// Copyright 2015 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include "Compat.h" #include "Align.h" #include "Arm64Emitter.h" #include "BitUtils.h" #include "../types.h" #include "MathUtil.h" #ifdef __APPLE__ #include #endif namespace Arm64Gen { namespace { const int kWRegSizeInBits = 32; const int kXRegSizeInBits = 64; // The below few functions are taken from V8. int CountLeadingZeros(uint64_t value, int width) { // TODO(jbramley): Optimize this for ARM64 hosts. int count = 0; uint64_t bit_test = 1ULL << (width - 1); while ((count < width) && ((bit_test & value) == 0)) { count++; bit_test >>= 1; } return count; } uint64_t LargestPowerOf2Divisor(uint64_t value) { return value & -(int64_t)value; } // For ADD/SUB bool IsImmArithmetic(uint64_t input, u32* val, bool* shift) { if (input < 4096) { *val = input; *shift = false; return true; } else if ((input & 0xFFF000) == input) { *val = input >> 12; *shift = true; return true; } return false; } // For AND/TST/ORR/EOR etc bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s, unsigned int* imm_r) { // DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); // DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); bool negate = false; // Logical immediates are encoded using parameters n, imm_s and imm_r using // the following table: // // N imms immr size S R // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) // 0 11110s xxxxxr 2 UInt(s) UInt(r) // (s bits must not be all set) // // A pattern is constructed of size bits, where the least significant S+1 bits // are set. The pattern is rotated right by R, and repeated across a 32 or // 64-bit value, depending on destination register width. // // Put another way: the basic format of a logical immediate is a single // contiguous stretch of 1 bits, repeated across the whole word at intervals // given by a power of 2. To identify them quickly, we first locate the // lowest stretch of 1 bits, then the next 1 bit above that; that combination // is different for every logical immediate, so it gives us all the // information we need to identify the only logical immediate that our input // could be, and then we simply check if that's the value we actually have. // // (The rotation parameter does give the possibility of the stretch of 1 bits // going 'round the end' of the word. To deal with that, we observe that in // any situation where that happens the bitwise NOT of the value is also a // valid logical immediate. So we simply invert the input whenever its low bit // is set, and then we know that the rotated case can't arise.) if (value & 1) { // If the low bit is 1, negate the value, and set a flag to remember that we // did (so that we can adjust the return values appropriately). negate = true; value = ~value; } if (width == kWRegSizeInBits) { // To handle 32-bit logical immediates, the very easiest thing is to repeat // the input value twice to make a 64-bit word. The correct encoding of that // as a logical immediate will also be the correct encoding of the 32-bit // value. // The most-significant 32 bits may not be zero (ie. negate is true) so // shift the value left before duplicating it. value <<= kWRegSizeInBits; value |= value >> kWRegSizeInBits; } // The basic analysis idea: imagine our input word looks like this. // // 0011111000111110001111100011111000111110001111100011111000111110 // c b a // |<--d-->| // // We find the lowest set bit (as an actual power-of-2 value, not its index) // and call it a. Then we add a to our original number, which wipes out the // bottommost stretch of set bits and replaces it with a 1 carried into the // next zero bit. Then we look for the new lowest set bit, which is in // position b, and subtract it, so now our number is just like the original // but with the lowest stretch of set bits completely gone. Now we find the // lowest set bit again, which is position c in the diagram above. Then we'll // measure the distance d between bit positions a and c (using CLZ), and that // tells us that the only valid logical immediate that could possibly be equal // to this number is the one in which a stretch of bits running from a to just // below b is replicated every d bits. uint64_t a = LargestPowerOf2Divisor(value); uint64_t value_plus_a = value + a; uint64_t b = LargestPowerOf2Divisor(value_plus_a); uint64_t value_plus_a_minus_b = value_plus_a - b; uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b); int d, clz_a, out_n; uint64_t mask; if (c != 0) { // The general case, in which there is more than one stretch of set bits. // Compute the repeat distance d, and set up a bitmask covering the basic // unit of repetition (i.e. a word with the bottom d bits set). Also, in all // of these cases the N bit of the output will be zero. clz_a = CountLeadingZeros(a, kXRegSizeInBits); int clz_c = CountLeadingZeros(c, kXRegSizeInBits); d = clz_a - clz_c; mask = ((UINT64_C(1) << d) - 1); out_n = 0; } else { // Handle degenerate cases. // // If any of those 'find lowest set bit' operations didn't find a set bit at // all, then the word will have been zero thereafter, so in particular the // last lowest_set_bit operation will have returned zero. So we can test for // all the special case conditions in one go by seeing if c is zero. if (a == 0) { // The input was zero (or all 1 bits, which will come to here too after we // inverted it at the start of the function), for which we just return // false. return false; } else { // Otherwise, if c was zero but a was not, then there's just one stretch // of set bits in our word, meaning that we have the trivial case of // d == 64 and only one 'repetition'. Set up all the same variables as in // the general case above, and set the N bit in the output. clz_a = CountLeadingZeros(a, kXRegSizeInBits); d = 64; mask = ~UINT64_C(0); out_n = 1; } } // If the repeat period d is not a power of two, it can't be encoded. if (!MathUtil::IsPow2(d)) return false; // If the bit stretch (b - a) does not fit within the mask derived from the // repeat period, then fail. if (((b - a) & ~mask) != 0) return false; // The only possible option is b - a repeated every d bits. Now we're going to // actually construct the valid logical immediate derived from that // specification, and see if it equals our original input. // // To repeat a value every d bits, we multiply it by a number of the form // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can // be derived using a table lookup on CLZ(d). static const std::array multipliers = {{ 0x0000000000000001UL, 0x0000000100000001UL, 0x0001000100010001UL, 0x0101010101010101UL, 0x1111111111111111UL, 0x5555555555555555UL, }}; int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57; // Ensure that the index to the multipliers array is within bounds. DEBUG_ASSERT((multiplier_idx >= 0) && (static_cast(multiplier_idx) < multipliers.size())); uint64_t multiplier = multipliers[multiplier_idx]; uint64_t candidate = (b - a) * multiplier; // The candidate pattern doesn't match our input value, so fail. if (value != candidate) return false; // We have a match! This is a valid logical immediate, so now we have to // construct the bits and pieces of the instruction encoding that generates // it. // Count the set bits in our basic stretch. The special case of clz(0) == -1 // makes the answer come out right for stretches that reach the very top of // the word (e.g. numbers like 0xffffc00000000000). int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits); int s = clz_a - clz_b; // Decide how many bits to rotate right by, to put the low bit of that basic // stretch in position a. int r; if (negate) { // If we inverted the input right at the start of this function, here's // where we compensate: the number of set bits becomes the number of clear // bits, and the rotation count is based on position b rather than position // a (since b is the location of the 'lowest' 1 bit after inversion). s = d - s; r = (clz_b + 1) & (d - 1); } else { r = (clz_a + 1) & (d - 1); } // Now we're done, except for having to encode the S output in such a way that // it gives both the number of set bits and the length of the repeated // segment. The s field is encoded like this: // // imms size S // ssssss 64 UInt(ssssss) // 0sssss 32 UInt(sssss) // 10ssss 16 UInt(ssss) // 110sss 8 UInt(sss) // 1110ss 4 UInt(ss) // 11110s 2 UInt(s) // // So we 'or' (-d << 1) with our computed s to form imms. *n = out_n; *imm_s = ((-d << 1) | (s - 1)) & 0x3f; *imm_r = r; return true; } float FPImm8ToFloat(u8 bits) { const u32 sign = bits >> 7; const u32 bit6 = (bits >> 6) & 1; const u32 exp = ((!bit6) << 7) | (0x7C * bit6) | ((bits >> 4) & 3); const u32 mantissa = (bits & 0xF) << 19; const u32 f = (sign << 31) | (exp << 23) | mantissa; return Common::BitCast(f); } bool FPImm8FromFloat(float value, u8* imm_out) { const u32 f = Common::BitCast(value); const u32 mantissa4 = (f & 0x7FFFFF) >> 19; const u32 exponent = (f >> 23) & 0xFF; const u32 sign = f >> 31; if ((exponent >> 7) == ((exponent >> 6) & 1)) return false; const u8 imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4; const float new_float = FPImm8ToFloat(imm8); if (new_float == value) *imm_out = imm8; else return false; return true; } } // Anonymous namespace void ARM64XEmitter::SetCodePtrUnsafe(ptrdiff_t ptr) { m_code = ptr; } void ARM64XEmitter::SetCodePtr(ptrdiff_t ptr) { SetCodePtrUnsafe(ptr); m_lastCacheFlushEnd = ptr; } void ARM64XEmitter::SetCodeBase(u8* rwbase, u8* rxbase) { m_code = 0; m_lastCacheFlushEnd = 0; m_rwbase = rwbase; m_rxbase = rxbase; } ptrdiff_t ARM64XEmitter::GetCodeOffset() { return m_code; } const u8* ARM64XEmitter::GetRWPtr() { return m_rwbase + m_code; } u8* ARM64XEmitter::GetWriteableRWPtr() { return m_rwbase + m_code; } void* ARM64XEmitter::GetRXPtr() { return m_rxbase + m_code; } u8* ARM64XEmitter::GetRXBase() { return m_rxbase; } void ARM64XEmitter::ReserveCodeSpace(u32 bytes) { for (u32 i = 0; i < bytes / 4; i++) BRK(0); } ptrdiff_t ARM64XEmitter::AlignCode16() { int c = int((u64)m_code & 15); if (c) ReserveCodeSpace(16 - c); return m_code; } ptrdiff_t ARM64XEmitter::AlignCodePage() { int c = int((u64)m_code & 4095); if (c) ReserveCodeSpace(4096 - c); return m_code; } void ARM64XEmitter::Write32(u32 value) { std::memcpy(m_rwbase + m_code, &value, sizeof(u32)); m_code += sizeof(u32); } void ARM64XEmitter::FlushIcache() { FlushIcacheSection(m_rxbase + m_lastCacheFlushEnd, m_rxbase + m_code); m_lastCacheFlushEnd = m_code; } void ARM64XEmitter::FlushIcacheSection(u8* start, u8* end) { if (start == end) return; #if defined(__APPLE__) // Header file says this is equivalent to: sys_icache_invalidate(start, end - start); sys_cache_control(kCacheFunctionPrepareForExecution, start, end - start); #else // Don't rely on GCC's __clear_cache implementation, as it caches // icache/dcache cache line sizes, that can vary between cores on // big.LITTLE architectures. u64 addr, ctr_el0; static size_t icache_line_size = 0xffff, dcache_line_size = 0xffff; size_t isize, dsize; __asm__ volatile("mrs %0, ctr_el0" : "=r"(ctr_el0)); isize = 4 << ((ctr_el0 >> 0) & 0xf); dsize = 4 << ((ctr_el0 >> 16) & 0xf); // use the global minimum cache line size icache_line_size = isize = icache_line_size < isize ? icache_line_size : isize; dcache_line_size = dsize = dcache_line_size < dsize ? dcache_line_size : dsize; addr = (u64)start & ~(u64)(dsize - 1); for (; addr < (u64)end; addr += dsize) // use "civac" instead of "cvau", as this is the suggested workaround for // Cortex-A53 errata 819472, 826319, 827319 and 824069. __asm__ volatile("dc civac, %0" : : "r"(addr) : "memory"); __asm__ volatile("dsb ish" : : : "memory"); addr = (u64)start & ~(u64)(isize - 1); for (; addr < (u64)end; addr += isize) __asm__ volatile("ic ivau, %0" : : "r"(addr) : "memory"); __asm__ volatile("dsb ish" : : : "memory"); __asm__ volatile("isb" : : : "memory"); #endif } // Exception generation static const u32 ExcEnc[][3] = { {0, 0, 1}, // SVC {0, 0, 2}, // HVC {0, 0, 3}, // SMC {1, 0, 0}, // BRK {2, 0, 0}, // HLT {5, 0, 1}, // DCPS1 {5, 0, 2}, // DCPS2 {5, 0, 3}, // DCPS3 }; // Arithmetic generation static const u32 ArithEnc[] = { 0x058, // ADD 0x258, // SUB }; // Conditional Select static const u32 CondSelectEnc[][2] = { {0, 0}, // CSEL {0, 1}, // CSINC {1, 0}, // CSINV {1, 1}, // CSNEG }; // Data-Processing (1 source) static const u32 Data1SrcEnc[][2] = { {0, 0}, // RBIT {0, 1}, // REV16 {0, 2}, // REV32 {0, 3}, // REV64 {0, 4}, // CLZ {0, 5}, // CLS }; // Data-Processing (2 source) static const u32 Data2SrcEnc[] = { 0x02, // UDIV 0x03, // SDIV 0x08, // LSLV 0x09, // LSRV 0x0A, // ASRV 0x0B, // RORV 0x10, // CRC32B 0x11, // CRC32H 0x12, // CRC32W 0x14, // CRC32CB 0x15, // CRC32CH 0x16, // CRC32CW 0x13, // CRC32X (64bit Only) 0x17, // XRC32CX (64bit Only) }; // Data-Processing (3 source) static const u32 Data3SrcEnc[][2] = { {0, 0}, // MADD {0, 1}, // MSUB {1, 0}, // SMADDL (64Bit Only) {1, 1}, // SMSUBL (64Bit Only) {2, 0}, // SMULH (64Bit Only) {5, 0}, // UMADDL (64Bit Only) {5, 1}, // UMSUBL (64Bit Only) {6, 0}, // UMULH (64Bit Only) }; // Logical (shifted register) static const u32 LogicalEnc[][2] = { {0, 0}, // AND {0, 1}, // BIC {1, 0}, // OOR {1, 1}, // ORN {2, 0}, // EOR {2, 1}, // EON {3, 0}, // ANDS {3, 1}, // BICS }; // Load/Store Exclusive static const u32 LoadStoreExcEnc[][5] = { {0, 0, 0, 0, 0}, // STXRB {0, 0, 0, 0, 1}, // STLXRB {0, 0, 1, 0, 0}, // LDXRB {0, 0, 1, 0, 1}, // LDAXRB {0, 1, 0, 0, 1}, // STLRB {0, 1, 1, 0, 1}, // LDARB {1, 0, 0, 0, 0}, // STXRH {1, 0, 0, 0, 1}, // STLXRH {1, 0, 1, 0, 0}, // LDXRH {1, 0, 1, 0, 1}, // LDAXRH {1, 1, 0, 0, 1}, // STLRH {1, 1, 1, 0, 1}, // LDARH {2, 0, 0, 0, 0}, // STXR {3, 0, 0, 0, 0}, // (64bit) STXR {2, 0, 0, 0, 1}, // STLXR {3, 0, 0, 0, 1}, // (64bit) STLXR {2, 0, 0, 1, 0}, // STXP {3, 0, 0, 1, 0}, // (64bit) STXP {2, 0, 0, 1, 1}, // STLXP {3, 0, 0, 1, 1}, // (64bit) STLXP {2, 0, 1, 0, 0}, // LDXR {3, 0, 1, 0, 0}, // (64bit) LDXR {2, 0, 1, 0, 1}, // LDAXR {3, 0, 1, 0, 1}, // (64bit) LDAXR {2, 0, 1, 1, 0}, // LDXP {3, 0, 1, 1, 0}, // (64bit) LDXP {2, 0, 1, 1, 1}, // LDAXP {3, 0, 1, 1, 1}, // (64bit) LDAXP {2, 1, 0, 0, 1}, // STLR {3, 1, 0, 0, 1}, // (64bit) STLR {2, 1, 1, 0, 1}, // LDAR {3, 1, 1, 0, 1}, // (64bit) LDAR }; void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr) { bool b64Bit = Is64Bit(Rt); s64 distance = (s64)ptr - (s64)(m_rxbase + m_code); ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64, __func__, distance); distance >>= 2; ASSERT_MSG(DYNA_REC, distance >= -0x40000 && distance <= 0x3FFFF, "%s: Received too large distance: %" PRIx64, __func__, distance); Rt = DecodeReg(Rt); Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | (((u32)distance << 5) & 0xFFFFE0) | Rt); } void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr) { bool b64Bit = Is64Bit(Rt); s64 distance = (s64)ptr - (s64)(m_rxbase + m_code); ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64, __func__, distance); distance >>= 2; ASSERT_MSG(DYNA_REC, distance >= -0x3FFF && distance < 0x3FFF, "%s: Received too large distance: %" PRIx64, __func__, distance); Rt = DecodeReg(Rt); Write32((b64Bit << 31) | (0x36 << 24) | (op << 24) | (bits << 19) | (((u32)distance << 5) & 0x7FFE0) | Rt); } void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 op, const void* ptr) { s64 distance = (s64)ptr - s64(m_rxbase + m_code); ASSERT_MSG(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %" PRIx64, __func__, distance); distance >>= 2; ASSERT_MSG(DYNA_REC, distance >= -0x2000000LL && distance <= 0x1FFFFFFLL, "%s: Received too large distance: %" PRIx64, __func__, distance); Write32((op << 31) | (0x5 << 26) | (distance & 0x3FFFFFF)); } void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn) { Rn = DecodeReg(Rn); Write32((0x6B << 25) | (opc << 21) | (op2 << 16) | (op3 << 10) | (Rn << 5) | op4); } void ARM64XEmitter::EncodeExceptionInst(u32 instenc, u32 imm) { ASSERT_MSG(DYNA_REC, !(imm & ~0xFFFF), "%s: Exception instruction too large immediate: %d", __func__, imm); Write32((0xD4 << 24) | (ExcEnc[instenc][0] << 21) | (imm << 5) | (ExcEnc[instenc][1] << 2) | ExcEnc[instenc][2]); } void ARM64XEmitter::EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt) { Write32((0x354 << 22) | (op0 << 19) | (op1 << 16) | (CRn << 12) | (CRm << 8) | (op2 << 5) | Rt); } void ARM64XEmitter::EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((b64Bit << 31) | (flags << 29) | (ArithEnc[instenc] << 21) | (Option.GetType() == ArithOption::TYPE_EXTENDEDREG ? (1 << 21) : 0) | (Rm << 16) | Option.GetData() | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0xD0 << 21) | (Rm << 16) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) { bool b64Bit = Is64Bit(Rn); ASSERT_MSG(DYNA_REC, !(imm & ~0x1F), "%s: too large immediate: %d", __func__, imm); ASSERT_MSG(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __func__, nzcv); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | (imm << 16) | (cond << 12) | (1 << 11) | (Rn << 5) | nzcv); } void ARM64XEmitter::EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) { bool b64Bit = Is64Bit(Rm); ASSERT_MSG(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __func__, nzcv); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | (Rm << 16) | (cond << 12) | (Rn << 5) | nzcv); } void ARM64XEmitter::EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (CondSelectEnc[instenc][0] << 30) | (0xD4 << 21) | (Rm << 16) | (cond << 12) | (CondSelectEnc[instenc][1] << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (0x2D6 << 21) | (Data1SrcEnc[instenc][0] << 16) | (Data1SrcEnc[instenc][1] << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (0x0D6 << 21) | (Rm << 16) | (Data2SrcEnc[instenc] << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Ra = DecodeReg(Ra); Write32((b64Bit << 31) | (0xD8 << 21) | (Data3SrcEnc[instenc][0] << 21) | (Rm << 16) | (Data3SrcEnc[instenc][1] << 15) | (Ra << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rm = DecodeReg(Rm); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (LogicalEnc[instenc][0] << 29) | (0x5 << 25) | (LogicalEnc[instenc][1] << 21) | Shift.GetData() | (Rm << 16) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm) { bool b64Bit = Is64Bit(Rt); bool bVec = IsVector(Rt); ASSERT_MSG(DYNA_REC, !(imm & 0xFFFFF), "%s: offset too large %d", __func__, imm); Rt = DecodeReg(Rt); if (b64Bit && bitop != 0x2) // LDRSW(0x2) uses 64bit reg, doesn't have 64bit bit set bitop |= 0x1; Write32((bitop << 30) | (bVec << 26) | (0x18 << 24) | (imm << 5) | Rt); } void ARM64XEmitter::EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt) { Rs = DecodeReg(Rs); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Rt = DecodeReg(Rt); Write32((LoadStoreExcEnc[instenc][0] << 30) | (0x8 << 24) | (LoadStoreExcEnc[instenc][1] << 23) | (LoadStoreExcEnc[instenc][2] << 22) | (LoadStoreExcEnc[instenc][3] << 21) | (Rs << 16) | (LoadStoreExcEnc[instenc][4] << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) { bool b64Bit = Is64Bit(Rt); bool b128Bit = IsQuad(Rt); bool bVec = IsVector(Rt); if (b128Bit) imm >>= 4; else if (b64Bit) imm >>= 3; else imm >>= 2; ASSERT_MSG(DYNA_REC, !(imm & ~0xF), "%s: offset too large %d", __func__, imm); u32 opc = 0; if (b128Bit) opc = 2; else if (b64Bit && bVec) opc = 1; else if (b64Bit && !bVec) opc = 2; Rt = DecodeReg(Rt); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Write32((opc << 30) | (bVec << 26) | (op << 22) | (imm << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { bool b64Bit = Is64Bit(Rt); bool bVec = IsVector(Rt); u32 offset = imm & 0x1FF; ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s: offset too large %d", __func__, imm); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (offset << 12) | (op2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size) { bool b64Bit = Is64Bit(Rt); bool bVec = IsVector(Rt); if (size == 64) imm >>= 3; else if (size == 32) imm >>= 2; else if (size == 16) imm >>= 1; ASSERT_MSG(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED): offset must be positive %d", __func__, imm); ASSERT_MSG(DYNA_REC, !(imm & ~0xFFF), "%s(INDEX_UNSIGNED): offset too large %d", __func__, imm); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (imm << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos) { bool b64Bit = Is64Bit(Rd); ASSERT_MSG(DYNA_REC, !(imm & ~0xFFFF), "%s: immediate out of range: %d", __func__, imm); Rd = DecodeReg(Rd); Write32((b64Bit << 31) | (op << 29) | (0x25 << 23) | (pos << 21) | (imm << 5) | Rd); } void ARM64XEmitter::EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { bool b64Bit = Is64Bit(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 29) | (0x26 << 23) | (b64Bit << 22) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); ARM64Reg decoded_Rm = DecodeReg(Rm.GetReg()); Write32((size << 30) | (opc << 22) | (0x1C1 << 21) | (decoded_Rm << 16) | Rm.GetData() | (1 << 11) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd) { bool b64Bit = Is64Bit(Rd); ASSERT_MSG(DYNA_REC, !(imm & ~0xFFF), "%s: immediate too large: %x", __func__, imm); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0x11 << 24) | (shift << 22) | (imm << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n) { // Sometimes Rd is fixed to SP, but can still be 32bit or 64bit. // Use Rn to determine bitness here. bool b64Bit = Is64Bit(Rn); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (n << 22) | (immr << 16) | (imms << 10) | (Rn << 5) | Rd); } void ARM64XEmitter::EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { bool b64Bit = Is64Bit(Rt); u32 type_encode = 0; switch (type) { case INDEX_SIGNED: type_encode = 0b010; break; case INDEX_POST: type_encode = 0b001; break; case INDEX_PRE: type_encode = 0b011; break; case INDEX_UNSIGNED: ASSERT_MSG(DYNA_REC, false, "%s doesn't support INDEX_UNSIGNED!", __func__); break; } if (b64Bit) { op |= 0b10; imm >>= 3; } else { imm >>= 2; } Rt = DecodeReg(Rt); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Write32((op << 30) | (0b101 << 27) | (type_encode << 23) | (load << 22) | ((imm & 0x7F) << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64XEmitter::EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm) { Rd = DecodeReg(Rd); Write32((op << 31) | ((imm & 0x3) << 29) | (0x10 << 24) | ((imm & 0x1FFFFC) << 3) | Rd); } void ARM64XEmitter::EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __func__, imm); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((size << 30) | (0b111 << 27) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt); } static constexpr bool IsInRangeImm19(s64 distance) { return (distance >= -0x40000 && distance <= 0x3FFFF); } static constexpr bool IsInRangeImm14(s64 distance) { return (distance >= -0x2000 && distance <= 0x1FFF); } static constexpr bool IsInRangeImm26(s64 distance) { return (distance >= -0x2000000 && distance <= 0x1FFFFFF); } static constexpr u32 MaskImm19(s64 distance) { return distance & 0x7FFFF; } static constexpr u32 MaskImm14(s64 distance) { return distance & 0x3FFF; } static constexpr u32 MaskImm26(s64 distance) { return distance & 0x3FFFFFF; } // FixupBranch branching void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch) { bool Not = false; u32 inst = 0; s64 distance = (s64)(m_code - branch.ptr); distance >>= 2; switch (branch.type) { case 1: // CBNZ Not = true; case 0: // CBZ { ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %" PRIx64, __func__, branch.type, distance); bool b64Bit = Is64Bit(branch.reg); ARM64Reg reg = DecodeReg(branch.reg); inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | (MaskImm19(distance) << 5) | reg; } break; case 2: // B (conditional) ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %" PRIx64, __func__, branch.type, distance); inst = (0x2A << 25) | (MaskImm19(distance) << 5) | branch.cond; break; case 4: // TBNZ Not = true; case 3: // TBZ { ASSERT_MSG(DYNA_REC, IsInRangeImm14(distance), "%s(%d): Received too large distance: %" PRIx64, __func__, branch.type, distance); ARM64Reg reg = DecodeReg(branch.reg); inst = ((branch.bit & 0x20) << 26) | (0x1B << 25) | (Not << 24) | ((branch.bit & 0x1F) << 19) | (MaskImm14(distance) << 5) | reg; } break; case 5: // B (uncoditional) ASSERT_MSG(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %" PRIx64, __func__, branch.type, distance); inst = (0x5 << 26) | MaskImm26(distance); break; case 6: // BL (unconditional) ASSERT_MSG(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %" PRIx64, __func__, branch.type, distance); inst = (0x25 << 26) | MaskImm26(distance); break; } std::memcpy(m_rwbase + branch.ptr, &inst, sizeof(inst)); } FixupBranch ARM64XEmitter::CBZ(ARM64Reg Rt) { FixupBranch branch; branch.ptr = m_code; branch.type = 0; branch.reg = Rt; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::CBNZ(ARM64Reg Rt) { FixupBranch branch; branch.ptr = m_code; branch.type = 1; branch.reg = Rt; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::B(CCFlags cond) { FixupBranch branch; branch.ptr = m_code; branch.type = 2; branch.cond = cond; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bit) { FixupBranch branch; branch.ptr = m_code; branch.type = 3; branch.reg = Rt; branch.bit = bit; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bit) { FixupBranch branch; branch.ptr = m_code; branch.type = 4; branch.reg = Rt; branch.bit = bit; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::B() { FixupBranch branch; branch.ptr = m_code; branch.type = 5; HINT(HINT_NOP); return branch; } FixupBranch ARM64XEmitter::BL() { FixupBranch branch; branch.ptr = m_code; branch.type = 6; HINT(HINT_NOP); return branch; } // Compare and Branch void ARM64XEmitter::CBZ(ARM64Reg Rt, const void* ptr) { EncodeCompareBranchInst(0, Rt, ptr); } void ARM64XEmitter::CBNZ(ARM64Reg Rt, const void* ptr) { EncodeCompareBranchInst(1, Rt, ptr); } // Conditional Branch void ARM64XEmitter::B(CCFlags cond, const void* ptr) { s64 distance = (s64)ptr - (s64)(m_rxbase + m_code); distance >>= 2; ASSERT_MSG(DYNA_REC, IsInRangeImm19(distance), "%s: Received too large distance: %p->%p %" PRIi64 " %" PRIx64, __func__, m_execcode, ptr, distance, distance); Write32((0x54 << 24) | (MaskImm19(distance) << 5) | cond); } // Test and Branch void ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bits, const void* ptr) { EncodeTestBranchInst(0, Rt, bits, ptr); } void ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bits, const void* ptr) { EncodeTestBranchInst(1, Rt, bits, ptr); } // Unconditional Branch void ARM64XEmitter::B(const void* ptr) { EncodeUnconditionalBranchInst(0, ptr); } void ARM64XEmitter::BL(const void* ptr) { EncodeUnconditionalBranchInst(1, ptr); } void ARM64XEmitter::QuickCallFunction(ARM64Reg scratchreg, const void* func) { s64 distance = (s64)func - (s64)(m_rxbase + m_code); distance >>= 2; // Can only branch to opcode-aligned (4) addresses if (!IsInRangeImm26(distance)) { // WARN_LOG(DYNA_REC, "Distance too far in function call (%p to %p)! Using scratch.", m_code, // func); MOVI2R(scratchreg, (uintptr_t)func); BLR(scratchreg); } else { BL(func); } } void ARM64XEmitter::QuickTailCall(ARM64Reg scratchreg, const void* func) { s64 distance = (s64)func - (s64)(m_rxbase + m_code); distance >>= 2; // Can only branch to opcode-aligned (4) addresses if (!IsInRangeImm26(distance)) { // WARN_LOG(DYNA_REC, "Distance too far in function call (%p to %p)! Using scratch.", m_code, // func); MOVI2R(scratchreg, (uintptr_t)func); BR(scratchreg); } else { B(func); } } // Unconditional Branch (register) void ARM64XEmitter::BR(ARM64Reg Rn) { EncodeUnconditionalBranchInst(0, 0x1F, 0, 0, Rn); } void ARM64XEmitter::BLR(ARM64Reg Rn) { EncodeUnconditionalBranchInst(1, 0x1F, 0, 0, Rn); } void ARM64XEmitter::RET(ARM64Reg Rn) { EncodeUnconditionalBranchInst(2, 0x1F, 0, 0, Rn); } void ARM64XEmitter::ERET() { EncodeUnconditionalBranchInst(4, 0x1F, 0, 0, SP); } void ARM64XEmitter::DRPS() { EncodeUnconditionalBranchInst(5, 0x1F, 0, 0, SP); } // Exception generation void ARM64XEmitter::SVC(u32 imm) { EncodeExceptionInst(0, imm); } void ARM64XEmitter::HVC(u32 imm) { EncodeExceptionInst(1, imm); } void ARM64XEmitter::SMC(u32 imm) { EncodeExceptionInst(2, imm); } void ARM64XEmitter::BRK(u32 imm) { EncodeExceptionInst(3, imm); } void ARM64XEmitter::HLT(u32 imm) { EncodeExceptionInst(4, imm); } void ARM64XEmitter::DCPS1(u32 imm) { EncodeExceptionInst(5, imm); } void ARM64XEmitter::DCPS2(u32 imm) { EncodeExceptionInst(6, imm); } void ARM64XEmitter::DCPS3(u32 imm) { EncodeExceptionInst(7, imm); } // System void ARM64XEmitter::_MSR(PStateField field, u8 imm) { u32 op1 = 0, op2 = 0; switch (field) { case FIELD_SPSel: op1 = 0; op2 = 5; break; case FIELD_DAIFSet: op1 = 3; op2 = 6; break; case FIELD_DAIFClr: op1 = 3; op2 = 7; break; default: ASSERT_MSG(DYNA_REC, false, "Invalid PStateField to do a imm move to"); break; } EncodeSystemInst(0, op1, 4, imm, op2, WSP); } static void GetSystemReg(PStateField field, int& o0, int& op1, int& CRn, int& CRm, int& op2) { switch (field) { case FIELD_NZCV: o0 = 3; op1 = 3; CRn = 4; CRm = 2; op2 = 0; break; case FIELD_FPCR: o0 = 3; op1 = 3; CRn = 4; CRm = 4; op2 = 0; break; case FIELD_FPSR: o0 = 3; op1 = 3; CRn = 4; CRm = 4; op2 = 1; break; case FIELD_PMCR_EL0: o0 = 3; op1 = 3; CRn = 9; CRm = 6; op2 = 0; break; case FIELD_PMCCNTR_EL0: o0 = 3; op1 = 3; CRn = 9; CRm = 7; op2 = 0; break; default: ASSERT_MSG(DYNA_REC, false, "Invalid PStateField to do a register move from/to"); break; } } void ARM64XEmitter::_MSR(PStateField field, ARM64Reg Rt) { int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0; ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "MSR: Rt must be 64-bit"); GetSystemReg(field, o0, op1, CRn, CRm, op2); EncodeSystemInst(o0, op1, CRn, CRm, op2, DecodeReg(Rt)); } void ARM64XEmitter::MRS(ARM64Reg Rt, PStateField field) { int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0; ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "MRS: Rt must be 64-bit"); GetSystemReg(field, o0, op1, CRn, CRm, op2); EncodeSystemInst(o0 | 4, op1, CRn, CRm, op2, DecodeReg(Rt)); } void ARM64XEmitter::CNTVCT(Arm64Gen::ARM64Reg Rt) { ASSERT_MSG(DYNA_REC, Is64Bit(Rt), "CNTVCT: Rt must be 64-bit"); // MRS , CNTVCT_EL0 ; Read CNTVCT_EL0 into Xt EncodeSystemInst(3 | 4, 3, 0xe, 0, 2, DecodeReg(Rt)); } void ARM64XEmitter::HINT(SystemHint op) { EncodeSystemInst(0, 3, 2, 0, op, WSP); } void ARM64XEmitter::CLREX() { EncodeSystemInst(0, 3, 3, 0, 2, WSP); } void ARM64XEmitter::DSB(BarrierType type) { EncodeSystemInst(0, 3, 3, type, 4, WSP); } void ARM64XEmitter::DMB(BarrierType type) { EncodeSystemInst(0, 3, 3, type, 5, WSP); } void ARM64XEmitter::ISB(BarrierType type) { EncodeSystemInst(0, 3, 3, type, 6, WSP); } // Add/Subtract (extended register) void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ADD(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(0, false, Rd, Rn, Rm, Option); } void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticInst(0, true, Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(0, true, Rd, Rn, Rm, Option); } void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { SUB(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(1, false, Rd, Rn, Rm, Option); } void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticInst(1, true, Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0)); } void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(1, true, Rd, Rn, Rm, Option); } void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm) { CMN(Rn, Rm, ArithOption(Rn, ST_LSL, 0)); } void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(0, true, Is64Bit(Rn) ? ZR : WZR, Rn, Rm, Option); } void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm) { CMP(Rn, Rm, ArithOption(Rn, ST_LSL, 0)); } void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option) { EncodeArithmeticInst(1, true, Is64Bit(Rn) ? ZR : WZR, Rn, Rm, Option); } // Add/Subtract (with carry) void ARM64XEmitter::ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(0, false, Rd, Rn, Rm); } void ARM64XEmitter::ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(0, true, Rd, Rn, Rm); } void ARM64XEmitter::SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(1, false, Rd, Rn, Rm); } void ARM64XEmitter::SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeArithmeticCarryInst(1, true, Rd, Rn, Rm); } // Conditional Compare (immediate) void ARM64XEmitter::CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) { EncodeCondCompareImmInst(0, Rn, imm, nzcv, cond); } void ARM64XEmitter::CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond) { EncodeCondCompareImmInst(1, Rn, imm, nzcv, cond); } // Conditiona Compare (register) void ARM64XEmitter::CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) { EncodeCondCompareRegInst(0, Rn, Rm, nzcv, cond); } void ARM64XEmitter::CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond) { EncodeCondCompareRegInst(1, Rn, Rm, nzcv, cond); } // Conditional Select void ARM64XEmitter::CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(0, Rd, Rn, Rm, cond); } void ARM64XEmitter::CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(1, Rd, Rn, Rm, cond); } void ARM64XEmitter::CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(2, Rd, Rn, Rm, cond); } void ARM64XEmitter::CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EncodeCondSelectInst(3, Rd, Rn, Rm, cond); } // Data-Processing 1 source void ARM64XEmitter::RBIT(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(0, Rd, Rn); } void ARM64XEmitter::REV16(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(1, Rd, Rn); } void ARM64XEmitter::REV32(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(2, Rd, Rn); } void ARM64XEmitter::REV64(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(3, Rd, Rn); } void ARM64XEmitter::CLZ(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(4, Rd, Rn); } void ARM64XEmitter::CLS(ARM64Reg Rd, ARM64Reg Rn) { EncodeData1SrcInst(5, Rd, Rn); } // Data-Processing 2 source void ARM64XEmitter::UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(0, Rd, Rn, Rm); } void ARM64XEmitter::SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(1, Rd, Rn, Rm); } void ARM64XEmitter::LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(2, Rd, Rn, Rm); } void ARM64XEmitter::LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(3, Rd, Rn, Rm); } void ARM64XEmitter::ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(4, Rd, Rn, Rm); } void ARM64XEmitter::RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(5, Rd, Rn, Rm); } void ARM64XEmitter::CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(6, Rd, Rn, Rm); } void ARM64XEmitter::CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(7, Rd, Rn, Rm); } void ARM64XEmitter::CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(8, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(9, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(10, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(11, Rd, Rn, Rm); } void ARM64XEmitter::CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(12, Rd, Rn, Rm); } void ARM64XEmitter::CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData2SrcInst(13, Rd, Rn, Rm); } // Data-Processing 3 source void ARM64XEmitter::MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(0, Rd, Rn, Rm, Ra); } void ARM64XEmitter::MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(1, Rd, Rn, Rm, Ra); } void ARM64XEmitter::SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(2, Rd, Rn, Rm, Ra); } void ARM64XEmitter::SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { SMADDL(Rd, Rn, Rm, SP); } void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(3, Rd, Rn, Rm, Ra); } void ARM64XEmitter::SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData3SrcInst(4, Rd, Rn, Rm, SP); } void ARM64XEmitter::UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(5, Rd, Rn, Rm, Ra); } void ARM64XEmitter::UMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { UMADDL(Rd, Rn, Rm, SP); } void ARM64XEmitter::UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EncodeData3SrcInst(6, Rd, Rn, Rm, Ra); } void ARM64XEmitter::UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData3SrcInst(7, Rd, Rn, Rm, SP); } void ARM64XEmitter::MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData3SrcInst(0, Rd, Rn, Rm, SP); } void ARM64XEmitter::MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EncodeData3SrcInst(1, Rd, Rn, Rm, SP); } // Logical (shifted register) void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(0, Rd, Rn, Rm, Shift); } void ARM64XEmitter::BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(1, Rd, Rn, Rm, Shift); } void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(2, Rd, Rn, Rm, Shift); } void ARM64XEmitter::ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(3, Rd, Rn, Rm, Shift); } void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(4, Rd, Rn, Rm, Shift); } void ARM64XEmitter::EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(5, Rd, Rn, Rm, Shift); } void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(6, Rd, Rn, Rm, Shift); } void ARM64XEmitter::BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift) { EncodeLogicalInst(7, Rd, Rn, Rm, Shift); } void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift) { if (Shift.GetType() == ArithOption::TYPE_SHIFTEDREG) { switch (Shift.GetShiftType()) { case ST_LSL: LSL(Rd, Rm, Shift.GetShiftAmount()); break; case ST_LSR: LSR(Rd, Rm, Shift.GetShiftAmount()); break; case ST_ASR: ASR(Rd, Rm, Shift.GetShiftAmount()); break; case ST_ROR: ROR(Rd, Rm, Shift.GetShiftAmount()); break; default: ASSERT_MSG(DYNA_REC, false, "Invalid shift type"); break; } } else { ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, Shift); } } void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm) { if (IsGPR(Rd) && IsGPR(Rm)) ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, 0)); else ASSERT_MSG(DYNA_REC, false, "Non-GPRs not supported in MOV"); } void ARM64XEmitter::MVN(ARM64Reg Rd, ARM64Reg Rm) { ORN(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, 0)); } void ARM64XEmitter::LSL(ARM64Reg Rd, ARM64Reg Rm, int shift) { int bits = Is64Bit(Rd) ? 64 : 32; UBFM(Rd, Rm, (bits - shift) & (bits - 1), bits - shift - 1); } void ARM64XEmitter::LSR(ARM64Reg Rd, ARM64Reg Rm, int shift) { int bits = Is64Bit(Rd) ? 64 : 32; UBFM(Rd, Rm, shift, bits - 1); } void ARM64XEmitter::ASR(ARM64Reg Rd, ARM64Reg Rm, int shift) { int bits = Is64Bit(Rd) ? 64 : 32; SBFM(Rd, Rm, shift, bits - 1); } void ARM64XEmitter::ROR(ARM64Reg Rd, ARM64Reg Rm, int shift) { EXTR(Rd, Rm, Rm, shift); } // Logical (immediate) void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) { EncodeLogicalImmInst(0, Rd, Rn, immr, imms, invert); } void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) { EncodeLogicalImmInst(3, Rd, Rn, immr, imms, invert); } void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) { EncodeLogicalImmInst(2, Rd, Rn, immr, imms, invert); } void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) { EncodeLogicalImmInst(1, Rd, Rn, immr, imms, invert); } void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert) { EncodeLogicalImmInst(3, Is64Bit(Rn) ? ZR : WZR, Rn, immr, imms, invert); } // Add/subtract (immediate) void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(0, false, shift, imm, Rn, Rd); } void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(0, true, shift, imm, Rn, Rd); } void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(1, false, shift, imm, Rn, Rd); } void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(1, true, shift, imm, Rn, Rd); } void ARM64XEmitter::CMP(ARM64Reg Rn, u32 imm, bool shift) { EncodeAddSubImmInst(1, true, shift, imm, Rn, Is64Bit(Rn) ? SP : WSP); } // Data Processing (Immediate) void ARM64XEmitter::MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos) { EncodeMOVWideInst(2, Rd, imm, pos); } void ARM64XEmitter::MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos) { EncodeMOVWideInst(0, Rd, imm, pos); } void ARM64XEmitter::MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos) { EncodeMOVWideInst(3, Rd, imm, pos); } // Bitfield move void ARM64XEmitter::BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeBitfieldMOVInst(1, Rd, Rn, immr, imms); } void ARM64XEmitter::SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeBitfieldMOVInst(0, Rd, Rn, immr, imms); } void ARM64XEmitter::UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms) { EncodeBitfieldMOVInst(2, Rd, Rn, immr, imms); } void ARM64XEmitter::BFI(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width) { u32 size = Is64Bit(Rn) ? 64 : 32; ASSERT_MSG(DYNA_REC, (lsb + width) <= size, "%s passed lsb %d and width %d which is greater than the register size!", __func__, lsb, width); EncodeBitfieldMOVInst(1, Rd, Rn, (size - lsb) % size, width - 1); } void ARM64XEmitter::UBFIZ(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width) { u32 size = Is64Bit(Rn) ? 64 : 32; ASSERT_MSG(DYNA_REC, (lsb + width) <= size, "%s passed lsb %d and width %d which is greater than the register size!", __func__, lsb, width); EncodeBitfieldMOVInst(2, Rd, Rn, (size - lsb) % size, width - 1); } void ARM64XEmitter::EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift) { bool sf = Is64Bit(Rd); bool N = sf; Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((sf << 31) | (0x27 << 23) | (N << 22) | (Rm << 16) | (shift << 10) | (Rm << 5) | Rd); } void ARM64XEmitter::SXTB(ARM64Reg Rd, ARM64Reg Rn) { SBFM(Rd, Rn, 0, 7); } void ARM64XEmitter::SXTH(ARM64Reg Rd, ARM64Reg Rn) { SBFM(Rd, Rn, 0, 15); } void ARM64XEmitter::SXTW(ARM64Reg Rd, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, Is64Bit(Rd), "%s requires 64bit register as destination", __func__); SBFM(Rd, Rn, 0, 31); } void ARM64XEmitter::UXTB(ARM64Reg Rd, ARM64Reg Rn) { UBFM(Rd, Rn, 0, 7); } void ARM64XEmitter::UXTH(ARM64Reg Rd, ARM64Reg Rn) { UBFM(Rd, Rn, 0, 15); } // Load Register (Literal) void ARM64XEmitter::LDR(ARM64Reg Rt, u32 imm) { EncodeLoadRegisterInst(0, Rt, imm); } void ARM64XEmitter::LDRSW(ARM64Reg Rt, u32 imm) { EncodeLoadRegisterInst(2, Rt, imm); } void ARM64XEmitter::PRFM(ARM64Reg Rt, u32 imm) { EncodeLoadRegisterInst(3, Rt, imm); } // Load/Store pair void ARM64XEmitter::LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(0, 1, type, Rt, Rt2, Rn, imm); } void ARM64XEmitter::LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(1, 1, type, Rt, Rt2, Rn, imm); } void ARM64XEmitter::STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(0, 0, type, Rt, Rt2, Rn, imm); } // Load/Store Exclusive void ARM64XEmitter::STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(0, Rs, SP, Rt, Rn); } void ARM64XEmitter::STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(1, Rs, SP, Rt, Rn); } void ARM64XEmitter::LDXRB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(2, SP, SP, Rt, Rn); } void ARM64XEmitter::LDAXRB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(3, SP, SP, Rt, Rn); } void ARM64XEmitter::STLRB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(4, SP, SP, Rt, Rn); } void ARM64XEmitter::LDARB(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(5, SP, SP, Rt, Rn); } void ARM64XEmitter::STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(6, Rs, SP, Rt, Rn); } void ARM64XEmitter::STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(7, Rs, SP, Rt, Rn); } void ARM64XEmitter::LDXRH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(8, SP, SP, Rt, Rn); } void ARM64XEmitter::LDAXRH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(9, SP, SP, Rt, Rn); } void ARM64XEmitter::STLRH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(10, SP, SP, Rt, Rn); } void ARM64XEmitter::LDARH(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(11, SP, SP, Rt, Rn); } void ARM64XEmitter::STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(12 + Is64Bit(Rt), Rs, SP, Rt, Rn); } void ARM64XEmitter::STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(14 + Is64Bit(Rt), Rs, SP, Rt, Rn); } void ARM64XEmitter::STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(16 + Is64Bit(Rt), Rs, Rt2, Rt, Rn); } void ARM64XEmitter::STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(18 + Is64Bit(Rt), Rs, Rt2, Rt, Rn); } void ARM64XEmitter::LDXR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(20 + Is64Bit(Rt), SP, SP, Rt, Rn); } void ARM64XEmitter::LDAXR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(22 + Is64Bit(Rt), SP, SP, Rt, Rn); } void ARM64XEmitter::LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(24 + Is64Bit(Rt), SP, Rt2, Rt, Rn); } void ARM64XEmitter::LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn) { EncodeLoadStoreExcInst(26 + Is64Bit(Rt), SP, Rt2, Rt, Rn); } void ARM64XEmitter::STLR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(28 + Is64Bit(Rt), SP, SP, Rt, Rn); } void ARM64XEmitter::LDAR(ARM64Reg Rt, ARM64Reg Rn) { EncodeLoadStoreExcInst(30 + Is64Bit(Rt), SP, SP, Rt, Rn); } // Load/Store no-allocate pair (offset) void ARM64XEmitter::STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) { EncodeLoadStorePairedInst(0xA0, Rt, Rt2, Rn, imm); } void ARM64XEmitter::LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm) { EncodeLoadStorePairedInst(0xA1, Rt, Rt2, Rn, imm); } // Load/Store register (immediate post-indexed) // XXX: Most of these support vectors void ARM64XEmitter::STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x0E4, Rt, Rn, imm, 8); else EncodeLoadStoreIndexedInst(0x0E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x0E5, Rt, Rn, imm, 8); else EncodeLoadStoreIndexedInst(0x0E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E6 : 0x0E7, Rt, Rn, imm, 8); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E2 : 0x0E3, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x1E4, Rt, Rn, imm, 16); else EncodeLoadStoreIndexedInst(0x1E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x1E5, Rt, Rn, imm, 16); else EncodeLoadStoreIndexedInst(0x1E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E6 : 0x1E7, Rt, Rn, imm, 16); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E2 : 0x1E3, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E4 : 0x2E4, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E0 : 0x2E0, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E5 : 0x2E5, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32); else EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E1 : 0x2E1, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } void ARM64XEmitter::LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { if (type == INDEX_UNSIGNED) EncodeLoadStoreIndexedInst(0x2E6, Rt, Rn, imm, 32); else EncodeLoadStoreIndexedInst(0x2E2, type == INDEX_POST ? 1 : 3, Rt, Rn, imm); } // Load/Store register (register offset) void ARM64XEmitter::STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(0, 0, Rt, Rn, Rm); } void ARM64XEmitter::LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(0, 1, Rt, Rn, Rm); } void ARM64XEmitter::LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(0, 3 - b64Bit, Rt, Rn, Rm); } void ARM64XEmitter::STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(1, 0, Rt, Rn, Rm); } void ARM64XEmitter::LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(1, 1, Rt, Rn, Rm); } void ARM64XEmitter::LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(1, 3 - b64Bit, Rt, Rn, Rm); } void ARM64XEmitter::STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(2 + b64Bit, 0, Rt, Rn, Rm); } void ARM64XEmitter::LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { bool b64Bit = Is64Bit(Rt); EncodeLoadStoreRegisterOffset(2 + b64Bit, 1, Rt, Rn, Rm); } void ARM64XEmitter::LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(2, 2, Rt, Rn, Rm); } void ARM64XEmitter::PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm); } // Load/Store register (unscaled offset) void ARM64XEmitter::STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(0, 0, Rt, Rn, imm); } void ARM64XEmitter::LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(0, 1, Rt, Rn, imm); } void ARM64XEmitter::LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(0, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm); } void ARM64XEmitter::STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(1, 0, Rt, Rn, imm); } void ARM64XEmitter::LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(1, 1, Rt, Rn, imm); } void ARM64XEmitter::LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(1, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm); } void ARM64XEmitter::STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 0, Rt, Rn, imm); } void ARM64XEmitter::LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 1, Rt, Rn, imm); } void ARM64XEmitter::LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm) { ASSERT_MSG(DYNA_REC, !Is64Bit(Rt), "%s must have a 64bit destination register!", __func__); EncodeLoadStoreUnscaled(2, 2, Rt, Rn, imm); } void ARM64XEmitter::LDRGeneric(int size, bool signExtend, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { switch (size | signExtend) { case 32: LDR (Rt, Rn, Rm); break; case 33: LDRSW(Rt, Rn, Rm); break; case 16: LDRH (Rt, Rn, Rm); break; case 17: LDRSH(Rt, Rn, Rm); break; case 8: LDRB (Rt, Rn, Rm); break; case 9: LDRSB(Rt, Rn, Rm); break; default: PanicAlert("LDRGeneric(reg): invalid size %d", size); break; } } void ARM64XEmitter::STRGeneric(int size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { switch (size) { case 32: STR (Rt, Rn, Rm); break; case 16: STRH (Rt, Rn, Rm); break; case 8: STRB (Rt, Rn, Rm); break; default: PanicAlert("STRGeneric(reg): invalid size %d", size); break; } } void ARM64XEmitter::LDRGeneric(int size, bool signExtend, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { switch (size | signExtend) { case 32: LDR (type, Rt, Rn, imm); break; case 33: LDRSW(type, Rt, Rn, imm); break; case 16: LDRH (type, Rt, Rn, imm); break; case 17: LDRSH(type, Rt, Rn, imm); break; case 8: LDRB (type, Rt, Rn, imm); break; case 9: LDRSB(type, Rt, Rn, imm); break; default: PanicAlert("LDRGeneric(imm): invalid size %d", size); break; } } void ARM64XEmitter::STRGeneric(int size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { switch (size) { case 32: STR (type, Rt, Rn, imm); break; case 16: STRH (type, Rt, Rn, imm); break; case 8: STRB (type, Rt, Rn, imm); break; default: PanicAlert("STRGeneric(imm): invalid size %d", size); break; } } // Address of label/page PC-relative void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm) { EncodeAddressInst(0, Rd, imm); } void ARM64XEmitter::ADRP(ARM64Reg Rd, s32 imm) { EncodeAddressInst(1, Rd, imm >> 12); } // Wrapper around MOVZ+MOVK (and later MOVN) void ARM64XEmitter::MOVI2R(ARM64Reg Rd, u64 imm, bool optimize) { unsigned int parts = Is64Bit(Rd) ? 4 : 2; BitSet32 upload_part(0); // Always start with a movz! Kills the dependency on the register. bool use_movz = true; if (!imm) { // Zero immediate, just clear the register. EOR is pointless when we have MOVZ, which looks // clearer in disasm too. MOVZ(Rd, 0, SHIFT_0); return; } if ((Is64Bit(Rd) && imm == std::numeric_limits::max()) || (!Is64Bit(Rd) && imm == std::numeric_limits::max())) { // Max unsigned value (or if signed, -1) // Set to ~ZR ARM64Reg ZR = Is64Bit(Rd) ? SP : WSP; ORN(Rd, ZR, ZR, ArithOption(ZR, ST_LSL, 0)); return; } // TODO: Make some more systemic use of MOVN, but this will take care of most cases. // Small negative integer. Use MOVN if (!Is64Bit(Rd) && (imm | 0xFFFF0000) == imm) { MOVN(Rd, ~imm, SHIFT_0); return; } // XXX: Use MOVN when possible. // XXX: Optimize more // XXX: Support rotating immediates to save instructions if (optimize) { for (unsigned int i = 0; i < parts; ++i) { if ((imm >> (i * 16)) & 0xFFFF) upload_part[i] = 1; } } u64 aligned_pc = (u64)(m_rxbase + m_code) & ~0xFFF; s64 aligned_offset = (s64)imm - (s64)aligned_pc; // The offset for ADR/ADRP is an s32, so make sure it can be represented in that if (upload_part.Count() > 1 && std::abs(aligned_offset) < 0x7FFFFFFFLL) { // Immediate we are loading is within 4GB of our aligned range // Most likely a address that we can load in one or two instructions if (!(std::abs(aligned_offset) & 0xFFF)) { // Aligned ADR ADRP(Rd, (s32)aligned_offset); return; } else { // If the address is within 1MB of PC we can load it in a single instruction still s64 offset = (s64)imm - (s64)(m_rxbase + m_code); if (offset >= -0xFFFFF && offset <= 0xFFFFF) { ADR(Rd, (s32)offset); return; } else { ADRP(Rd, (s32)(aligned_offset & ~0xFFF)); ADD(Rd, Rd, imm & 0xFFF); return; } } } for (unsigned i = 0; i < parts; ++i) { if (use_movz && upload_part[i]) { MOVZ(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i); use_movz = false; } else { if (upload_part[i] || !optimize) MOVK(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i); } } } bool ARM64XEmitter::MOVI2R2(ARM64Reg Rd, u64 imm1, u64 imm2) { // TODO: Also optimize for performance, not just for code size. ptrdiff_t start_offset = GetCodeOffset(); MOVI2R(Rd, imm1); int size1 = GetCodeOffset() - start_offset; SetCodePtrUnsafe(start_offset); MOVI2R(Rd, imm2); int size2 = GetCodeOffset() - start_offset; SetCodePtrUnsafe(start_offset); bool element = size1 > size2; MOVI2R(Rd, element ? imm2 : imm1); return element; } void ARM64XEmitter::ABI_PushRegisters(BitSet32 registers) { int num_regs = registers.Count(); int stack_size = (num_regs + (num_regs & 1)) * 8; auto it = registers.begin(); if (!num_regs) return; // 8 byte per register, but 16 byte alignment, so we may have to padd one register. // Only update the SP on the last write to avoid the dependency between those stores. // The first push must adjust the SP, else a context switch may invalidate everything below SP. if (num_regs & 1) { STR(INDEX_PRE, (ARM64Reg)(X0 + *it++), SP, -stack_size); } else { ARM64Reg first_reg = (ARM64Reg)(X0 + *it++); ARM64Reg second_reg = (ARM64Reg)(X0 + *it++); STP(INDEX_PRE, first_reg, second_reg, SP, -stack_size); } // Fast store for all other registers, this is always an even number. for (int i = 0; i < (num_regs - 1) / 2; i++) { ARM64Reg odd_reg = (ARM64Reg)(X0 + *it++); ARM64Reg even_reg = (ARM64Reg)(X0 + *it++); STP(INDEX_SIGNED, odd_reg, even_reg, SP, 16 * (i + 1)); } ASSERT_MSG(DYNA_REC, it == registers.end(), "%s registers don't match.", __func__); } void ARM64XEmitter::ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask) { int num_regs = registers.Count(); int stack_size = (num_regs + (num_regs & 1)) * 8; auto it = registers.begin(); if (!num_regs) return; // We must adjust the SP in the end, so load the first (two) registers at least. ARM64Reg first = (ARM64Reg)(X0 + *it++); ARM64Reg second; if (!(num_regs & 1)) second = (ARM64Reg)(X0 + *it++); // 8 byte per register, but 16 byte alignment, so we may have to padd one register. // Only update the SP on the last load to avoid the dependency between those loads. // Fast load for all but the first (two) registers, this is always an even number. for (int i = 0; i < (num_regs - 1) / 2; i++) { ARM64Reg odd_reg = (ARM64Reg)(X0 + *it++); ARM64Reg even_reg = (ARM64Reg)(X0 + *it++); LDP(INDEX_SIGNED, odd_reg, even_reg, SP, 16 * (i + 1)); } // Post loading the first (two) registers. if (num_regs & 1) LDR(INDEX_POST, first, SP, stack_size); else LDP(INDEX_POST, first, second, SP, stack_size); ASSERT_MSG(DYNA_REC, it == registers.end(), "%s registers don't match.", __func__); } // Float Emitter void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); u32 encoded_size = 0; u32 encoded_imm = 0; if (size == 8) encoded_size = 0; else if (size == 16) encoded_size = 1; else if (size == 32) encoded_size = 2; else if (size == 64) encoded_size = 3; else if (size == 128) encoded_size = 0; if (type == INDEX_UNSIGNED) { ASSERT_MSG(DYNA_REC, !(imm & ((size - 1) >> 3)), "%s(INDEX_UNSIGNED) immediate offset must be aligned to size! (%d) (%p)", __func__, imm, m_emit->GetCodePtr()); ASSERT_MSG(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED) immediate offset must be positive!", __func__); if (size == 16) imm >>= 1; else if (size == 32) imm >>= 2; else if (size == 64) imm >>= 3; else if (size == 128) imm >>= 4; encoded_imm = (imm & 0xFFF); } else { ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s immediate offset must be within range of -256 to 256!", __func__); encoded_imm = (imm & 0x1FF) << 2; if (type == INDEX_POST) encoded_imm |= 1; else encoded_imm |= 3; } Write32((encoded_size << 30) | (0xF << 26) | (type == INDEX_UNSIGNED ? (1 << 24) : 0) | (size == 128 ? (1 << 23) : 0) | (opc << 22) | (encoded_imm << 10) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s only supports double and single registers!", __func__); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((M << 31) | (S << 29) | (0b11110001 << 21) | (type << 22) | (Rm << 16) | (opcode << 12) | (1 << 11) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__); bool quad = IsQuad(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((quad << 30) | (U << 29) | (0b1110001 << 21) | (size << 22) | (Rm << 16) | (opcode << 11) | (1 << 10) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn) { Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((Q << 30) | (op << 29) | (0b111 << 25) | (imm5 << 16) | (imm4 << 11) | (1 << 10) | (Rn << 5) | Rd); } void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((Q << 30) | (U << 29) | (0b1110001 << 21) | (size << 22) | (opcode << 12) | (1 << 11) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __func__); bool quad = IsQuad(Rt); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((quad << 30) | (0b1101 << 24) | (L << 22) | (R << 21) | (opcode << 13) | (S << 12) | (size << 10) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __func__); bool quad = IsQuad(Rt); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((quad << 30) | (0x1B << 23) | (L << 22) | (R << 21) | (Rm << 16) | (opcode << 13) | (S << 12) | (size << 10) | (Rn << 5) | Rt); } void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | (1 << 14) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, Rn <= SP, "%s only supports GPR as source!", __func__); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((sf << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (rmode << 19) | (opcode << 16) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, bool sign) { DEBUG_ASSERT_MSG(DYNA_REC, IsScalar(Rn), "fcvts: Rn must be floating point"); if (IsGPR(Rd)) { // Use the encoding that transfers the result to a GPR. bool sf = Is64Bit(Rd); int type = IsDouble(Rn) ? 1 : 0; Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); int opcode = (sign ? 1 : 0); int rmode = 0; switch (round) { case ROUND_A: rmode = 0; opcode |= 4; break; case ROUND_P: rmode = 1; break; case ROUND_M: rmode = 2; break; case ROUND_Z: rmode = 3; break; case ROUND_N: rmode = 0; break; } EmitConversion2(sf, 0, true, type, rmode, opcode, 0, Rd, Rn); } else { // Use the encoding (vector, single) that keeps the result in the fp register. int sz = IsDouble(Rn); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); int opcode = 0; switch (round) { case ROUND_A: opcode = 0x1C; break; case ROUND_N: opcode = 0x1A; break; case ROUND_M: opcode = 0x1B; break; case ROUND_P: opcode = 0x1A; sz |= 2; break; case ROUND_Z: opcode = 0x1B; sz |= 2; break; } Write32((0x5E << 24) | (sign << 29) | (sz << 22) | (1 << 21) | (opcode << 12) | (2 << 10) | (Rn << 5) | Rd); } } void ARM64FloatEmitter::FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round) { EmitConvertScalarToInt(Rd, Rn, round, false); } void ARM64FloatEmitter::FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round) { EmitConvertScalarToInt(Rd, Rn, round, true); } void ARM64FloatEmitter::EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, u32 opcode, int scale, ARM64Reg Rd, ARM64Reg Rn) { Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((sf << 31) | (S << 29) | (0xF0 << 21) | (direction << 21) | (type << 22) | (rmode << 19) | (opcode << 16) | (scale << 10) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !IsQuad(Rn), "%s doesn't support vector!", __func__); bool is_double = IsDouble(Rn); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (Rm << 16) | (op << 14) | (1 << 13) | (Rn << 5) | opcode2); } void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); bool is_double = IsDouble(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (Rm << 16) | (cond << 12) | (3 << 10) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __func__); bool quad = IsQuad(Rd); u32 encoded_size = 0; if (size == 16) encoded_size = 1; else if (size == 32) encoded_size = 2; else if (size == 64) encoded_size = 3; Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((quad << 30) | (7 << 25) | (encoded_size << 22) | (Rm << 16) | (op << 12) | (1 << 11) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8) { ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); bool is_double = !IsSingle(Rd); Rd = DecodeReg(Rd); Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (type << 22) | (imm8 << 13) | (1 << 12) | (imm5 << 5) | Rd); } void ARM64FloatEmitter::EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, immh, "%s bad encoding! Can't have zero immh", __func__); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((Q << 30) | (U << 29) | (0xF << 24) | (immh << 19) | (immb << 16) | (opcode << 11) | (1 << 10) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) { Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((2 << 30) | (U << 29) | (0x3E << 23) | (immh << 19) | (immb << 16) | (opcode << 11) | (1 << 10) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn) { bool quad = IsQuad(Rt); u32 encoded_size = 0; if (size == 16) encoded_size = 1; else if (size == 32) encoded_size = 2; else if (size == 64) encoded_size = 3; Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((quad << 30) | (3 << 26) | (L << 22) | (opcode << 12) | (encoded_size << 10) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) { bool quad = IsQuad(Rt); u32 encoded_size = 0; if (size == 16) encoded_size = 1; else if (size == 32) encoded_size = 2; else if (size == 64) encoded_size = 3; Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((quad << 30) | (0b11001 << 23) | (L << 22) | (Rm << 16) | (opcode << 12) | (encoded_size << 10) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __func__); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | (1 << 14) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { bool quad = IsQuad(Rd); Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Write32((quad << 30) | (U << 29) | (0xF << 24) | (size << 22) | (L << 21) | (Rm << 16) | (opcode << 12) | (H << 11) | (Rn << 5) | Rd); } void ARM64FloatEmitter::EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { ASSERT_MSG(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __func__, imm); Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); Write32((size << 30) | (0xF << 26) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EncodeLoadStorePair(u32 size, bool load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { u32 type_encode = 0; u32 opc = 0; switch (type) { case INDEX_SIGNED: type_encode = 0b010; break; case INDEX_POST: type_encode = 0b001; break; case INDEX_PRE: type_encode = 0b011; break; case INDEX_UNSIGNED: ASSERT_MSG(DYNA_REC, false, "%s doesn't support INDEX_UNSIGNED!", __func__); break; } if (size == 128) { ASSERT_MSG(DYNA_REC, !(imm & 0xF), "%s received invalid offset 0x%x!", __func__, imm); opc = 2; imm >>= 4; } else if (size == 64) { ASSERT_MSG(DYNA_REC, !(imm & 0x7), "%s received invalid offset 0x%x!", __func__, imm); opc = 1; imm >>= 3; } else if (size == 32) { ASSERT_MSG(DYNA_REC, !(imm & 0x3), "%s received invalid offset 0x%x!", __func__, imm); opc = 0; imm >>= 2; } Rt = DecodeReg(Rt); Rt2 = DecodeReg(Rt2); Rn = DecodeReg(Rn); Write32((opc << 30) | (0b1011 << 26) | (type_encode << 23) | (load << 22) | ((imm & 0x7F) << 15) | (Rt2 << 10) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EncodeLoadStoreRegisterOffset(u32 size, bool load, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { ASSERT_MSG(DYNA_REC, Rm.GetType() == ArithOption::TYPE_EXTENDEDREG, "%s must contain an extended reg as Rm!", __func__); u32 encoded_size = 0; u32 encoded_op = 0; if (size == 8) { encoded_size = 0; encoded_op = 0; } else if (size == 16) { encoded_size = 1; encoded_op = 0; } else if (size == 32) { encoded_size = 2; encoded_op = 0; } else if (size == 64) { encoded_size = 3; encoded_op = 0; } else if (size == 128) { encoded_size = 0; encoded_op = 2; } if (load) encoded_op |= 1; Rt = DecodeReg(Rt); Rn = DecodeReg(Rn); ARM64Reg decoded_Rm = DecodeReg(Rm.GetReg()); Write32((encoded_size << 30) | (encoded_op << 22) | (0b111100001 << 21) | (decoded_Rm << 16) | Rm.GetData() | (1 << 11) | (Rn << 5) | Rt); } void ARM64FloatEmitter::EncodeModImm(bool Q, u8 op, u8 cmode, u8 o2, ARM64Reg Rd, u8 abcdefgh) { union { u8 hex; struct { unsigned defgh : 5; unsigned abc : 3; }; } v; v.hex = abcdefgh; Rd = DecodeReg(Rd); Write32((Q << 30) | (op << 29) | (0xF << 24) | (v.abc << 16) | (cmode << 12) | (o2 << 11) | (1 << 10) | (v.defgh << 5) | Rd); } void ARM64FloatEmitter::LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EmitLoadStoreImmediate(size, 1, type, Rt, Rn, imm); } void ARM64FloatEmitter::STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { EmitLoadStoreImmediate(size, 0, type, Rt, Rn, imm); } // Loadstore unscaled void ARM64FloatEmitter::LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { u32 encoded_size = 0; u32 encoded_op = 0; if (size == 8) { encoded_size = 0; encoded_op = 1; } else if (size == 16) { encoded_size = 1; encoded_op = 1; } else if (size == 32) { encoded_size = 2; encoded_op = 1; } else if (size == 64) { encoded_size = 3; encoded_op = 1; } else if (size == 128) { encoded_size = 0; encoded_op = 3; } EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm); } void ARM64FloatEmitter::STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm) { u32 encoded_size = 0; u32 encoded_op = 0; if (size == 8) { encoded_size = 0; encoded_op = 0; } else if (size == 16) { encoded_size = 1; encoded_op = 0; } else if (size == 32) { encoded_size = 2; encoded_op = 0; } else if (size == 64) { encoded_size = 3; encoded_op = 0; } else if (size == 128) { encoded_size = 0; encoded_op = 2; } EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm); } // Loadstore single structure void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn) { bool S = 0; u32 opcode = 0; u32 encoded_size = 0; ARM64Reg encoded_reg = INVALID_REG; if (size == 8) { S = (index & 4) != 0; opcode = 0; encoded_size = index & 3; if (index & 8) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 16) { S = (index & 2) != 0; opcode = 2; encoded_size = (index & 1) << 1; if (index & 4) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 32) { S = (index & 1) != 0; opcode = 4; encoded_size = 0; if (index & 2) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 64) { S = 0; opcode = 4; encoded_size = 1; if (index == 1) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn); } void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm) { bool S = 0; u32 opcode = 0; u32 encoded_size = 0; ARM64Reg encoded_reg = INVALID_REG; if (size == 8) { S = (index & 4) != 0; opcode = 0; encoded_size = index & 3; if (index & 8) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 16) { S = (index & 2) != 0; opcode = 2; encoded_size = (index & 1) << 1; if (index & 4) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 32) { S = (index & 1) != 0; opcode = 4; encoded_size = 0; if (index & 2) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 64) { S = 0; opcode = 4; encoded_size = 1; if (index == 1) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm); } void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn) { EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn); } void ARM64FloatEmitter::LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn) { EmitLoadStoreSingleStructure(1, 1, 6, 0, size >> 4, Rt, Rn); } void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) { EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn, Rm); } void ARM64FloatEmitter::LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) { EmitLoadStoreSingleStructure(1, 1, 6, 0, size >> 4, Rt, Rn, Rm); } void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn) { bool S = 0; u32 opcode = 0; u32 encoded_size = 0; ARM64Reg encoded_reg = INVALID_REG; if (size == 8) { S = (index & 4) != 0; opcode = 0; encoded_size = index & 3; if (index & 8) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 16) { S = (index & 2) != 0; opcode = 2; encoded_size = (index & 1) << 1; if (index & 4) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 32) { S = (index & 1) != 0; opcode = 4; encoded_size = 0; if (index & 2) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 64) { S = 0; opcode = 4; encoded_size = 1; if (index == 1) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn); } void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm) { bool S = 0; u32 opcode = 0; u32 encoded_size = 0; ARM64Reg encoded_reg = INVALID_REG; if (size == 8) { S = (index & 4) != 0; opcode = 0; encoded_size = index & 3; if (index & 8) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 16) { S = (index & 2) != 0; opcode = 2; encoded_size = (index & 1) << 1; if (index & 4) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 32) { S = (index & 1) != 0; opcode = 4; encoded_size = 0; if (index & 2) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } else if (size == 64) { S = 0; opcode = 4; encoded_size = 1; if (index == 1) encoded_reg = EncodeRegToQuad(Rt); else encoded_reg = EncodeRegToDouble(Rt); } EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm); } // Loadstore multiple structure void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __func__); u32 opcode = 0; if (count == 1) opcode = 0b111; else if (count == 2) opcode = 0b1010; else if (count == 3) opcode = 0b0110; else if (count == 4) opcode = 0b0010; EmitLoadStoreMultipleStructure(size, 1, opcode, Rt, Rn); } void ARM64FloatEmitter::LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __func__); ASSERT_MSG(DYNA_REC, type == INDEX_POST, "%s only supports post indexing!", __func__); u32 opcode = 0; if (count == 1) opcode = 0b111; else if (count == 2) opcode = 0b1010; else if (count == 3) opcode = 0b0110; else if (count == 4) opcode = 0b0010; EmitLoadStoreMultipleStructurePost(size, 1, opcode, Rt, Rn, Rm); } void ARM64FloatEmitter::ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn) { ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __func__); u32 opcode = 0; if (count == 1) opcode = 0b111; else if (count == 2) opcode = 0b1010; else if (count == 3) opcode = 0b0110; else if (count == 4) opcode = 0b0010; EmitLoadStoreMultipleStructure(size, 0, opcode, Rt, Rn); } void ARM64FloatEmitter::ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) { ASSERT_MSG(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __func__); ASSERT_MSG(DYNA_REC, type == INDEX_POST, "%s only supports post indexing!", __func__); u32 opcode = 0; if (count == 1) opcode = 0b111; else if (count == 2) opcode = 0b1010; else if (count == 3) opcode = 0b0110; else if (count == 4) opcode = 0b0010; EmitLoadStoreMultipleStructurePost(size, 0, opcode, Rt, Rn, Rm); } // Scalar - 1 Source void ARM64FloatEmitter::FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top) { if (IsScalar(Rd) && IsScalar(Rn)) { EmitScalar1Source(0, 0, IsDouble(Rd), 0, Rd, Rn); } else { ASSERT_MSG(DYNA_REC, !IsQuad(Rd) && !IsQuad(Rn), "FMOV can't move to/from quads"); int rmode = 0; int opcode = 6; int sf = 0; if (IsSingle(Rd) && !Is64Bit(Rn) && !top) { // GPR to scalar single opcode |= 1; } else if (!Is64Bit(Rd) && IsSingle(Rn) && !top) { // Scalar single to GPR - defaults are correct } else { // TODO ASSERT_MSG(DYNA_REC, 0, "FMOV: Unhandled case"); } Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Write32((sf << 31) | (0x1e2 << 20) | (rmode << 19) | (opcode << 16) | (Rn << 5) | Rd); } } // Loadstore paired void ARM64FloatEmitter::LDP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(size, true, type, Rt, Rt2, Rn, imm); } void ARM64FloatEmitter::STP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) { EncodeLoadStorePair(size, false, type, Rt, Rt2, Rn, imm); } // Loadstore register offset void ARM64FloatEmitter::STR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(size, false, Rt, Rn, Rm); } void ARM64FloatEmitter::LDR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm) { EncodeLoadStoreRegisterOffset(size, true, Rt, Rn, Rm); } void ARM64FloatEmitter::FABS(ARM64Reg Rd, ARM64Reg Rn) { EmitScalar1Source(0, 0, IsDouble(Rd), 1, Rd, Rn); } void ARM64FloatEmitter::FNEG(ARM64Reg Rd, ARM64Reg Rn) { EmitScalar1Source(0, 0, IsDouble(Rd), 2, Rd, Rn); } void ARM64FloatEmitter::FSQRT(ARM64Reg Rd, ARM64Reg Rn) { EmitScalar1Source(0, 0, IsDouble(Rd), 3, Rd, Rn); } // Scalar - 2 Source void ARM64FloatEmitter::FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 2, Rd, Rn, Rm); } void ARM64FloatEmitter::FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 0, Rd, Rn, Rm); } void ARM64FloatEmitter::FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 3, Rd, Rn, Rm); } void ARM64FloatEmitter::FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 1, Rd, Rn, Rm); } void ARM64FloatEmitter::FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 4, Rd, Rn, Rm); } void ARM64FloatEmitter::FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 5, Rd, Rn, Rm); } void ARM64FloatEmitter::FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 6, Rd, Rn, Rm); } void ARM64FloatEmitter::FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 7, Rd, Rn, Rm); } void ARM64FloatEmitter::FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitScalar2Source(0, 0, IsDouble(Rd), 8, Rd, Rn, Rm); } void ARM64FloatEmitter::FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 0); } void ARM64FloatEmitter::FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 1); } void ARM64FloatEmitter::FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 2); } void ARM64FloatEmitter::FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) { EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 3); } void ARM64FloatEmitter::EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra, int opcode) { int type = isDouble ? 1 : 0; Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); Rm = DecodeReg(Rm); Ra = DecodeReg(Ra); int o1 = opcode >> 1; int o0 = opcode & 1; m_emit->Write32((0x1F << 24) | (type << 22) | (o1 << 21) | (Rm << 16) | (o0 << 15) | (Ra << 10) | (Rn << 5) | Rd); } // Scalar floating point immediate void ARM64FloatEmitter::FMOV(ARM64Reg Rd, uint8_t imm8) { EmitScalarImm(0, 0, 0, 0, Rd, imm8); } // Vector void ARM64FloatEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, 0, 3, Rd, Rn, Rm); } void ARM64FloatEmitter::BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(1, 1, 3, Rd, Rn, Rm); } void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) { u32 imm5 = 0; if (size == 8) { imm5 = 1; imm5 |= index << 1; } else if (size == 16) { imm5 = 2; imm5 |= index << 2; } else if (size == 32) { imm5 = 4; imm5 |= index << 3; } else if (size == 64) { imm5 = 8; imm5 |= index << 4; } EmitCopy(IsQuad(Rd), 0, imm5, 0, Rd, Rn); } void ARM64FloatEmitter::FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xF, Rd, Rn); } void ARM64FloatEmitter::FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, size >> 6, 0x1A, Rd, Rn, Rm); } void ARM64FloatEmitter::FMAX(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, size >> 6, 0b11110, Rd, Rn, Rm); } void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, size >> 6, 0x19, Rd, Rn, Rm); } void ARM64FloatEmitter::FMIN(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, 2 | size >> 6, 0b11110, Rd, Rn, Rm); } void ARM64FloatEmitter::FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(false, 0, size >> 6, 0x17, Rd, Rn); } void ARM64FloatEmitter::FCVTL2(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(true, 0, size >> 6, 0x17, Rd, Rn); } void ARM64FloatEmitter::FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, dest_size >> 5, 0x16, Rd, Rn); } void ARM64FloatEmitter::FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1B, Rd, Rn); } void ARM64FloatEmitter::FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1B, Rd, Rn); } void ARM64FloatEmitter::FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(1, size >> 6, 0x1F, Rd, Rn, Rm); } void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(1, size >> 6, 0x1B, Rd, Rn, Rm); } void ARM64FloatEmitter::FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xF, Rd, Rn); } void ARM64FloatEmitter::FRECPE(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1D, Rd, Rn); } void ARM64FloatEmitter::FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1D, Rd, Rn); } void ARM64FloatEmitter::FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, 2 | (size >> 6), 0x1A, Rd, Rn, Rm); } void ARM64FloatEmitter::FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, 2 | (size >> 6), 0x19, Rd, Rn, Rm); } void ARM64FloatEmitter::NOT(ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, 0, 5, Rd, Rn); } void ARM64FloatEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, 2, 3, Rd, Rn, Rm); } void ARM64FloatEmitter::REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 1, Rd, Rn); } void ARM64FloatEmitter::REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, size >> 4, 0, Rd, Rn); } void ARM64FloatEmitter::REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 0, Rd, Rn); } void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, size >> 6, 0x1D, Rd, Rn); } void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, size >> 6, 0x1D, Rd, Rn); } void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale) { int imm = size * 2 - scale; EmitShiftImm(IsQuad(Rd), 0, imm >> 3, imm & 7, 0x1C, Rd, Rn); } void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale) { int imm = size * 2 - scale; EmitShiftImm(IsQuad(Rd), 1, imm >> 3, imm & 7, 0x1C, Rd, Rn); } void ARM64FloatEmitter::SQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(false, 0, dest_size >> 4, 0b10100, Rd, Rn); } void ARM64FloatEmitter::SQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(true, 0, dest_size >> 4, 0b10100, Rd, Rn); } void ARM64FloatEmitter::UQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(false, 1, dest_size >> 4, 0b10100, Rd, Rn); } void ARM64FloatEmitter::UQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(true, 1, dest_size >> 4, 0b10100, Rd, Rn); } void ARM64FloatEmitter::XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(false, 0, dest_size >> 4, 0b10010, Rd, Rn); } void ARM64FloatEmitter::XTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(true, 0, dest_size >> 4, 0b10010, Rd, Rn); } // Move void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn) { u32 imm5 = 0; if (size == 8) imm5 = 1; else if (size == 16) imm5 = 2; else if (size == 32) imm5 = 4; else if (size == 64) imm5 = 8; EmitCopy(IsQuad(Rd), 0, imm5, 1, Rd, Rn); } void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn) { u32 imm5 = 0; if (size == 8) { imm5 = 1; imm5 |= index << 1; } else if (size == 16) { imm5 = 2; imm5 |= index << 2; } else if (size == 32) { imm5 = 4; imm5 |= index << 3; } else if (size == 64) { imm5 = 8; imm5 |= index << 4; } EmitCopy(1, 0, imm5, 3, Rd, Rn); } void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2) { u32 imm5 = 0, imm4 = 0; if (size == 8) { imm5 = 1; imm5 |= index1 << 1; imm4 = index2; } else if (size == 16) { imm5 = 2; imm5 |= index1 << 2; imm4 = index2 << 1; } else if (size == 32) { imm5 = 4; imm5 |= index1 << 3; imm4 = index2 << 2; } else if (size == 64) { imm5 = 8; imm5 |= index1 << 4; imm4 = index2 << 3; } EmitCopy(1, 1, imm5, imm4, Rd, Rn); } void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) { bool b64Bit = Is64Bit(Rd); ASSERT_MSG(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __func__); ASSERT_MSG(DYNA_REC, !(b64Bit && size != 64), "%s must have a size of 64 when destination is 64bit!", __func__); u32 imm5 = 0; if (size == 8) { imm5 = 1; imm5 |= index << 1; } else if (size == 16) { imm5 = 2; imm5 |= index << 2; } else if (size == 32) { imm5 = 4; imm5 |= index << 3; } else if (size == 64) { imm5 = 8; imm5 |= index << 4; } EmitCopy(b64Bit, 0, imm5, 7, Rd, Rn); } void ARM64FloatEmitter::SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) { bool b64Bit = Is64Bit(Rd); ASSERT_MSG(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __func__); ASSERT_MSG(DYNA_REC, size != 64, "%s doesn't support 64bit destination. Use UMOV!", __func__); u32 imm5 = 0; if (size == 8) { imm5 = 1; imm5 |= index << 1; } else if (size == 16) { imm5 = 2; imm5 |= index << 2; } else if (size == 32) { imm5 = 4; imm5 |= index << 3; } EmitCopy(b64Bit, 0, imm5, 5, Rd, Rn); } // One source void ARM64FloatEmitter::FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn) { u32 dst_encoding = 0; u32 src_encoding = 0; if (size_to == 16) dst_encoding = 3; else if (size_to == 32) dst_encoding = 0; else if (size_to == 64) dst_encoding = 1; if (size_from == 16) src_encoding = 3; else if (size_from == 32) src_encoding = 0; else if (size_from == 64) src_encoding = 1; Emit1Source(0, 0, src_encoding, 4 | dst_encoding, Rd, Rn); } void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn) { if (IsScalar(Rn)) { // Source is in FP register (like destination!). We must use a vector encoding. bool sign = false; Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); int sz = IsDouble(Rn); Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (Rn << 5) | Rd); } else { bool sf = Is64Bit(Rn); u32 type = 0; if (IsDouble(Rd)) type = 1; EmitConversion(sf, 0, type, 0, 2, Rd, Rn); } } void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn) { if (IsScalar(Rn)) { // Source is in FP register (like destination!). We must use a vector encoding. bool sign = true; Rd = DecodeReg(Rd); Rn = DecodeReg(Rn); int sz = IsDouble(Rn); Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (Rn << 5) | Rd); } else { bool sf = Is64Bit(Rn); u32 type = 0; if (IsDouble(Rd)) type = 1; EmitConversion(sf, 0, type, 0, 3, Rd, Rn); } } void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale) { bool sf = Is64Bit(Rn); u32 type = 0; if (IsDouble(Rd)) type = 1; EmitConversion2(sf, 0, false, type, 0, 2, 64 - scale, Rd, Rn); } void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale) { bool sf = Is64Bit(Rn); u32 type = 0; if (IsDouble(Rd)) type = 1; EmitConversion2(sf, 0, false, type, 0, 3, 64 - scale, Rd, Rn); } void ARM64FloatEmitter::FCMP(ARM64Reg Rn, ARM64Reg Rm) { EmitCompare(0, 0, 0, 0, Rn, Rm); } void ARM64FloatEmitter::FCMP(ARM64Reg Rn) { EmitCompare(0, 0, 0, 8, Rn, (ARM64Reg)0); } void ARM64FloatEmitter::FCMPE(ARM64Reg Rn, ARM64Reg Rm) { EmitCompare(0, 0, 0, 0x10, Rn, Rm); } void ARM64FloatEmitter::FCMPE(ARM64Reg Rn) { EmitCompare(0, 0, 0, 0x18, Rn, (ARM64Reg)0); } void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(0, size >> 6, 0x1C, Rd, Rn, Rm); } void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xD, Rd, Rn); } void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(1, size >> 6, 0x1C, Rd, Rn, Rm); } void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x0C, Rd, Rn); } void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitThreeSame(1, 2 | (size >> 6), 0x1C, Rd, Rn, Rm); } void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x0C, Rd, Rn); } void ARM64FloatEmitter::FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xD, Rd, Rn); } void ARM64FloatEmitter::FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn) { Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xE, Rd, Rn); } void ARM64FloatEmitter::FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond) { EmitCondSelect(0, 0, cond, Rd, Rn, Rm); } // Permute void ARM64FloatEmitter::UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitPermute(size, 0b001, Rd, Rn, Rm); } void ARM64FloatEmitter::TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitPermute(size, 0b010, Rd, Rn, Rm); } void ARM64FloatEmitter::ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitPermute(size, 0b011, Rd, Rn, Rm); } void ARM64FloatEmitter::UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitPermute(size, 0b101, Rd, Rn, Rm); } void ARM64FloatEmitter::TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitPermute(size, 0b110, Rd, Rn, Rm); } void ARM64FloatEmitter::ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) { EmitPermute(size, 0b111, Rd, Rn, Rm); } // Shift by immediate void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) { SSHLL(src_size, Rd, Rn, shift, false); } void ARM64FloatEmitter::SSHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) { SSHLL(src_size, Rd, Rn, shift, true); } void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) { SHRN(dest_size, Rd, Rn, shift, false); } void ARM64FloatEmitter::SHRN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) { SHRN(dest_size, Rd, Rn, shift, true); } void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) { USHLL(src_size, Rd, Rn, shift, false); } void ARM64FloatEmitter::USHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) { USHLL(src_size, Rd, Rn, shift, true); } void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) { SXTL(src_size, Rd, Rn, false); } void ARM64FloatEmitter::SXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) { SXTL(src_size, Rd, Rn, true); } void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) { UXTL(src_size, Rd, Rn, false); } void ARM64FloatEmitter::UXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn) { UXTL(src_size, Rd, Rn, true); } void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper) { ASSERT_MSG(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", __func__); u32 immh = 0; u32 immb = shift & 0xFFF; if (src_size == 8) { immh = 1; } else if (src_size == 16) { immh = 2 | ((shift >> 3) & 1); } else if (src_size == 32) { immh = 4 | ((shift >> 3) & 3); ; } EmitShiftImm(upper, 0, immh, immb, 0b10100, Rd, Rn); } void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper) { ASSERT_MSG(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", __func__); u32 immh = 0; u32 immb = shift & 0xFFF; if (src_size == 8) { immh = 1; } else if (src_size == 16) { immh = 2 | ((shift >> 3) & 1); } else if (src_size == 32) { immh = 4 | ((shift >> 3) & 3); ; } EmitShiftImm(upper, 1, immh, immb, 0b10100, Rd, Rn); } void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper) { ASSERT_MSG(DYNA_REC, shift < dest_size, "%s shift amount must less than the element size!", __func__); u32 immh = 0; u32 immb = shift & 0xFFF; if (dest_size == 8) { immh = 1; } else if (dest_size == 16) { immh = 2 | ((shift >> 3) & 1); } else if (dest_size == 32) { immh = 4 | ((shift >> 3) & 3); ; } EmitShiftImm(upper, 1, immh, immb, 0b10000, Rd, Rn); } void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper) { SSHLL(src_size, Rd, Rn, 0, upper); } void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper) { USHLL(src_size, Rd, Rn, 0, upper); } // vector x indexed element void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index) { ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__); bool L = false; bool H = false; if (size == 32) { L = index & 1; H = (index >> 1) & 1; } else if (size == 64) { H = index == 1; } EmitVectorxElement(0, 2 | (size >> 6), L, 0x9, H, Rd, Rn, Rm); } void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index) { ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__); bool L = false; bool H = false; if (size == 32) { L = index & 1; H = (index >> 1) & 1; } else if (size == 64) { H = index == 1; } EmitVectorxElement(0, 2 | (size >> 6), L, 1, H, Rd, Rn, Rm); } // Modified Immediate void ARM64FloatEmitter::MOVI(u8 size, ARM64Reg Rd, u64 imm, u8 shift) { bool Q = IsQuad(Rd); u8 cmode = 0; u8 op = 0; u8 abcdefgh = imm & 0xFF; if (size == 8) { ASSERT_MSG(DYNA_REC, shift == 0, "%s(size8) doesn't support shift!", __func__); ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size8) only supports 8bit values!", __func__); } else if (size == 16) { ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8, "%s(size16) only supports shift of {0, 8}!", __func__); ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size16) only supports 8bit values!", __func__); if (shift == 8) cmode |= 2; } else if (size == 32) { ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8 || shift == 16 || shift == 24, "%s(size32) only supports shift of {0, 8, 16, 24}!", __func__); // XXX: Implement support for MOVI - shifting ones variant ASSERT_MSG(DYNA_REC, !(imm & ~0xFFULL), "%s(size32) only supports 8bit values!", __func__); switch (shift) { case 8: cmode |= 2; break; case 16: cmode |= 4; break; case 24: cmode |= 6; break; default: break; } } else // 64 { ASSERT_MSG(DYNA_REC, shift == 0, "%s(size64) doesn't support shift!", __func__); op = 1; cmode = 0xE; abcdefgh = 0; for (int i = 0; i < 8; ++i) { u8 tmp = (imm >> (i << 3)) & 0xFF; ASSERT_MSG(DYNA_REC, tmp == 0xFF || tmp == 0, "%s(size64) Invalid immediate!", __func__); if (tmp == 0xFF) abcdefgh |= (1 << i); } } EncodeModImm(Q, op, cmode, 0, Rd, abcdefgh); } void ARM64FloatEmitter::BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift) { bool Q = IsQuad(Rd); u8 cmode = 1; u8 op = 1; if (size == 16) { ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8, "%s(size16) only supports shift of {0, 8}!", __func__); if (shift == 8) cmode |= 2; } else if (size == 32) { ASSERT_MSG(DYNA_REC, shift == 0 || shift == 8 || shift == 16 || shift == 24, "%s(size32) only supports shift of {0, 8, 16, 24}!", __func__); // XXX: Implement support for MOVI - shifting ones variant switch (shift) { case 8: cmode |= 2; break; case 16: cmode |= 4; break; case 24: cmode |= 6; break; default: break; } } else { ASSERT_MSG(DYNA_REC, false, "%s only supports size of {16, 32}!", __func__); } EncodeModImm(Q, op, cmode, 0, Rd, imm); } void ARM64FloatEmitter::ABI_PushRegisters(BitSet32 registers, ARM64Reg tmp) { bool bundled_loadstore = false; for (int i = 0; i < 32; ++i) { if (!registers[i]) continue; int count = 0; while (++count < 4 && (i + count) < 32 && registers[i + count]) { } if (count > 1) { bundled_loadstore = true; break; } } if (bundled_loadstore && tmp != INVALID_REG) { int num_regs = registers.Count(); m_emit->SUB(SP, SP, num_regs * 16); m_emit->ADD(tmp, SP, 0); std::vector island_regs; for (int i = 0; i < 32; ++i) { if (!registers[i]) continue; int count = 0; // 0 = true // 1 < 4 && registers[i + 1] true! // 2 < 4 && registers[i + 2] true! // 3 < 4 && registers[i + 3] true! // 4 < 4 && registers[i + 4] false! while (++count < 4 && (i + count) < 32 && registers[i + count]) { } if (count == 1) island_regs.push_back((ARM64Reg)(Q0 + i)); else ST1(64, count, INDEX_POST, (ARM64Reg)(Q0 + i), tmp); i += count - 1; } // Handle island registers std::vector pair_regs; for (auto& it : island_regs) { pair_regs.push_back(it); if (pair_regs.size() == 2) { STP(128, INDEX_POST, pair_regs[0], pair_regs[1], tmp, 32); pair_regs.clear(); } } if (pair_regs.size()) STR(128, INDEX_POST, pair_regs[0], tmp, 16); } else { std::vector pair_regs; for (auto it : registers) { pair_regs.push_back((ARM64Reg)(Q0 + it)); if (pair_regs.size() == 2) { STP(128, INDEX_PRE, pair_regs[0], pair_regs[1], SP, -32); pair_regs.clear(); } } if (pair_regs.size()) STR(128, INDEX_PRE, pair_regs[0], SP, -16); } } void ARM64FloatEmitter::ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp) { bool bundled_loadstore = false; int num_regs = registers.Count(); for (int i = 0; i < 32; ++i) { if (!registers[i]) continue; int count = 0; while (++count < 4 && (i + count) < 32 && registers[i + count]) { } if (count > 1) { bundled_loadstore = true; break; } } if (bundled_loadstore && tmp != INVALID_REG) { // The temporary register is only used to indicate that we can use this code path std::vector island_regs; for (int i = 0; i < 32; ++i) { if (!registers[i]) continue; int count = 0; while (++count < 4 && (i + count) < 32 && registers[i + count]) { } if (count == 1) island_regs.push_back((ARM64Reg)(Q0 + i)); else LD1(64, count, INDEX_POST, (ARM64Reg)(Q0 + i), SP); i += count - 1; } // Handle island registers std::vector pair_regs; for (auto& it : island_regs) { pair_regs.push_back(it); if (pair_regs.size() == 2) { LDP(128, INDEX_POST, pair_regs[0], pair_regs[1], SP, 32); pair_regs.clear(); } } if (pair_regs.size()) LDR(128, INDEX_POST, pair_regs[0], SP, 16); } else { bool odd = num_regs % 2; std::vector pair_regs; for (int i = 31; i >= 0; --i) { if (!registers[i]) continue; if (odd) { // First load must be a regular LDR if odd odd = false; LDR(128, INDEX_POST, (ARM64Reg)(Q0 + i), SP, 16); } else { pair_regs.push_back((ARM64Reg)(Q0 + i)); if (pair_regs.size() == 2) { LDP(128, INDEX_POST, pair_regs[1], pair_regs[0], SP, 32); pair_regs.clear(); } } } } } void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { unsigned int n, imm_s, imm_r; if (!Is64Bit(Rn)) imm &= 0xFFFFFFFF; if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) { AND(Rd, Rn, imm_r, imm_s, n != 0); } else { ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, "ANDI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm); MOVI2R(scratch, imm); AND(Rd, Rn, scratch); } } void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { unsigned int n, imm_s, imm_r; if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) { ORR(Rd, Rn, imm_r, imm_s, n != 0); } else { ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, "ORRI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm); MOVI2R(scratch, imm); ORR(Rd, Rn, scratch); } } void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { unsigned int n, imm_s, imm_r; if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) { EOR(Rd, Rn, imm_r, imm_s, n != 0); } else { ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, "EORI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm); MOVI2R(scratch, imm); EOR(Rd, Rn, scratch); } } void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { unsigned int n, imm_s, imm_r; if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) { ANDS(Rd, Rn, imm_r, imm_s, n != 0); } else { ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, "ANDSI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm); MOVI2R(scratch, imm); ANDS(Rd, Rn, scratch); } } void ARM64XEmitter::AddImmediate(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool shift, bool negative, bool flags) { switch ((negative << 1) | flags) { case 0: ADD(Rd, Rn, imm, shift); break; case 1: ADDS(Rd, Rn, imm, shift); break; case 2: SUB(Rd, Rn, imm, shift); break; case 3: SUBS(Rd, Rn, imm, shift); break; } } void ARM64XEmitter::ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags, ARM64Reg scratch) { bool has_scratch = scratch != INVALID_REG; u64 imm_neg = Is64Bit(Rd) ? -imm : -imm & 0xFFFFFFFFuLL; bool neg_neg = negative ? false : true; // Fast paths, aarch64 immediate instructions // Try them all first if (imm <= 0xFFF) { AddImmediate(Rd, Rn, imm, false, negative, flags); return; } if (imm <= 0xFFFFFF && (imm & 0xFFF) == 0) { AddImmediate(Rd, Rn, imm >> 12, true, negative, flags); return; } if (imm_neg <= 0xFFF) { AddImmediate(Rd, Rn, imm_neg, false, neg_neg, flags); return; } if (imm_neg <= 0xFFFFFF && (imm_neg & 0xFFF) == 0) { AddImmediate(Rd, Rn, imm_neg >> 12, true, neg_neg, flags); return; } // ADD+ADD is slower than MOVK+ADD, but inplace. // But it supports a few more bits, so use it to avoid MOVK+MOVK+ADD. // As this splits the addition in two parts, this must not be done on setting flags. if (!flags && (imm >= 0x10000u || !has_scratch) && imm < 0x1000000u) { AddImmediate(Rd, Rn, imm & 0xFFF, false, negative, false); AddImmediate(Rd, Rd, imm >> 12, true, negative, false); return; } if (!flags && (imm_neg >= 0x10000u || !has_scratch) && imm_neg < 0x1000000u) { AddImmediate(Rd, Rn, imm_neg & 0xFFF, false, neg_neg, false); AddImmediate(Rd, Rd, imm_neg >> 12, true, neg_neg, false); return; } ASSERT_MSG(DYNA_REC, has_scratch, "ADDI2R - failed to construct arithmetic immediate value from %08x, need scratch", (u32)imm); negative ^= MOVI2R2(scratch, imm, imm_neg); switch ((negative << 1) | flags) { case 0: ADD(Rd, Rn, scratch); break; case 1: ADDS(Rd, Rn, scratch); break; case 2: SUB(Rd, Rn, scratch); break; case 3: SUBS(Rd, Rn, scratch); break; } } void ARM64XEmitter::ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { ADDI2R_internal(Rd, Rn, imm, false, false, scratch); } void ARM64XEmitter::ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { ADDI2R_internal(Rd, Rn, imm, false, true, scratch); } void ARM64XEmitter::SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { ADDI2R_internal(Rd, Rn, imm, true, false, scratch); } void ARM64XEmitter::SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) { ADDI2R_internal(Rd, Rn, imm, true, true, scratch); } void ARM64XEmitter::CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch) { ADDI2R_internal(Is64Bit(Rn) ? ZR : WZR, Rn, imm, true, true, scratch); } bool ARM64XEmitter::TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) { u32 val; bool shift; if (IsImmArithmetic(imm, &val, &shift)) ADD(Rd, Rn, val, shift); else return false; return true; } bool ARM64XEmitter::TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) { u32 val; bool shift; if (IsImmArithmetic(imm, &val, &shift)) SUB(Rd, Rn, val, shift); else return false; return true; } bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u32 imm) { u32 val; bool shift; if (IsImmArithmetic(imm, &val, &shift)) CMP(Rn, val, shift); else return false; return true; } bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) { u32 n, imm_r, imm_s; if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) AND(Rd, Rn, imm_r, imm_s, n != 0); else return false; return true; } bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) { u32 n, imm_r, imm_s; if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) ORR(Rd, Rn, imm_r, imm_s, n != 0); else return false; return true; } bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) { u32 n, imm_r, imm_s; if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) EOR(Rd, Rn, imm_r, imm_s, n != 0); else return false; return true; } void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate) { ASSERT_MSG(DYNA_REC, !IsDouble(Rd), "MOVI2F does not yet support double precision"); uint8_t imm8; if (value == 0.0) { FMOV(Rd, IsDouble(Rd) ? ZR : WZR); if (negate) FNEG(Rd, Rd); // TODO: There are some other values we could generate with the float-imm instruction, like // 1.0... } else if (FPImm8FromFloat(value, &imm8)) { FMOV(Rd, imm8); } else { ASSERT_MSG(DYNA_REC, scratch != INVALID_REG, "Failed to find a way to generate FP immediate %f without scratch", value); if (negate) value = -value; const u32 ival = Common::BitCast(value); m_emit->MOVI2R(scratch, ival); FMOV(Rd, scratch); } } // TODO: Quite a few values could be generated easily using the MOVI instruction and friends. void ARM64FloatEmitter::MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch) { // TODO: Make it work with more element sizes // TODO: Optimize - there are shorter solution for many values ARM64Reg s = (ARM64Reg)(S0 + DecodeReg(Rd)); MOVI2F(s, value, scratch); DUP(32, Rd, Rd, 0); } } // namespace Arm64Gen