers like * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. * * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands * and perform a full 64x64 multiply -- entirely redundant on 32-bit. */ # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) #endif /* * Calculates a 64->128-bit long multiply. * * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. */ static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) { /* * GCC/Clang __uint128_t method. * * On most 64-bit targets, GCC and Clang define a __uint128_t type. * This is usually the best way as it usually uses a native long 64-bit * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. * * Usually. * * Despite being a 32-bit platform, Clang (and emscripten) define this type * despite not having the arithmetic for it. This results in a laggy * compiler builtin call which calculates a full 128-bit multiply. * In that case it is best to use the portable one. * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 */ #if defined(__GNUC__) && !defined(__wasm__) \ && defined(__SIZEOF_INT128__) \ || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; XXH128_hash_t r128; r128.low64 = (xxh_u64)(product); r128.high64 = (xxh_u64)(product >> 64); return r128; /* * MSVC for x64's _umul128 method. * * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); * * This compiles to single operand MUL on x64. */ #elif defined(_M_X64) || defined(_M_IA64) #ifndef _MSC_VER # pragma intrinsic(_umul128) #endif xxh_u64 product_high; xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); XXH128_hash_t r128; r128.low64 = product_low; r128.high64 = product_high; return r128; #else /* * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. * * This is a fast and simple grade school multiply, which is shown below * with base 10 arithmetic instead of base 0x100000000. * * 9 3 // D2 lhs = 93 * x 7 5 // D2 rhs = 75 * ---------- * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 * --------- * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 * --------- * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 * * The reasons for adding the products like this are: * 1. It avoids manual carry tracking. Just like how * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. * This avoids a lot of complexity. * * 2. It hints for, and on Clang, compiles to, the powerful UMAAL * instruction available in ARM's Digital Signal Processing extension * in 32-bit ARMv6 and later, which is shown below: * * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) * { * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); * *RdHi = (xxh_u32)(product >> 32); * } * * This instruction was designed for efficient long multiplication, and * allows this to be calculated in only 4 instructions at speeds * comparable to some 64-bit ALUs. * * 3. It isn't terrible on other platforms. Usually this will be a couple * of 32-bit ADD/ADCs. */ /* First calculate all of the cross products. */ xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); /* Now add the products together. These will never overflow. */ xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); XXH128_hash_t r128; r128.low64 = lower; r128.high64 = upper; return r128; #endif } /* * Does a 64-bit to 128-bit multiply, then XOR folds it. * * The reason for the separate function is to prevent passing too many structs * around by value. This will hopefully inline the multiply, but we don't force it. */ static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) { XXH128_hash_t product = XXH_mult64to128(lhs, rhs); return product.low64 ^ product.high64; } /* Seems to produce slightly better code on GCC for some reason. */ XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) { XXH_ASSERT(0 <= shift && shift < 64); return v64 ^ (v64 >> shift); } /* * We don't need to (or want to) mix as much as XXH64. * * Short hashes are more evenly distributed, so it isn't necessary. */ static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) { h64 = XXH_xorshift64(h64, 37); h64 *= 0x165667919E3779F9ULL; h64 = XXH_xorshift64(h64, 32); return h64; } /* ========================================== * Short keys * ========================================== * One of the shortcomings of XXH32 and XXH64 was that their performance was * sub-optimal on short lengths. It used an iterative algorithm which strongly * favored lengths that were a multiple of 4 or 8. * * Instead of iterating over individual inputs, we use a set of single shot * functions which piece together a range of lengths and operate in constant time. * * Additionally, the number of multiplies has been significantly reduced. This * reduces latency, especially when emulating 64-bit multiplies on 32-bit. * * Depending on the platform, this may or may not be faster than XXH32, but it * is almost guaranteed to be faster than XXH64. */ /* * At very short lengths, there isn't enough input to fully hide secrets, or use * the entire secret. * * There is also only a limited amount of mixing we can do before significantly * impacting performance. * * Therefore, we use different sections of the secret and always mix two secret * samples with an XOR. This should have no effect on performance on the * seedless or withSeed variants because everything _should_ be constant folded * by modern compilers. * * The XOR mixing hides individual parts of the secret and increases entropy. * * This adds an extra layer of strength for custom secrets. */ XXH_FORCE_INLINE XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(1 <= len && len <= 3); XXH_ASSERT(secret != NULL); /* * len = 1: combined = { input[0], 0x01, input[0], input[0] } * len = 2: combined = { input[1], 0x02, input[0], input[1] } * len = 3: combined = { input[2], 0x03, input[0], input[1] } */ { xxh_u8 const c1 = input[0]; xxh_u8 const c2 = input[len >> 1]; xxh_u8 const c3 = input[len - 1]; xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; xxh_u64 const mixed = keyed * PRIME64_1; return XXH3_avalanche(mixed); } } XXH_FORCE_INLINE XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(4 <= len && len < 8); seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; { xxh_u32 const input1 = XXH_readLE32(input); xxh_u32 const input2 = XXH_readLE32(input + len - 4); xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); xxh_u64 x = input64 ^ bitflip; /* this mix is inspired by Pelle Evensen's rrmxmx */ x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24); x *= 0x9FB21C651E98DF25ULL; x ^= (x >> 35) + len ; x *= 0x9FB21C651E98DF25ULL; return XXH_xorshift64(x, 28); } } XXH_FORCE_INLINE XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(8 <= len && len <= 16); { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi + XXH3_mul128_fold64(input_lo, input_hi); return XXH3_avalanche(acc); } } XXH_FORCE_INLINE XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(len <= 16); { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); if (len) return XXH3_len_1to3_64b(input, len, secret, seed); return XXH3_avalanche((PRIME64_1 + seed) ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); } } /* * DISCLAIMER: There are known *seed-dependent* multicollisions here due to * multiplication by zero, affecting hashes of lengths 17 to 240. * * However, they are very unlikely. * * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all * unseeded non-cryptographic hashes, it does not attempt to defend itself * against specially crafted inputs, only random inputs. * * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes * cancelling out the secret is taken an arbitrary number of times (addressed * in XXH3_accumulate_512), this collision is very unlikely with random inputs * and/or proper seeding: * * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a * function that is only called up to 16 times per hash with up to 240 bytes of * input. * * This is not too bad for a non-cryptographic hash function, especially with * only 64 bit outputs. * * The 128-bit variant (which trades some speed for strength) is NOT affected * by this, although it is always a good idea to use a proper seed if you care * about strength. */ XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) { #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ /* * UGLY HACK: * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in * slower code. * * By forcing seed64 into a register, we disrupt the cost model and * cause it to scalarize. See `XXH32_round()` * * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on * GCC 9.2, despite both emitting scalar code. * * GCC generates much better scalar code than Clang for the rest of XXH3, * which is why finding a more optimal codepath is an interest. */ __asm__ ("" : "+r" (seed64)); #endif { xxh_u64 const input_lo = XXH_readLE64(input); xxh_u64 const input_hi = XXH_readLE64(input+8); return XXH3_mul128_fold64( input_lo ^ (XXH_readLE64(secret) + seed64), input_hi ^ (XXH_readLE64(secret+8) - seed64) ); } } /* For mid range keys, XXH3 uses a Mum-hash variant. */ XXH_FORCE_INLINE XXH64_hash_t XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(16 < len && len <= 128); { xxh_u64 acc = len * PRIME64_1; if (len > 32) { if (len > 64) { if (len > 96) { acc += XXH3_mix16B(input+48, secret+96, seed); acc += XXH3_mix16B(input+len-64, secret+112, seed); } acc += XXH3_mix16B(input+32, secret+64, seed); acc += XXH3_mix16B(input+len-48, secret+80, seed); } acc += XXH3_mix16B(input+16, secret+32, seed); acc += XXH3_mix16B(input+len-32, secret+48, seed); } acc += XXH3_mix16B(input+0, secret+0, seed); acc += XXH3_mix16B(input+len-16, secret+16, seed); return XXH3_avalanche(acc); } } #define XXH3_MIDSIZE_MAX 240 XXH_NO_INLINE XXH64_hash_t XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); #define XXH3_MIDSIZE_STARTOFFSET 3 #define XXH3_MIDSIZE_LASTOFFSET 17 { xxh_u64 acc = len * PRIME64_1; int const nbRounds = (int)len / 16; int i; for (i=0; i<8; i++) { acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); } acc = XXH3_avalanche(acc); XXH_ASSERT(nbRounds >= 8); #if defined(__clang__) /* Clang */ \ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ /* * UGLY HACK: * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. * In everywhere else, it uses scalar code. * * For 64->128-bit multiplies, even if the NEON was 100% optimal, it * would still be slower than UMAAL (see XXH_mult64to128). * * Unfortunately, Clang doesn't handle the long multiplies properly and * converts them to the nonexistent "vmulq_u64" intrinsic, which is then * scalarized into an ugly mess of VMOV.32 instructions. * * This mess is difficult to avoid without turning autovectorization * off completely, but they are usually relatively minor and/or not * worth it to fix. * * This loop is the easiest to fix, as unlike XXH32, this pragma * _actually works_ because it is a loop vectorization instead of an * SLP vectorization. */ #pragma clang loop vectorize(disable) #endif for (i=8 ; i < nbRounds; i++) { acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); } /* last bytes */ acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); return XXH3_avalanche(acc); } } /* === Long Keys === */ #define STRIPE_LEN 64 #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ #define ACC_NB (STRIPE_LEN / sizeof(xxh_u64)) typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e; /* * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. * * It is a hardened version of UMAC, based off of FARSH's implementation. * * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD * implementations, and it is ridiculously fast. * * We harden it by mixing the original input to the accumulators as well as the product. * * This means that in the (relatively likely) case of a multiply by zero, the * original input is preserved. * * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve * cross-pollination, as otherwise the upper and lower halves would be * essentially independent. * * This doesn't matter on 64-bit hashes since they all get merged together in * the end, so we skip the extra step. * * Both XXH3_64bits and XXH3_128bits use this subroutine. */ XXH_FORCE_INLINE void XXH3_accumulate_512( void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret, XXH3_accWidth_e accWidth) { #if (XXH_VECTOR == XXH_AVX512) XXH_ASSERT((((size_t)acc) & 63) == 0); XXH_STATIC_ASSERT(STRIPE_LEN == sizeof(__m512i)); { XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc; /* data_vec = input[0]; */ __m512i const data_vec = _mm512_loadu_si512 (input); /* key_vec = secret[0]; */ __m512i const key_vec = _mm512_loadu_si512 (secret); /* data_key = data_vec ^ key_vec; */ __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); if (accWidth == XXH3_acc_128bits) { /* xacc[0] += swap(data_vec); */ __m512i const data_swap = _mm512_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); __m512i const sum = _mm512_add_epi64(*xacc, data_swap); /* xacc[0] += product; */ *xacc = _mm512_add_epi64(product, sum); } else { /* XXH3_acc_64bits */ /* xacc[0] += data_vec; */ __m512i const sum = _mm512_add_epi64(*xacc, data_vec); /* xacc[0] += product; */ *xacc = _mm512_add_epi64(product, sum); } } #elif (XXH_VECTOR == XXH_AVX2) XXH_ASSERT((((size_t)acc) & 31) == 0); { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ const __m256i* const xinput = (const __m256i *) input; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ const __m256i* const xsecret = (const __m256i *) secret; size_t i; for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) { /* data_vec = xinput[i]; */ __m256i const data_vec = _mm256_loadu_si256 (xinput+i); /* key_vec = xsecret[i]; */ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); /* data_key = data_vec ^ key_vec; */ __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); if (accWidth == XXH3_acc_128bits) { /* xacc[i] += swap(data_vec); */ __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); /* xacc[i] += product; */ xacc[i] = _mm256_add_epi64(product, sum); } else { /* XXH3_acc_64bits */ /* xacc[i] += data_vec; */ __m256i const sum = _mm256_add_epi64(xacc[i], data_vec); /* xacc[i] += product; */ xacc[i] = _mm256_add_epi64(product, sum); } } } #elif (XXH_VECTOR == XXH_SSE2) /* SSE2 is just a half-scale version of the AVX2 version. */ XXH_ASSERT((((size_t)acc) & 15) == 0); { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ const __m128i* const xinput = (const __m128i *) input; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ const __m128i* const xsecret = (const __m128i *) secret; size_t i; for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) { /* data_vec = xinput[i]; */ __m128i const data_vec = _mm_loadu_si128 (xinput+i); /* key_vec = xsecret[i]; */ __m128i const key_vec = _mm_loadu_si128 (xsecret+i); /* data_key = data_vec ^ key_vec; */ __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); /* data_key_lo = data_key >> 32; */ __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); if (accWidth == XXH3_acc_128bits) { /* xacc[i] += swap(data_vec); */ __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); __m128i const sum = _mm_add_epi64(xacc[i], data_swap); /* xacc[i] += product; */ xacc[i] = _mm_add_epi64(product, sum); } else { /* XXH3_acc_64bits */ /* xacc[i] += data_vec; */ __m128i const sum = _mm_add_epi64(xacc[i], data_vec); /* xacc[i] += product; */ xacc[i] = _mm_add_epi64(product, sum); } } } #elif (XXH_VECTOR == XXH_NEON) XXH_ASSERT((((size_t)acc) & 15) == 0); { XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc; /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ uint8_t const* const xinput = (const uint8_t *) input; uint8_t const* const xsecret = (const uint8_t *) secret; size_t i; for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) { /* data_vec = xinput[i]; */ uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); /* key_vec = xsecret[i]; */ uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); uint64x2_t data_key; uint32x2_t data_key_lo, data_key_hi; if (accWidth == XXH3_acc_64bits) { /* xacc[i] += data_vec; */ xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec)); } else { /* XXH3_acc_128bits */ /* xacc[i] += swap(data_vec); */ uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); uint64x2_t const swapped = vextq_u64(data64, data64, 1); xacc[i] = vaddq_u64 (xacc[i], swapped); } /* data_key = data_vec ^ key_vec; */ data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); * data_key_hi = (uint32x2_t) (data_key >> 32); * data_key = UNDEFINED; */ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); } } #elif (XXH_VECTOR == XXH_VSX) xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */ xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ xxh_u64x2 const v32 = { 32, 32 }; size_t i; for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) { /* data_vec = xinput[i]; */ xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); /* key_vec = xsecret[i]; */ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); xxh_u64x2 const data_key = data_vec ^ key_vec; /* shuffled = (data_key << 32) | (data_key >> 32); */ xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); xacc[i] += product; if (accWidth == XXH3_acc_64bits) { xacc[i] += data_vec; } else { /* XXH3_acc_128bits */ /* swap high and low halves */ #ifdef __s390x__ xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2); #else xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2); #endif xacc[i] += data_swapped; } } #else /* scalar variant of Accumulator - universal */ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ size_t i; XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); for (i=0; i < ACC_NB; i++) { xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); if (accWidth == XXH3_acc_64bits) { xacc[i] += data_val; } else { xacc[i ^ 1] += data_val; /* swap adjacent lanes */ } xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); } #endif } /* * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. * * Multiplication isn't perfect, as explained by Google in HighwayHash: * * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to * // varying degrees. In descending order of goodness, bytes * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. * // As expected, the upper and lower bytes are much worse. * * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 * * Since our algorithm uses a pseudorandom secret to add some variance into the * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. * * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid * extraction. * * Both XXH3_64bits and XXH3_128bits use this subroutine. */ XXH_FORCE_INLINE void XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) { #if (XXH_VECTOR == XXH_AVX512) XXH_ASSERT((((size_t)acc) & 63) == 0); XXH_STATIC_ASSERT(STRIPE_LEN == sizeof(__m512i)); { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc; const __m512i prime32 = _mm512_set1_epi32((int)PRIME32_1); /* xacc[0] ^= (xacc[0] >> 47) */ __m512i const acc_vec = *xacc; __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); /* xacc[0] ^= secret; */ __m512i const key_vec = _mm512_loadu_si512 (secret); __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); /* xacc[0] *= PRIME32_1; */ __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); } #elif (XXH_VECTOR == XXH_AVX2) XXH_ASSERT((((size_t)acc) & 31) == 0); { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ const __m256i* const xsecret = (const __m256i *) secret; const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1); size_t i; for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) { /* xacc[i] ^= (xacc[i] >> 47) */ __m256i const acc_vec = xacc[i]; __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); /* xacc[i] ^= xsecret; */ __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* xacc[i] *= PRIME32_1; */ __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); } } #elif (XXH_VECTOR == XXH_SSE2) XXH_ASSERT((((size_t)acc) & 15) == 0); { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc; /* Unaligned. This is mainly for pointer arithmetic, and because * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ const __m128i* const xsecret = (const __m128i *) secret; const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1); size_t i; for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) { /* xacc[i] ^= (xacc[i] >> 47) */ __m128i const acc_vec = xacc[i]; __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); /* xacc[i] ^= xsecret[i]; */ __m128i const key_vec = _mm_loadu_si128 (xsecret+i); __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); /* xacc[i] *= PRIME32_1; */ __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); } } #elif (XXH_VECTOR == XXH_NEON) XXH_ASSERT((((size_t)acc) & 15) == 0); { uint64x2_t* xacc = (uint64x2_t*) acc; uint8_t const* xsecret = (uint8_t const*) secret; uint32x2_t prime = vdup_n_u32 (PRIME32_1); size_t i; for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) { /* xacc[i] ^= (xacc[i] >> 47); */ uint64x2_t acc_vec = xacc[i]; uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); /* xacc[i] ^= xsecret[i]; */ uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); /* xacc[i] *= PRIME32_1 */ uint32x2_t data_key_lo, data_key_hi; /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); * data_key_hi = (uint32x2_t) (xacc[i] >> 32); * xacc[i] = UNDEFINED; */ XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); { /* * prod_hi = (data_key >> 32) * PRIME32_1; * * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will * incorrectly "optimize" this: * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); * shifted = vshll_n_u32(tmp, 32); * to this: * tmp = "vmulq_u64"(a, b); // no such thing! * shifted = vshlq_n_u64(tmp, 32); * * However, unlike SSE, Clang lacks a 64-bit multiply routine * for NEON, and it scalarizes two 64-bit multiplies instead. * * vmull_u32 has the same timing as vmul_u32, and it avoids * this bug completely. * See https://bugs.llvm.org/show_bug.cgi?id=39967 */ uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); /* xacc[i] = prod_hi << 32; */ xacc[i] = vshlq_n_u64(prod_hi, 32); /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */ xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); } } } #elif (XXH_VECTOR == XXH_VSX) XXH_ASSERT((((size_t)acc) & 15) == 0); { xxh_u64x2* const xacc = (xxh_u64x2*) acc; const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; /* constants */ xxh_u64x2 const v32 = { 32, 32 }; xxh_u64x2 const v47 = { 47, 47 }; xxh_u32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 }; size_t i; for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) { /* xacc[i] ^= (xacc[i] >> 47); */ xxh_u64x2 const acc_vec = xacc[i]; xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); /* xacc[i] ^= xsecret[i]; */ xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); xxh_u64x2 const data_key = data_vec ^ key_vec; /* xacc[i] *= PRIME32_1 */ /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); xacc[i] = prod_odd + (prod_even << v32); } } #else /* scalar variant of Scrambler - universal */ XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ size_t i; XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); for (i=0; i < ACC_NB; i++) { xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); xxh_u64 acc64 = xacc[i]; acc64 = XXH_xorshift64(acc64, 47); acc64 ^= key64; acc64 *= PRIME32_1; xacc[i] = acc64; } #endif } #define XXH_PREFETCH_DIST 384 #ifdef __clang__ // for clang # define XXH_PREFETCH_DIST_AVX512_64 320 # define XXH_PREFETCH_DIST_AVX512_128 320 #else // for gcc # define XXH_PREFETCH_DIST_AVX512_64 640 # define XXH_PREFETCH_DIST_AVX512_128 512 #endif /* * XXH3_accumulate() * Loops over XXH3_accumulate_512(). * Assumption: nbStripes will not overflow the secret size */ XXH_FORCE_INLINE void XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, const xxh_u8* XXH_RESTRICT secret, size_t nbStripes, XXH3_accWidth_e accWidth) { size_t n; for (n = 0; n < nbStripes; n++ ) { const xxh_u8* const in = input + n*STRIPE_LEN; #if (XXH_VECTOR == XXH_AVX512) if (accWidth == XXH3_acc_64bits) XXH_PREFETCH(in + XXH_PREFETCH_DIST_AVX512_64); else XXH_PREFETCH(in + XXH_PREFETCH_DIST_AVX512_128); #else XXH_PREFETCH(in + XXH_PREFETCH_DIST); #endif XXH3_accumulate_512(acc, in, secret + n*XXH_SECRET_CONSUME_RATE, accWidth); } } XXH_FORCE_INLINE void XXH3_hashLong_internal_loop( xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH3_accWidth_e accWidth) { size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; size_t const block_len = STRIPE_LEN * nb_rounds; size_t const nb_blocks = len / block_len; size_t n; XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); for (n = 0; n < nb_blocks; n++) { XXH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth); XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN); } /* last partial block */ XXH_ASSERT(len > STRIPE_LEN); { size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN; XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth); /* last stripe */ if (len & (STRIPE_LEN - 1)) { const xxh_u8* const p = input + len - STRIPE_LEN; /* Do not align on 8, so that the secret is different from the scrambler */ #define XXH_SECRET_LASTACC_START 7 XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth); } } } XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) { return XXH3_mul128_fold64( acc[0] ^ XXH_readLE64(secret), acc[1] ^ XXH_readLE64(secret+8) ); } static XXH64_hash_t XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) { xxh_u64 result64 = start; size_t i = 0; for (i = 0; i < 4; i++) { result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); #if defined(__clang__) /* Clang */ \ && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ /* * UGLY HACK: * Prevent autovectorization on Clang ARMv7-a. Exact same problem as * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. * XXH3_64bits, len == 256, Snapdragon 835: * without hack: 2063.7 MB/s * with hack: 2560.7 MB/s */ __asm__("" : "+r" (result64)); #endif } return XXH3_avalanche(result64); } #define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \ PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 } XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize) { XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC; XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits); /* converge into final hash */ XXH_STATIC_ASSERT(sizeof(acc) == 64); /* do not align on 8, so that the secret is different from the accumulator */ #define XXH_SECRET_MERGEACCS_START 11 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1); } XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) { if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); memcpy(dst, &v64, sizeof(v64)); } /* XXH3_initCustomSecret() : * destination `customSecret` is presumed allocated and same size as `kSecret`. */ XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* XXH_RESTRICT customSecret, xxh_u64 seed64) { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; int i; /* * We need a separate pointer for the hack below. * Any decent compiler will optimize this out otherwise. */ const xxh_u8 *kSecretPtr = kSecret; XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); #if defined(__clang__) && defined(__aarch64__) /* * UGLY HACK: * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are * placed sequentially, in order, at the top of the unrolled loop. * * While MOVK is great for generating constants (2 cycles for a 64-bit * constant compared to 4 cycles for LDR), long MOVK chains stall the * integer pipelines: * I L S * MOVK * MOVK * MOVK * MOVK * ADD * SUB STR * STR * By forcing loads from memory (as the asm line causes Clang to assume * that kSecretPtr has been changed), the pipelines are used more efficiently: * I L S * LDR * ADD LDR * SUB STR * STR * XXH3_64bits_withSeed, len == 256, Snapdragon 835 * without hack: 2654.4 MB/s * with hack: 3202.9 MB/s */ __asm__("" : "+r" (kSecretPtr)); #endif /* * Note: in debug mode, this overrides the asm optimization * and Clang will emit MOVK chains again. */ XXH_ASSERT(kSecretPtr == kSecret); for (i=0; i < nbRounds; i++) { /* * The asm hack causes Clang to assume that kSecretPtr aliases with * customSecret, and on aarch64, this prevented LDP from merging two * loads together for free. Putting the loads together before the stores * properly generates LDP. */ xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; XXH_writeLE64(customSecret + 16*i, lo); XXH_writeLE64(customSecret + 16*i + 8, hi); } } /* * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len) { return XXH3_hashLong_64b_internal(input, len, kSecret, sizeof(kSecret)); } /* * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize) { return XXH3_hashLong_64b_internal(input, len, secret, secretSize); } /* * XXH3_hashLong_64b_withSeed(): * Generate a custom key based on alteration of default kSecret with the seed, * and then use this key for long mode hashing. * * This operation is decently fast but nonetheless costs a little bit of time. * Try to avoid it whenever possible (typically when seed==0). * * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed) { XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; if (seed==0) return XXH3_hashLong_64b_defaultSecret(input, len); XXH3_initCustomSecret(secret, seed); return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret)); } /* === Public entry point === */ XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) { if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0); if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len); } XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); /* * If an action is to be taken if `secret` conditions are not respected, * it should be done here. * For now, it's a contract pre-condition. * Adding a check and a branch here would cost performance at every hash. */ if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0); if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize); } XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) { if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed); if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed); } /* === XXH3 streaming === */ /* * Malloc's a pointer that is always aligned to align. * * This must be freed with `XXH_alignedFree()`. * * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. * * This underalignment previously caused a rather obvious crash which went * completely unnoticed due to XXH3_createState() not actually being tested. * Credit to RedSpah for noticing this bug. * * The alignment is done manually: Functions like posix_memalign or _mm_malloc * are avoided: To maintain portability, we would have to write a fallback * like this anyways, and besides, testing for the existence of library * functions without relying on external build tools is impossible. * * The method is simple: Overallocate, manually align, and store the offset * to the original behind the returned pointer. * * Align must be a power of 2 and 8 <= align <= 128. */ static void* XXH_alignedMalloc(size_t s, size_t align) { XXH_ASSERT(align <= 128 && align >= 8); /* range check */ XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ { /* Overallocate to make room for manual realignment and an offset byte */ xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); if (base != NULL) { /* * Get the offset needed to align this pointer. * * Even if the returned pointer is aligned, there will always be * at least one byte to store the offset to the original pointer. */ size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ /* Add the offset for the now-aligned pointer */ xxh_u8* ptr = base + offset; XXH_ASSERT((size_t)ptr % align == 0); /* Store the offset immediately before the returned pointer. */ ptr[-1] = (xxh_u8)offset; return ptr; } return NULL; } } /* * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. */ static void XXH_alignedFree(void* p) { if (p != NULL) { xxh_u8* ptr = (xxh_u8*)p; /* Get the offset byte we added in XXH_malloc. */ xxh_u8 offset = ptr[-1]; /* Free the original malloc'd pointer */ xxh_u8* base = ptr - offset; XXH_free(base); } } XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) { return (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); } XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) { XXH_alignedFree(statePtr); return XXH_OK; } XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) { memcpy(dst_state, src_state, sizeof(*dst_state)); } static void XXH3_64bits_reset_internal(XXH3_state_t* statePtr, XXH64_hash_t seed, const xxh_u8* secret, size_t secretSize) { XXH_ASSERT(statePtr != NULL); memset(statePtr, 0, sizeof(*statePtr)); statePtr->acc[0] = PRIME32_3; statePtr->acc[1] = PRIME64_1; statePtr->acc[2] = PRIME64_2; statePtr->acc[3] = PRIME64_3; statePtr->acc[4] = PRIME64_4; statePtr->acc[5] = PRIME32_2; statePtr->acc[6] = PRIME64_5; statePtr->acc[7] = PRIME32_1; statePtr->seed = seed; XXH_ASSERT(secret != NULL); statePtr->secret = secret; XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN); statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; } XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr) { if (statePtr == NULL) return XXH_ERROR; XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE); return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) { if (statePtr == NULL) return XXH_ERROR; XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize); if (secret == NULL) return XXH_ERROR; if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) { if (statePtr == NULL) return XXH_ERROR; XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE); XXH3_initCustomSecret(statePtr->customSecret, seed); statePtr->secret = statePtr->customSecret; return XXH_OK; } XXH_FORCE_INLINE void XXH3_consumeStripes( xxh_u64* acc, XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock, const xxh_u8* input, size_t totalStripes, const xxh_u8* secret, size_t secretLimit, XXH3_accWidth_e accWidth) { XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) { /* need a scrambling operation */ size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr; XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth); XXH3_scrambleAcc(acc, secret + secretLimit); XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth); *nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes); } else { XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth); *nbStripesSoFarPtr += (XXH32_hash_t)totalStripes; } } /* * Both XXH3_64bits_update and XXH3_128bits_update use this routine. */ XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth) { if (input==NULL) #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) return XXH_OK; #else return XXH_ERROR; #endif { const xxh_u8* const bEnd = input + len; state->totalLen += len; if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */ XXH_memcpy(state->buffer + state->bufferedSize, input, len); state->bufferedSize += (XXH32_hash_t)len; return XXH_OK; } /* input is now > XXH3_INTERNALBUFFER_SIZE */ #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN) XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0); /* clean multiple */ /* * There is some input left inside the internal buffer. * Fill it, then consume it. */ if (state->bufferedSize) { size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); input += loadSize; XXH3_consumeStripes(state->acc, &state->nbStripesSoFar, state->nbStripesPerBlock, state->buffer, XXH3_INTERNALBUFFER_STRIPES, state->secret, state->secretLimit, accWidth); state->bufferedSize = 0; } /* Consume input by full buffer quantities */ if (input+XXH3_INTERNALBUFFER_SIZE <= bEnd) { const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; do { XXH3_consumeStripes(state->acc, &state->nbStripesSoFar, state->nbStripesPerBlock, input, XXH3_INTERNALBUFFER_STRIPES, state->secret, state->secretLimit, accWidth); input += XXH3_INTERNALBUFFER_SIZE; } while (input<=limit); } if (input < bEnd) { /* Some remaining input: buffer it */ XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); state->bufferedSize = (XXH32_hash_t)(bEnd-input); } } return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) { return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits); } XXH_FORCE_INLINE void XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth) { /* * Digest on a local copy. This way, the state remains unaltered, and it can * continue ingesting more input afterwards. */ memcpy(acc, state->acc, sizeof(state->acc)); if (state->bufferedSize >= STRIPE_LEN) { size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN; XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar; XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock, state->buffer, totalNbStripes, state->secret, state->secretLimit, accWidth); if (state->bufferedSize % STRIPE_LEN) { /* one last partial stripe */ XXH3_accumulate_512(acc, state->buffer + state->bufferedSize - STRIPE_LEN, state->secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth); } } else { /* bufferedSize < STRIPE_LEN */ if (state->bufferedSize) { /* one last stripe */ xxh_u8 lastStripe[STRIPE_LEN]; size_t const catchupSize = STRIPE_LEN - state->bufferedSize; memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); XXH3_accumulate_512(acc, lastStripe, state->secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth); } } } XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) { if (state->totalLen > XXH3_MIDSIZE_MAX) { XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB]; XXH3_digest_long(acc, state, XXH3_acc_64bits); return XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1); } /* len <= XXH3_MIDSIZE_MAX: short code */ if (state->seed) return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN); } /* ========================================== * XXH3 128 bits (a.k.a XXH128) * ========================================== * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, * even without counting the significantly larger output size. * * For example, extra steps are taken to avoid the seed-dependent collisions * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). * * This strength naturally comes at the cost of some speed, especially on short * lengths. Note that longer hashes are about as fast as the 64-bit version * due to it using only a slight modification of the 64-bit loop. * * XXH128 is also more oriented towards 64-bit machines. It is still extremely * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). */ XXH_FORCE_INLINE XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { /* A doubled version of 1to3_64b with different constants. */ XXH_ASSERT(input != NULL); XXH_ASSERT(1 <= len && len <= 3); XXH_ASSERT(secret != NULL); /* * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } */ { xxh_u8 const c1 = input[0]; xxh_u8 const c2 = input[len >> 1]; xxh_u8 const c3 = input[len - 1]; xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; xxh_u64 const mixedl = keyed_lo * PRIME64_1; xxh_u64 const mixedh = keyed_hi * PRIME64_5; XXH128_hash_t h128; h128.low64 = XXH3_avalanche(mixedl); h128.high64 = XXH3_avalanche(mixedh); return h128; } } XXH_FORCE_INLINE XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(4 <= len && len <= 8); seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; { xxh_u32 const input_lo = XXH_readLE32(input); xxh_u32 const input_hi = XXH_readLE32(input + len - 4); xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; xxh_u64 const keyed = input_64 ^ bitflip; /* Shift len to the left to ensure it is even, this avoids even multiplies. */ XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2)); m128.high64 += (m128.low64 << 1); m128.low64 ^= (m128.high64 >> 3); m128.low64 = XXH_xorshift64(m128.low64, 35); m128.low64 *= 0x9FB21C651E98DF25ULL; m128.low64 = XXH_xorshift64(m128.low64, 28); m128.high64 = XXH3_avalanche(m128.high64); return m128; } } XXH_FORCE_INLINE XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(input != NULL); XXH_ASSERT(secret != NULL); XXH_ASSERT(9 <= len && len <= 16); { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; xxh_u64 const input_lo = XXH_readLE64(input); xxh_u64 input_hi = XXH_readLE64(input + len - 8); XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1); /* * Put len in the middle of m128 to ensure that the length gets mixed to * both the low and high bits in the 128x64 multiply below. */ m128.low64 += (xxh_u64)(len - 1) << 54; input_hi ^= bitfliph; /* * Add the high 32 bits of input_hi to the high 32 bits of m128, then * add the long product of the low 32 bits of input_hi and PRIME32_2 to * the high 64 bits of m128. * * The best approach to this operation is different on 32-bit and 64-bit. */ if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ /* * 32-bit optimized version, which is more readable. * * On 32-bit, it removes an ADC and delays a dependency between the two * halves of m128.high64, but it generates an extra mask on 64-bit. */ m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2); } else { /* * 64-bit optimized (albeit more confusing) version. * * Uses some properties of addition and multiplication to remove the mask: * * Let: * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) * c = PRIME32_2 * * a + (b * c) * Inverse Property: x + y - x == y * a + (b * (1 + c - 1)) * Distributive Property: x * (y + z) == (x * y) + (x * z) * a + (b * 1) + (b * (c - 1)) * Identity Property: x * 1 == x * a + b + (b * (c - 1)) * * Substitute a, b, and c: * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1)) * * Since input_hi.hi + input_hi.lo == input_hi, we get this: * input_hi + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1)) */ m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2 - 1); } /* m128 ^= XXH_swap64(m128 >> 64); */ m128.low64 ^= XXH_swap64(m128.high64); { /* 128x64 multiply: h128 = m128 * PRIME64_2; */ XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2); h128.high64 += m128.high64 * PRIME64_2; h128.low64 = XXH3_avalanche(h128.low64); h128.high64 = XXH3_avalanche(h128.high64); return h128; } } } /* * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN */ XXH_FORCE_INLINE XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) { XXH_ASSERT(len <= 16); { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); if (len) return XXH3_len_1to3_128b(input, len, secret, seed); { XXH128_hash_t h128; xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); h128.low64 = XXH3_avalanche((PRIME64_1 + seed) ^ bitflipl); h128.high64 = XXH3_avalanche((PRIME64_2 - seed) ^ bitfliph); return h128; } } } /* * A bit slower than XXH3_mix16B, but handles multiply by zero better. */ XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, const xxh_u8* secret, XXH64_hash_t seed) { acc.low64 += XXH3_mix16B (input_1, secret+0, seed); acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); acc.high64 += XXH3_mix16B (input_2, secret+16, seed); acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); return acc; } XXH_FORCE_INLINE XXH128_hash_t XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(16 < len && len <= 128); { XXH128_hash_t acc; acc.low64 = len * PRIME64_1; acc.high64 = 0; if (len > 32) { if (len > 64) { if (len > 96) { acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); } acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); } acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); } acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); { XXH128_hash_t h128; h128.low64 = acc.low64 + acc.high64; h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2); h128.low64 = XXH3_avalanche(h128.low64); h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); return h128; } } } XXH_NO_INLINE XXH128_hash_t XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); { XXH128_hash_t acc; int const nbRounds = (int)len / 32; int i; acc.low64 = len * PRIME64_1; acc.high64 = 0; for (i=0; i<4; i++) { acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16, secret + (32 * i), seed); } acc.low64 = XXH3_avalanche(acc.low64); acc.high64 = XXH3_avalanche(acc.high64); XXH_ASSERT(nbRounds >= 4); for (i=4 ; i < nbRounds; i++) { acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16, secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), seed); } /* last bytes */ acc = XXH128_mix32B(acc, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 0ULL - seed); { XXH128_hash_t h128; h128.low64 = acc.low64 + acc.high64; h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2); h128.low64 = XXH3_avalanche(h128.low64); h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); return h128; } } } XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize) { XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC; XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits); /* converge into final hash */ XXH_STATIC_ASSERT(sizeof(acc) == 64); XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); { XXH128_hash_t h128; h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1); h128.high64 = XXH3_mergeAccs(acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)len * PRIME64_2)); return h128; } } /* * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len) { return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret)); } /* * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len, const xxh_u8* secret, size_t secretSize) { return XXH3_hashLong_128b_internal(input, len, secret, secretSize); } /* * It's important for performance that XXH3_hashLong is not inlined. Not sure * why (uop cache maybe?), but the difference is large and easily measurable. */ XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed) { XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; if (seed == 0) return XXH3_hashLong_128b_defaultSecret(input, len); XXH3_initCustomSecret(secret, seed); return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret)); } XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) { if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0); if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0); return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len); } XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) { XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); /* * If an action is to be taken if `secret` conditions are not respected, * it should be done here. * For now, it's a contract pre-condition. * Adding a check and a branch here would cost performance at every hash. */ if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0); if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0); return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize); } XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) { if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed); if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed); return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed); } XXH_PUBLIC_API XXH128_hash_t XXH128(const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_withSeed(input, len, seed); } /* === XXH3 128-bit streaming === */ /* * All the functions are actually the same as for 64-bit streaming variant. * The only difference is the finalizatiom routine. */ static void XXH3_128bits_reset_internal(XXH3_state_t* statePtr, XXH64_hash_t seed, const xxh_u8* secret, size_t secretSize) { XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); } XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr) { if (statePtr == NULL) return XXH_ERROR; XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE); return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) { if (statePtr == NULL) return XXH_ERROR; XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize); if (secret == NULL) return XXH_ERROR; if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) { if (statePtr == NULL) return XXH_ERROR; XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE); XXH3_initCustomSecret(statePtr->customSecret, seed); statePtr->secret = statePtr->customSecret; return XXH_OK; } XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) { return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits); } XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) { if (state->totalLen > XXH3_MIDSIZE_MAX) { XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB]; XXH3_digest_long(acc, state, XXH3_acc_128bits); XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); { XXH128_hash_t h128; h128.low64 = XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1); h128.high64 = XXH3_mergeAccs(acc, state->secret + state->secretLimit + STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)state->totalLen * PRIME64_2)); return h128; } } /* len <= XXH3_MIDSIZE_MAX : short code */ if (state->seed) return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN); } /* 128-bit utility functions */ #include /* memcmp, memcpy */ /* return : 1 is equal, 0 if different */ XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) { /* note : XXH128_hash_t is compact, it has no padding byte */ return !(memcmp(&h1, &h2, sizeof(h1))); } /* This prototype is compatible with stdlib's qsort(). * return : >0 if *h128_1 > *h128_2 * <0 if *h128_1 < *h128_2 * =0 if *h128_1 == *h128_2 */ XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) { XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); /* note : bets that, in most cases, hash values are different */ if (hcmp) return hcmp; return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); } /*====== Canonical representation ======*/ XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) { XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); if (XXH_CPU_LITTLE_ENDIAN) { hash.high64 = XXH_swap64(hash.high64); hash.low64 = XXH_swap64(hash.low64); } memcpy(dst, &hash.high64, sizeof(hash.high64)); memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); } XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src) { XXH128_hash_t h; h.high64 = XXH_readBE64(src); h.low64 = XXH_readBE64(src->digest + 8); return h; } /* Pop our optimization override from above */ #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ # pragma GCC pop_options #endif #endif /* XXH3_H_1397135465 */