/* Copyright 2016-2019 Arisotura This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ // LAN interface. Currently powered by libpcap, may change. #include #include #include #include #include #include "Wifi.h" #include "LAN.h" #include "../Config.h" #ifdef __WIN32__ #include #else // Linux includes go here #endif // welp #ifndef PCAP_OPENFLAG_PROMISCUOUS #define PCAP_OPENFLAG_PROMISCUOUS 1 #endif #define DECL_PCAP_FUNC(ret, name, args, args2) \ typedef ret (*type_##name) args; \ type_##name ptr_##name = NULL; \ ret name args { return ptr_##name args2; } DECL_PCAP_FUNC(int, pcap_findalldevs, (pcap_if_t** alldevs, char* errbuf), (alldevs,errbuf)) DECL_PCAP_FUNC(void, pcap_freealldevs, (pcap_if_t* alldevs), (alldevs)) DECL_PCAP_FUNC(pcap_t*, pcap_open_live, (const char* src, int snaplen, int flags, int readtimeout, char* errbuf), (src,snaplen,flags,readtimeout,errbuf)) DECL_PCAP_FUNC(void, pcap_close, (pcap_t* dev), (dev)) DECL_PCAP_FUNC(int, pcap_setnonblock, (pcap_t* dev, int nonblock, char* errbuf), (dev,nonblock,errbuf)) DECL_PCAP_FUNC(int, pcap_sendpacket, (pcap_t* dev, const u_char* data, int len), (dev,data,len)) DECL_PCAP_FUNC(int, pcap_dispatch, (pcap_t* dev, int num, pcap_handler callback, u_char* data), (dev,num,callback,data)) DECL_PCAP_FUNC(const u_char*, pcap_next, (pcap_t* dev, struct pcap_pkthdr* hdr), (dev,hdr)) namespace LAN { const char* PCapLibNames[] = { #ifdef __WIN32__ // TODO: name for npcap in non-WinPCap mode "wpcap.dll", #else // Linux lib names "libpcap.so.1", "libpcap.so", #endif NULL }; AdapterData* Adapters = NULL; int NumAdapters = 0; void* PCapLib = NULL; pcap_t* PCapAdapter = NULL; AdapterData* PCapAdapterData; u8 PCapPacketBuffer[2048]; int PCapPacketLen; volatile int PCapRXNum; u16 IPv4ID; typedef struct { u8 DestIP[4]; u16 DestPort; // 0: unused // 1: connected u8 Status; } TCPSocket; TCPSocket TCPSocketList[64]; #define LOAD_PCAP_FUNC(sym) \ ptr_##sym = (type_##sym)SDL_LoadFunction(lib, #sym); \ if (!ptr_##sym) return false; bool TryLoadPCap(void* lib) { LOAD_PCAP_FUNC(pcap_findalldevs) LOAD_PCAP_FUNC(pcap_freealldevs) LOAD_PCAP_FUNC(pcap_open_live) LOAD_PCAP_FUNC(pcap_close) LOAD_PCAP_FUNC(pcap_setnonblock) LOAD_PCAP_FUNC(pcap_sendpacket) LOAD_PCAP_FUNC(pcap_dispatch) LOAD_PCAP_FUNC(pcap_next) return true; } bool Init() { // TODO: how to deal with cases where an adapter is unplugged or changes config?? if (PCapLib) return true; PCapLib = NULL; PCapAdapter = NULL; PCapPacketLen = 0; PCapRXNum = 0; IPv4ID = 1; memset(TCPSocketList, 0, sizeof(TCPSocketList)); for (int i = 0; PCapLibNames[i]; i++) { void* lib = SDL_LoadObject(PCapLibNames[i]); if (!lib) continue; if (!TryLoadPCap(lib)) { SDL_UnloadObject(lib); continue; } printf("PCap: lib %s, init successful\n", PCapLibNames[i]); PCapLib = lib; break; } if (PCapLib == NULL) { printf("PCap: init failed\n"); return false; } char errbuf[PCAP_ERRBUF_SIZE]; int ret; pcap_if_t* alldevs; ret = pcap_findalldevs(&alldevs, errbuf); if (ret < 0 || alldevs == NULL) { printf("PCap: no devices available\n"); return false; } pcap_if_t* dev = alldevs; while (dev) { NumAdapters++; dev = dev->next; } Adapters = new AdapterData[NumAdapters]; memset(Adapters, 0, sizeof(AdapterData)*NumAdapters); AdapterData* adata = &Adapters[0]; dev = alldevs; while (dev) { adata->Internal = dev; // hax int len = strlen(dev->name); len -= 12; if (len > 127) len = 127; strncpy(adata->DeviceName, &dev->name[12], len); adata->DeviceName[len] = '\0'; dev = dev->next; adata++; } #ifdef __WIN32__ ULONG bufsize = 16384; IP_ADAPTER_ADDRESSES* buf = (IP_ADAPTER_ADDRESSES*)HeapAlloc(GetProcessHeap(), 0, bufsize); ULONG uret = GetAdaptersAddresses(AF_INET, 0, NULL, buf, &bufsize); if (uret == ERROR_BUFFER_OVERFLOW) { HeapFree(GetProcessHeap(), 0, buf); buf = (IP_ADAPTER_ADDRESSES*)HeapAlloc(GetProcessHeap(), 0, bufsize); uret = GetAdaptersAddresses(AF_INET, 0, NULL, buf, &bufsize); } if (uret != ERROR_SUCCESS) { printf("GetAdaptersAddresses() shat itself: %08X\n", ret); return false; } for (int i = 0; i < NumAdapters; i++) { adata = &Adapters[i]; IP_ADAPTER_ADDRESSES* addr = buf; while (addr) { if (strcmp(addr->AdapterName, adata->DeviceName)) { addr = addr->Next; continue; } WideCharToMultiByte(CP_UTF8, 0, addr->FriendlyName, 127, adata->FriendlyName, 127, NULL, NULL); adata->FriendlyName[127] = '\0'; WideCharToMultiByte(CP_UTF8, 0, addr->Description, 127, adata->Description, 127, NULL, NULL); adata->Description[127] = '\0'; if (addr->PhysicalAddressLength != 6) { printf("weird MAC addr length %d for %s\n", addr->PhysicalAddressLength, addr->AdapterName); } else memcpy(adata->MAC, addr->PhysicalAddress, 6); IP_ADAPTER_UNICAST_ADDRESS* ipaddr = addr->FirstUnicastAddress; while (ipaddr) { SOCKADDR* sa = ipaddr->Address.lpSockaddr; if (sa->sa_family == AF_INET) { struct in_addr sa4 = ((sockaddr_in*)sa)->sin_addr; memcpy(adata->IP_v4, &sa4.S_un.S_addr, 4); } ipaddr = ipaddr->Next; } IP_ADAPTER_DNS_SERVER_ADDRESS* dnsaddr = addr->FirstDnsServerAddress; int ndns = 0; while (dnsaddr) { SOCKADDR* sa = dnsaddr->Address.lpSockaddr; if (sa->sa_family == AF_INET) { struct in_addr sa4 = ((sockaddr_in*)sa)->sin_addr; memcpy(adata->DNS[ndns++], &sa4.S_un.S_addr, 4); } if (ndns >= 8) break; dnsaddr = dnsaddr->Next; } if (addr->Dhcpv4Enabled && addr->Dhcpv4Server.lpSockaddr) { SOCKADDR* sa = addr->Dhcpv4Server.lpSockaddr; struct in_addr sa4 = ((sockaddr_in*)sa)->sin_addr; memcpy(adata->DHCP_IP_v4, &sa4.S_un.S_addr, 4); } else memset(adata->DHCP_IP_v4, 0, 4); break; } } HeapFree(GetProcessHeap(), 0, buf); #else // TODO #endif // __WIN32__ // open pcap device PCapAdapterData = &Adapters[0]; for (int i = 0; i < NumAdapters; i++) { if (!strncmp(Adapters[i].DeviceName, Config::LANDevice, 128)) PCapAdapterData = &Adapters[i]; } dev = (pcap_if_t*)PCapAdapterData->Internal; PCapAdapter = pcap_open_live(dev->name, 2048, PCAP_OPENFLAG_PROMISCUOUS, 1, errbuf); if (!PCapAdapter) { printf("PCap: failed to open adapter\n"); return false; } pcap_freealldevs(alldevs); for (int ntries = 0; ntries < 4; ntries++) { bool good = false; // get router MAC printf("DHCP: %d.%d.%d.%d\n", PCapAdapterData->DHCP_IP_v4[0], PCapAdapterData->DHCP_IP_v4[1], PCapAdapterData->DHCP_IP_v4[2], PCapAdapterData->DHCP_IP_v4[3]); u8 arp[64]; u8* out = &arp[0]; *out++ = 0xFF; *out++ = 0xFF; *out++ = 0xFF; *out++ = 0xFF; *out++ = 0xFF; *out++ = 0xFF; memcpy(out, PCapAdapterData->MAC, 6); out += 6; *(u16*)out = htons(0x0806); out += 2; *(u16*)out = htons(0x0001); out += 2; *(u16*)out = htons(0x0800); out += 2; *out++ = 6; *out++ = 4; *(u16*)out = htons(0x0001); out += 2; memcpy(out, PCapAdapterData->MAC, 6); out += 6; memcpy(out, PCapAdapterData->IP_v4, 4); out += 4; *out++ = 0; *out++ = 0; *out++ = 0; *out++ = 0; *out++ = 0; *out++ = 0; memcpy(out, PCapAdapterData->DHCP_IP_v4, 4); out += 4; u32 len = (u32)(out - &arp[0]); pcap_sendpacket(PCapAdapter, arp, len); for (int t = 0; t < 16; t++) { struct pcap_pkthdr hdr; const u8* rep = pcap_next(PCapAdapter, &hdr); if (!rep) continue; if (hdr.len < 0x2A) continue; if (memcmp(&rep[0], PCapAdapterData->MAC, 6)) continue; if (ntohs(*(u16*)&rep[12]) != 0x0806) continue; if (ntohs(*(u16*)&rep[14]) != 0x0001) continue; if (ntohs(*(u16*)&rep[16]) != 0x0800) continue; if (ntohs(*(u16*)&rep[18]) != 0x0604) continue; if (ntohs(*(u16*)&rep[20]) != 0x0002) continue; if (memcmp(&rep[28], PCapAdapterData->DHCP_IP_v4, 4)) continue; printf("DHCP MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", rep[22], rep[23], rep[24], rep[25], rep[26], rep[27]); memcpy(PCapAdapterData->DHCP_MAC, &rep[22], 6); good = true; break; } if (good) break; } if (pcap_setnonblock(PCapAdapter, 1, errbuf) < 0) { printf("PCap: failed to set nonblocking mode\n"); pcap_close(PCapAdapter); PCapAdapter = NULL; return false; } return true; } void DeInit() { if (PCapLib) { if (PCapAdapter) { pcap_close(PCapAdapter); PCapAdapter = NULL; } SDL_UnloadObject(PCapLib); PCapLib = NULL; } } bool HandleIncomingIPFrame(u8* data, int len) { const u32 serverip = 0x0A404001; const u32 clientip = 0x0A404010; if (memcmp(&data[0x1E], PCapAdapterData->IP_v4, 4)) return false; u8 protocol = data[0x17]; //memcpy(&data[6], &PCapAdapterData->DHCP_MAC[0], 6); memcpy(&data[0], Wifi::GetMAC(), 6); data[6] = 0x00; data[7] = 0xAB; data[8] = 0x33; data[9] = 0x28; data[10] = 0x99; data[11] = 0x44; *(u32*)&data[0x1E] = htonl(clientip); u8* ipheader = &data[0xE]; u8* protoheader = &data[0x22]; // IP checksum u32 tmp = 0; *(u16*)&ipheader[10] = 0; for (int i = 0; i < 20; i += 2) tmp += ntohs(*(u16*)&ipheader[i]); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; *(u16*)&ipheader[10] = htons(tmp); if (protocol == 0x11) { u32 udplen = ntohs(*(u16*)&protoheader[4]); // UDP checksum tmp = 0; *(u16*)&protoheader[6] = 0; tmp += ntohs(*(u16*)&ipheader[12]); tmp += ntohs(*(u16*)&ipheader[14]); tmp += ntohs(*(u16*)&ipheader[16]); tmp += ntohs(*(u16*)&ipheader[18]); tmp += ntohs(0x1100); tmp += udplen; for (u8* i = protoheader; i < &protoheader[udplen-1]; i += 2) tmp += ntohs(*(u16*)i); if (udplen & 1) tmp += (protoheader[udplen-1] << 8); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; if (tmp == 0) tmp = 0xFFFF; *(u16*)&protoheader[6] = htons(tmp); } else if (protocol == 0x06) { u32 tcplen = ntohs(*(u16*)&ipheader[2]) - 0x14; u16 srcport = ntohs(*(u16*)&protoheader[0]); u16 dstport = ntohs(*(u16*)&protoheader[2]); u16 flags = ntohs(*(u16*)&protoheader[12]); // TODO: check if they send a FIN, I guess int sockid = -1; for (int i = 0; i < (sizeof(TCPSocketList)/sizeof(TCPSocket)); i++) { TCPSocket* sock = &TCPSocketList[i]; if (sock->Status == 1 && !memcmp(&sock->DestIP, &ipheader[12], 4) && sock->DestPort == srcport) { sockid = i; break; } } if (sockid == -1) { return true; } // TCP checksum tmp = 0; *(u16*)&protoheader[16] = 0; tmp += ntohs(*(u16*)&ipheader[12]); tmp += ntohs(*(u16*)&ipheader[14]); tmp += ntohs(*(u16*)&ipheader[16]); tmp += ntohs(*(u16*)&ipheader[18]); tmp += ntohs(0x0600); tmp += tcplen; for (u8* i = protoheader; i < &protoheader[tcplen-1]; i += 2) tmp += ntohs(*(u16*)i); if (tcplen & 1) tmp += (protoheader[tcplen-1] << 8); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; *(u16*)&protoheader[16] = htons(tmp); } return false; } void RXCallback(u_char* blarg, const struct pcap_pkthdr* header, const u_char* data) { while (PCapRXNum > 0); if (header->len > 2048-64) return; PCapPacketLen = header->len; memcpy(PCapPacketBuffer, data, PCapPacketLen); PCapRXNum = 1; if (!Config::DirectLAN) { u16 ethertype = ntohs(*(u16*)&data[0xC]); if (ethertype == 0x0800) // IPv4 { if (HandleIncomingIPFrame(PCapPacketBuffer, header->len)) PCapRXNum = 0; } } } u32 zarp=0; bool HandleDHCPFrame(u8* data, int len) { const u32 serverip = 0x0A404001; const u32 clientip = 0x0A404010; u8 type = 0xFF; u32 transid = *(u32*)&data[0x2E]; zarp=transid; u8* options = &data[0x11A]; for (;;) { if (options >= &data[len]) break; u8 opt = *options++; if (opt == 255) break; u8 len = *options++; switch (opt) { case 53: // frame type type = options[0]; break; } options += len; } if (type == 0xFF) { printf("DHCP: bad frame\n"); return false; } printf("DHCP: frame type %d, transid %08X\n", type, transid); if (type == 1 || // discover type == 3) // request { u8 resp[512]; u8* out = &resp[0]; // ethernet memcpy(out, &data[6], 6); out += 6; *out++ = 0x00; *out++ = 0xAB; *out++ = 0x33; *out++ = 0x28; *out++ = 0x99; *out++ = 0x44; *(u16*)out = htons(0x0800); out += 2; // IP u8* ipheader = out; *out++ = 0x45; *out++ = 0x00; *(u16*)out = 0; out += 2; // total length *(u16*)out = htons(IPv4ID); out += 2; IPv4ID++; *out++ = 0x00; *out++ = 0x00; *out++ = 0x80; // TTL *out++ = 0x11; // protocol (UDP) *(u16*)out = 0; out += 2; // checksum *(u32*)out = htonl(serverip); out += 4; // source IP if (type == 1) { *(u32*)out = htonl(0xFFFFFFFF); out += 4; // destination IP } else if (type == 3) { *(u32*)out = htonl(clientip); out += 4; // destination IP } // UDP u8* udpheader = out; *(u16*)out = htons(67); out += 2; // source port *(u16*)out = htons(68); out += 2; // destination port *(u16*)out = 0; out += 2; // length *(u16*)out = 0; out += 2; // checksum // DHCP u8* body = out; *out++ = 0x02; *out++ = 0x01; *out++ = 0x06; *out++ = 0x00; *(u32*)out = transid; out += 4; *(u16*)out = 0; out += 2; // seconds elapsed *(u16*)out = 0; out += 2; *(u32*)out = htonl(0x00000000); out += 4; // client IP *(u32*)out = htonl(clientip); out += 4; // your IP *(u32*)out = htonl(serverip); out += 4; // server IP *(u32*)out = htonl(0x00000000); out += 4; // gateway IP memcpy(out, &data[6], 6); out += 6; memset(out, 0, 10); out += 10; memset(out, 0, 192); out += 192; *(u32*)out = 0x63538263; out += 4; // DHCP magic // DHCP options *out++ = 53; *out++ = 1; *out++ = (type==1) ? 2 : 5; // DHCP type: offer/ack *out++ = 1; *out++ = 4; *(u32*)out = htonl(0xFFFFFF00); out += 4; // subnet mask *out++ = 3; *out++ = 4; *(u32*)out = htonl(serverip); out += 4; // router *out++ = 51; *out++ = 4; *(u32*)out = htonl(442030); out += 4; // lease time *out++ = 54; *out++ = 4; *(u32*)out = htonl(serverip); out += 4; // DHCP server u8 numdns = 0; for (int i = 0; i < 8; i++) { if (*(u32*)&PCapAdapterData->DNS[i][0] != 0) numdns++; } *out++ = 6; *out++ = 4*numdns; for (int i = 0; i < 8; i++) { u32 dnsip = *(u32*)&PCapAdapterData->DNS[i][0]; if (dnsip != 0) { *(u32*)out = dnsip; out += 4; } } *out++ = 0xFF; memset(out, 0, 20); out += 20; // lengths u32 framelen = (u32)(out - &resp[0]); if (framelen & 1) { *out++ = 0; framelen++; } *(u16*)&ipheader[2] = htons(framelen - 0xE); *(u16*)&udpheader[4] = htons(framelen - (0xE + 0x14)); // IP checksum u32 tmp = 0; for (int i = 0; i < 20; i += 2) tmp += ntohs(*(u16*)&ipheader[i]); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; *(u16*)&ipheader[10] = htons(tmp); // UDP checksum // (note: normally not mandatory, but some older sgIP versions require it) tmp = 0; tmp += ntohs(*(u16*)&ipheader[12]); tmp += ntohs(*(u16*)&ipheader[14]); tmp += ntohs(*(u16*)&ipheader[16]); tmp += ntohs(*(u16*)&ipheader[18]); tmp += ntohs(0x1100); tmp += (u32)(out - udpheader); for (u8* i = udpheader; i < out; i += 2) tmp += ntohs(*(u16*)i); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; if (tmp == 0) tmp = 0xFFFF; *(u16*)&udpheader[6] = htons(tmp); // TODO: if there is already a packet queued, this will overwrite it // that being said, this will only happen during DHCP setup, so probably // not a big deal PCapPacketLen = framelen; memcpy(PCapPacketBuffer, resp, PCapPacketLen); PCapRXNum = 1; // DEBUG!! //pcap_sendpacket(PCapAdapter, data, len); //pcap_sendpacket(PCapAdapter, resp, framelen); return true; } return false; } bool HandleIPFrame(u8* data, int len) { const u32 serverip = 0x0A404001; const u32 clientip = 0x0A404010; // debug //pcap_sendpacket(PCapAdapter, data, len); u8 protocol = data[0x17]; // any kind of IPv4 frame that isn't DHCP // we do NAT and forward it to the network // like: // melonRouter -> host // destination MAC set to host MAC // source MAC set to melonRouter MAC memcpy(&data[0], &PCapAdapterData->DHCP_MAC[0], 6); memcpy(&data[6], &PCapAdapterData->MAC[0], 6); *(u32*)&data[0x1A] = *(u32*)&PCapAdapterData->IP_v4[0]; u8* ipheader = &data[0xE]; u8* protoheader = &data[0x22]; // IP checksum u32 tmp = 0; *(u16*)&ipheader[10] = 0; for (int i = 0; i < 20; i += 2) tmp += ntohs(*(u16*)&ipheader[i]); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; *(u16*)&ipheader[10] = htons(tmp); if (protocol == 0x11) { u32 udplen = ntohs(*(u16*)&protoheader[4]); // UDP checksum tmp = 0; *(u16*)&protoheader[6] = 0; tmp += ntohs(*(u16*)&ipheader[12]); tmp += ntohs(*(u16*)&ipheader[14]); tmp += ntohs(*(u16*)&ipheader[16]); tmp += ntohs(*(u16*)&ipheader[18]); tmp += ntohs(0x1100); tmp += udplen; for (u8* i = protoheader; i < &protoheader[udplen]; i += 2) tmp += ntohs(*(u16*)i); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; if (tmp == 0) tmp = 0xFFFF; *(u16*)&protoheader[6] = htons(tmp); } else if (protocol == 0x06) { u32 tcplen = ntohs(*(u16*)&ipheader[2]) - 0x14; u16 srcport = ntohs(*(u16*)&protoheader[0]); u16 dstport = ntohs(*(u16*)&protoheader[2]); u16 flags = ntohs(*(u16*)&protoheader[12]); if (flags & 0x002) // SYN { int sockid = -1; for (int i = 0; i < (sizeof(TCPSocketList)/sizeof(TCPSocket)); i++) { TCPSocket* sock = &TCPSocketList[i]; if (sock->Status == 1 && !memcmp(&sock->DestIP, &ipheader[16], 4) && sock->DestPort == dstport) { printf("LANMAGIC: duplicate TCP socket\n"); sockid = i; break; } } if (sockid == -1) { for (int i = 0; i < (sizeof(TCPSocketList)/sizeof(TCPSocket)); i++) { TCPSocket* sock = &TCPSocketList[i]; if (sock->Status == 0) { sockid = i; break; } } } if (sockid == -1) { printf("LANMAGIC: !! TCP SOCKET LIST FULL\n"); return true; } printf("LANMAGIC: opening TCP socket #%d to %d.%d.%d.%d:%d\n", sockid, ipheader[16], ipheader[17], ipheader[18], ipheader[19], dstport); // keep track of it // (TODO: also keep track of source port?) TCPSocket* sock = &TCPSocketList[sockid]; sock->Status = 1; memcpy(sock->DestIP, &ipheader[16], 4); sock->DestPort = dstport; } else { int sockid = -1; for (int i = 0; i < (sizeof(TCPSocketList)/sizeof(TCPSocket)); i++) { TCPSocket* sock = &TCPSocketList[i]; if (sock->Status == 1 && !memcmp(&sock->DestIP, &ipheader[16], 4) && sock->DestPort == dstport) { sockid = i; break; } } if (sockid == -1) { printf("LANMAGIC: bad TCP packet\n"); return true; } if (flags & 0x001) // FIN { // TODO: cleverer termination? // also timeout etc TCPSocketList[sockid].Status = 0; } } // TCP checksum tmp = 0; *(u16*)&protoheader[16] = 0; tmp += ntohs(*(u16*)&ipheader[12]); tmp += ntohs(*(u16*)&ipheader[14]); tmp += ntohs(*(u16*)&ipheader[16]); tmp += ntohs(*(u16*)&ipheader[18]); tmp += ntohs(0x0600); tmp += tcplen; for (u8* i = protoheader; i < &protoheader[tcplen]; i += 2) tmp += ntohs(*(u16*)i); while (tmp >> 16) tmp = (tmp & 0xFFFF) + (tmp >> 16); tmp ^= 0xFFFF; if (tmp == 0) tmp = 0xFFFF; *(u16*)&protoheader[16] = htons(tmp); } return false; } bool HandleARPFrame(u8* data, int len) { const u32 serverip = 0x0A404001; const u32 clientip = 0x0A404010; u16 protocol = ntohs(*(u16*)&data[0x10]); if (protocol != 0x0800) return false; u16 op = ntohs(*(u16*)&data[0x14]); u32 targetip = ntohl(*(u32*)&data[0x26]); // TODO: handle ARP to the client // this only handles ARP to the DHCP/router if (op == 1 && targetip == serverip) { // opcode 1=req 2=reply // sender MAC // sender IP // target MAC // target IP u8 resp[64]; u8* out = &resp[0]; // ethernet memcpy(out, &data[6], 6); out += 6; *out++ = 0x00; *out++ = 0xAB; *out++ = 0x33; *out++ = 0x28; *out++ = 0x99; *out++ = 0x44; *(u16*)out = htons(0x0806); out += 2; // ARP *(u16*)out = htons(0x0001); out += 2; // hardware type *(u16*)out = htons(0x0800); out += 2; // protocol *out++ = 6; // MAC address size *out++ = 4; // IP address size *(u16*)out = htons(0x0002); out += 2; // opcode *out++ = 0x00; *out++ = 0xAB; *out++ = 0x33; *out++ = 0x28; *out++ = 0x99; *out++ = 0x44; *(u32*)out = htonl(targetip); out += 4; memcpy(out, &data[0x16], 6+4); out += 6+4; u32 framelen = (u32)(out - &resp[0]); // TODO: if there is already a packet queued, this will overwrite it // that being said, this will only happen during DHCP setup, so probably // not a big deal PCapPacketLen = framelen; memcpy(PCapPacketBuffer, resp, PCapPacketLen); PCapRXNum = 1; // also broadcast them to the network pcap_sendpacket(PCapAdapter, data, len); pcap_sendpacket(PCapAdapter, resp, framelen); return true; } return false; } bool HandlePacket(u8* data, int len) { u16 ethertype = ntohs(*(u16*)&data[0xC]); if (ethertype == 0x0800) // IPv4 { u8 protocol = data[0x17]; if (protocol == 0x11) // UDP { u16 srcport = ntohs(*(u16*)&data[0x22]); u16 dstport = ntohs(*(u16*)&data[0x24]); if (srcport == 68 && dstport == 67) // DHCP { printf("LANMAGIC: DHCP packet\n"); return HandleDHCPFrame(data, len); } } printf("LANMAGIC: IP frame, doing NAT\n"); return HandleIPFrame(data, len); } else if (ethertype == 0x0806) // ARP { printf("LANMAGIC: ARP\n"); return HandleARPFrame(data, len); } return false; } int SendPacket(u8* data, int len) { if (PCapAdapter == NULL) return 0; if (len > 2048) { printf("LAN_SendPacket: error: packet too long (%d)\n", len); return 0; } if (!Config::DirectLAN) { if (HandlePacket(data, len)) return len; } pcap_sendpacket(PCapAdapter, data, len); // TODO: check success return len; } int RecvPacket(u8* data) { if (PCapAdapter == NULL) return 0; int ret = 0; if (PCapRXNum > 0) { memcpy(data, PCapPacketBuffer, PCapPacketLen); ret = PCapPacketLen; PCapRXNum = 0; } pcap_dispatch(PCapAdapter, 1, RXCallback, NULL); return ret; } }