// This file is under the public domain. #pragma once #include #include #include #include "../types.h" #ifdef _WIN32 #include namespace Common { template constexpr int CountSetBits(T v) { // from https://graphics.stanford.edu/~seander/bithacks.html // GCC has this built in, but MSVC's intrinsic will only emit the actual // POPCNT instruction, which we're not depending on v = v - ((v >> 1) & (T) ~(T)0 / 3); v = (v & (T) ~(T)0 / 15 * 3) + ((v >> 2) & (T) ~(T)0 / 15 * 3); v = (v + (v >> 4)) & (T) ~(T)0 / 255 * 15; return (T)(v * ((T) ~(T)0 / 255)) >> (sizeof(T) - 1) * 8; } inline int LeastSignificantSetBit(u8 val) { unsigned long index; _BitScanForward(&index, val); return (int)index; } inline int LeastSignificantSetBit(u16 val) { unsigned long index; _BitScanForward(&index, val); return (int)index; } inline int LeastSignificantSetBit(u32 val) { unsigned long index; _BitScanForward(&index, val); return (int)index; } inline int LeastSignificantSetBit(u64 val) { unsigned long index; _BitScanForward64(&index, val); return (int)index; } #else namespace Common { constexpr int CountSetBits(u8 val) { return __builtin_popcount(val); } constexpr int CountSetBits(u16 val) { return __builtin_popcount(val); } constexpr int CountSetBits(u32 val) { return __builtin_popcount(val); } constexpr int CountSetBits(u64 val) { return __builtin_popcountll(val); } inline int LeastSignificantSetBit(u8 val) { return __builtin_ctz(val); } inline int LeastSignificantSetBit(u16 val) { return __builtin_ctz(val); } inline int LeastSignificantSetBit(u32 val) { return __builtin_ctz(val); } inline int LeastSignificantSetBit(u64 val) { return __builtin_ctzll(val); } #endif // Similar to std::bitset, this is a class which encapsulates a bitset, i.e. // using the set bits of an integer to represent a set of integers. Like that // class, it acts like an array of bools: // BitSet32 bs; // bs[1] = true; // but also like the underlying integer ([0] = least significant bit): // BitSet32 bs2 = ...; // bs = (bs ^ bs2) & BitSet32(0xffff); // The following additional functionality is provided: // - Construction using an initializer list. // BitSet bs { 1, 2, 4, 8 }; // - Efficiently iterating through the set bits: // for (int i : bs) // [i is the *index* of a set bit] // (This uses the appropriate CPU instruction to find the next set bit in one // operation.) // - Counting set bits using .Count() - see comment on that method. // TODO: use constexpr when MSVC gets out of the Dark Ages template class BitSet { static_assert(!std::is_signed::value, "BitSet should not be used with signed types"); public: // A reference to a particular bit, returned from operator[]. class Ref { public: constexpr Ref(Ref&& other) : m_bs(other.m_bs), m_mask(other.m_mask) {} constexpr Ref(BitSet* bs, IntTy mask) : m_bs(bs), m_mask(mask) {} constexpr operator bool() const { return (m_bs->m_val & m_mask) != 0; } bool operator=(bool set) { m_bs->m_val = (m_bs->m_val & ~m_mask) | (set ? m_mask : 0); return set; } private: BitSet* m_bs; IntTy m_mask; }; // A STL-like iterator is required to be able to use range-based for loops. class Iterator { public: constexpr Iterator(const Iterator& other) : m_val(other.m_val), m_bit(other.m_bit) {} constexpr Iterator(IntTy val, int bit) : m_val(val), m_bit(bit) {} Iterator& operator=(Iterator other) { new (this) Iterator(other); return *this; } Iterator& operator++() { if (m_val == 0) { m_bit = -1; } else { int bit = LeastSignificantSetBit(m_val); m_val &= ~(1 << bit); m_bit = bit; } return *this; } Iterator operator++(int) { Iterator other(*this); ++*this; return other; } constexpr int operator*() const { return m_bit; } constexpr bool operator==(Iterator other) const { return m_bit == other.m_bit; } constexpr bool operator!=(Iterator other) const { return m_bit != other.m_bit; } private: IntTy m_val; int m_bit; }; constexpr BitSet() : m_val(0) {} constexpr explicit BitSet(IntTy val) : m_val(val) {} BitSet(std::initializer_list init) { m_val = 0; for (int bit : init) m_val |= (IntTy)1 << bit; } constexpr static BitSet AllTrue(size_t count) { return BitSet(count == sizeof(IntTy) * 8 ? ~(IntTy)0 : (((IntTy)1 << count) - 1)); } Ref operator[](size_t bit) { return Ref(this, (IntTy)1 << bit); } constexpr const Ref operator[](size_t bit) const { return (*const_cast(this))[bit]; } constexpr bool operator==(BitSet other) const { return m_val == other.m_val; } constexpr bool operator!=(BitSet other) const { return m_val != other.m_val; } constexpr bool operator<(BitSet other) const { return m_val < other.m_val; } constexpr bool operator>(BitSet other) const { return m_val > other.m_val; } constexpr BitSet operator|(BitSet other) const { return BitSet(m_val | other.m_val); } constexpr BitSet operator&(BitSet other) const { return BitSet(m_val & other.m_val); } constexpr BitSet operator^(BitSet other) const { return BitSet(m_val ^ other.m_val); } constexpr BitSet operator~() const { return BitSet(~m_val); } constexpr BitSet operator<<(IntTy shift) const { return BitSet(m_val << shift); } constexpr BitSet operator>>(IntTy shift) const { return BitSet(m_val >> shift); } constexpr explicit operator bool() const { return m_val != 0; } BitSet& operator|=(BitSet other) { return *this = *this | other; } BitSet& operator&=(BitSet other) { return *this = *this & other; } BitSet& operator^=(BitSet other) { return *this = *this ^ other; } BitSet& operator<<=(IntTy shift) { return *this = *this << shift; } BitSet& operator>>=(IntTy shift) { return *this = *this >> shift; } // Warning: Even though on modern CPUs this is a single fast instruction, // Dolphin's official builds do not currently assume POPCNT support on x86, // so slower explicit bit twiddling is generated. Still should generally // be faster than a loop. constexpr unsigned int Count() const { return CountSetBits(m_val); } constexpr Iterator begin() const { return ++Iterator(m_val, 0); } constexpr Iterator end() const { return Iterator(m_val, -1); } IntTy m_val; }; } // namespace Common using BitSet8 = Common::BitSet; using BitSet16 = Common::BitSet; using BitSet32 = Common::BitSet; using BitSet64 = Common::BitSet;