/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "NDSCart.h" namespace NDSCart_SRAM { u8* SRAM; u32 SRAMLength; char SRAMPath[256]; void (*WriteFunc)(u8 val, bool islast); u32 Discover_MemoryType; u32 Discover_Likeliness; u8* Discover_Buffer; u32 Discover_DataPos; u32 Hold; u8 CurCmd; u32 DataPos; u8 Data; u8 StatusReg; u32 Addr; void Write_Null(u8 val, bool islast); void Write_EEPROMTiny(u8 val, bool islast); void Write_EEPROM(u8 val, bool islast); void Write_Flash(u8 val, bool islast); void Write_Discover(u8 val, bool islast); bool Init() { SRAM = NULL; Discover_Buffer = NULL; return true; } void DeInit() { if (SRAM) delete[] SRAM; if (Discover_Buffer) delete[] Discover_Buffer; } void Reset() { if (SRAM) delete[] SRAM; if (Discover_Buffer) delete[] Discover_Buffer; SRAM = NULL; Discover_Buffer = NULL; } void LoadSave(char* path) { if (SRAM) delete[] SRAM; if (Discover_Buffer) delete[] Discover_Buffer; Discover_Buffer = NULL; strncpy(SRAMPath, path, 255); SRAMPath[255] = '\0'; FILE* f = fopen(path, "rb"); if (f) { fseek(f, 0, SEEK_END); SRAMLength = (u32)ftell(f); SRAM = new u8[SRAMLength]; fseek(f, 0, SEEK_SET); fread(SRAM, SRAMLength, 1, f); fclose(f); switch (SRAMLength) { case 512: WriteFunc = Write_EEPROMTiny; break; case 8192: case 65536: WriteFunc = Write_EEPROM; break; case 256*1024: case 512*1024: case 1024*1024: case 8192*1024: WriteFunc = Write_Flash; break; default: printf("!! BAD SAVE LENGTH %d\n", SRAMLength); WriteFunc = Write_Null; break; } } else { SRAMLength = 0; WriteFunc = Write_Discover; Discover_MemoryType = 2; Discover_Likeliness = 0; Discover_DataPos = 0; Discover_Buffer = new u8[256*1024]; memset(Discover_Buffer, 0, 256*1024); } Hold = 0; CurCmd = 0; Data = 0; StatusReg = 0x00; } u8 Read() { return Data; } void SetMemoryType() { switch (Discover_MemoryType) { case 1: printf("Save memory type: EEPROM 4k\n"); WriteFunc = Write_EEPROMTiny; SRAMLength = 512; break; case 2: printf("Save memory type: EEPROM 64k\n"); WriteFunc = Write_EEPROM; SRAMLength = 8192; break; case 3: printf("Save memory type: EEPROM 512k\n"); WriteFunc = Write_EEPROM; SRAMLength = 65536; break; case 4: printf("Save memory type: Flash. Hope the size is 256K.\n"); WriteFunc = Write_Flash; SRAMLength = 256*1024; break; case 5: printf("Save memory type: ...something else\n"); WriteFunc = Write_Null; SRAMLength = 0; break; } if (!SRAMLength) return; SRAM = new u8[SRAMLength]; // replay writes that occured during discovery u8 prev_cmd = CurCmd; u32 pos = 0; while (pos < 256*1024) { u32 len = *(u32*)&Discover_Buffer[pos]; pos += 4; if (len == 0) break; CurCmd = Discover_Buffer[pos++]; DataPos = 0; Addr = 0; Data = 0; for (u32 i = 1; i < len; i++) { WriteFunc(Discover_Buffer[pos++], (i==(len-1))); DataPos++; } } CurCmd = prev_cmd; delete[] Discover_Buffer; Discover_Buffer = NULL; } void Write_Discover(u8 val, bool islast) { // attempt at autodetecting the type of save memory. // we basically hope the game will be nice and clear whole pages of memory. if (CurCmd == 0x03 || CurCmd == 0x0B) { if (Discover_Likeliness) { // apply. and pray. SetMemoryType(); DataPos = 0; Addr = 0; Data = 0; return WriteFunc(val, islast); } else { Data = 0; return; } } if (CurCmd == 0x02 || CurCmd == 0x0A) { if (DataPos == 0) Discover_Buffer[Discover_DataPos + 4] = CurCmd; Discover_Buffer[Discover_DataPos + 5 + DataPos] = val; if (islast) { u32 len = DataPos+1; *(u32*)&Discover_Buffer[Discover_DataPos] = len+1; Discover_DataPos += 5+len; if (Discover_Likeliness <= len) { Discover_Likeliness = len; if (len > 3+256) // bigger Flash, FRAM, whatever { Discover_MemoryType = 5; } else if ((len > 2+128) || (len > 1+16 && CurCmd == 0xA)) // Flash { Discover_MemoryType = 4; } else if (len > 2+32) // EEPROM 512k { Discover_MemoryType = 3; } else if (len > 1+16 || (len != 1+16 && CurCmd != 0x0A)) // EEPROM 64k { Discover_MemoryType = 2; } else // EEPROM 4k { Discover_MemoryType = 1; } } printf("discover: type=%d likeliness=%d\n", Discover_MemoryType, Discover_Likeliness); } } } void Write_Null(u8 val, bool islast) {} void Write_EEPROMTiny(u8 val, bool islast) { switch (CurCmd) { case 0x02: case 0x0A: if (DataPos < 1) { Addr = val; Data = 0; } else { SRAM[(Addr + ((CurCmd==0x0A)?0x100:0)) & 0x1FF] = val; Addr++; } break; case 0x03: case 0x0B: if (DataPos < 1) { Addr = val; Data = 0; } else { Data = SRAM[(Addr + ((CurCmd==0x0B)?0x100:0)) & 0x1FF]; Addr++; } break; case 0x9F: Data = 0xFF; break; default: if (DataPos==0) printf("unknown tiny EEPROM save command %02X\n", CurCmd); break; } } void Write_EEPROM(u8 val, bool islast) { switch (CurCmd) { case 0x02: if (DataPos < 2) { Addr <<= 8; Addr |= val; Data = 0; } else { SRAM[Addr & (SRAMLength-1)] = val; Addr++; } break; case 0x03: if (DataPos < 2) { Addr <<= 8; Addr |= val; Data = 0; } else { Data = SRAM[Addr & (SRAMLength-1)]; Addr++; } break; case 0x9F: Data = 0xFF; break; default: if (DataPos==0) printf("unknown EEPROM save command %02X\n", CurCmd); break; } } void Write_Flash(u8 val, bool islast) { switch (CurCmd) { case 0x02: if (DataPos < 3) { Addr <<= 8; Addr |= val; Data = 0; } else { SRAM[Addr & (SRAMLength-1)] = 0; Addr++; } break; case 0x03: if (DataPos < 3) { Addr <<= 8; Addr |= val; Data = 0; } else { Data = SRAM[Addr & (SRAMLength-1)]; Addr++; } break; case 0x0A: if (DataPos < 3) { Addr <<= 8; Addr |= val; Data = 0; } else { SRAM[Addr & (SRAMLength-1)] = val; Addr++; } break; case 0x9F: Data = 0xFF; break; case 0xD8: if (DataPos < 3) { Addr <<= 8; Addr |= val; Data = 0; } if (DataPos == 2) { for (u32 i = 0; i < 0x10000; i++) { SRAM[Addr & (SRAMLength-1)] = 0; Addr++; } } break; case 0xDB: if (DataPos < 3) { Addr <<= 8; Addr |= val; Data = 0; } if (DataPos == 2) { for (u32 i = 0; i < 0x100; i++) { SRAM[Addr & (SRAMLength-1)] = 0; Addr++; } } break; default: if (DataPos==0) printf("unknown Flash save command %02X\n", CurCmd); break; } } void Write(u8 val, u32 hold) { bool islast = false; if (!hold) { if (Hold) islast = true; Hold = 0; } if (hold && (!Hold)) { CurCmd = val; Hold = 1; Data = 0; DataPos = 0; Addr = 0; //printf("save SPI command %02X\n", CurCmd); return; } switch (CurCmd) { case 0x00: // Pokémon carts have an IR transceiver thing, and send this // to bypass it and access SRAM. // TODO: design better CurCmd = val; break; case 0x02: case 0x03: case 0x0A: case 0x0B: case 0x9F: case 0xD8: case 0xDB: WriteFunc(val, islast); DataPos++; break; case 0x04: // write disable StatusReg &= ~(1<<1); Data = 0; break; case 0x05: // read status reg Data = StatusReg; break; case 0x06: // write enable StatusReg |= (1<<1); Data = 0; break; default: if (DataPos==0) printf("unknown save SPI command %02X %08X\n", CurCmd); break; } if (islast && (CurCmd == 0x02 || CurCmd == 0x0A) && (SRAMLength > 0)) { FILE* f = fopen(SRAMPath, "wb"); if (f) { fwrite(SRAM, SRAMLength, 1, f); fclose(f); } } } } namespace NDSCart { u16 SPICnt; u32 ROMCnt; u8 ROMCommand[8]; u32 ROMDataOut; u8 DataOut[0x4000]; u32 DataOutPos; u32 DataOutLen; bool CartInserted; u8* CartROM; u32 CartROMSize; u32 CartID; bool CartIsHomebrew; u32 CmdEncMode; u32 DataEncMode; u32 Key1_KeyBuf[0x412]; u64 Key2_X; u64 Key2_Y; u32 ByteSwap(u32 val) { return (val >> 24) | ((val >> 8) & 0xFF00) | ((val << 8) & 0xFF0000) | (val << 24); } void Key1_Encrypt(u32* data) { u32 y = data[0]; u32 x = data[1]; u32 z; for (u32 i = 0x0; i <= 0xF; i++) { z = Key1_KeyBuf[i] ^ x; x = Key1_KeyBuf[0x012 + (z >> 24) ]; x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)]; x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)]; x += Key1_KeyBuf[0x312 + (z & 0xFF)]; x ^= y; y = z; } data[0] = x ^ Key1_KeyBuf[0x10]; data[1] = y ^ Key1_KeyBuf[0x11]; } void Key1_Decrypt(u32* data) { u32 y = data[0]; u32 x = data[1]; u32 z; for (u32 i = 0x11; i >= 0x2; i--) { z = Key1_KeyBuf[i] ^ x; x = Key1_KeyBuf[0x012 + (z >> 24) ]; x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)]; x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)]; x += Key1_KeyBuf[0x312 + (z & 0xFF)]; x ^= y; y = z; } data[0] = x ^ Key1_KeyBuf[0x1]; data[1] = y ^ Key1_KeyBuf[0x0]; } void Key1_ApplyKeycode(u32* keycode, u32 mod) { Key1_Encrypt(&keycode[1]); Key1_Encrypt(&keycode[0]); u32 temp[2] = {0,0}; for (u32 i = 0; i <= 0x11; i++) { Key1_KeyBuf[i] ^= ByteSwap(keycode[i % mod]); } for (u32 i = 0; i <= 0x410; i+=2) { Key1_Encrypt(temp); Key1_KeyBuf[i ] = temp[1]; Key1_KeyBuf[i+1] = temp[0]; } } void Key1_InitKeycode(u32 idcode, u32 level, u32 mod) { memcpy(Key1_KeyBuf, &NDS::ARM7BIOS[0x30], 0x1048); // hax u32 keycode[3] = {idcode, idcode>>1, idcode<<1}; if (level >= 1) Key1_ApplyKeycode(keycode, mod); if (level >= 2) Key1_ApplyKeycode(keycode, mod); if (level >= 3) { keycode[1] <<= 1; keycode[2] >>= 1; Key1_ApplyKeycode(keycode, mod); } } void Key2_Encrypt(u8* data, u32 len) { for (u32 i = 0; i < len; i++) { Key2_X = (((Key2_X >> 5) ^ (Key2_X >> 17) ^ (Key2_X >> 18) ^ (Key2_X >> 31)) & 0xFF) + (Key2_X << 8); Key2_Y = (((Key2_Y >> 5) ^ (Key2_Y >> 23) ^ (Key2_Y >> 18) ^ (Key2_Y >> 31)) & 0xFF) + (Key2_Y << 8); Key2_X &= 0x0000007FFFFFFFFFULL; Key2_Y &= 0x0000007FFFFFFFFFULL; } } bool Init() { if (!NDSCart_SRAM::Init()) return false; CartROM = NULL; return true; } void DeInit() { if (CartROM) delete[] CartROM; NDSCart_SRAM::DeInit(); } void Reset() { SPICnt = 0; ROMCnt = 0; memset(ROMCommand, 0, 8); ROMDataOut = 0; Key2_X = 0; Key2_Y = 0; memset(DataOut, 0, 0x4000); DataOutPos = 0; DataOutLen = 0; CartInserted = false; if (CartROM) delete[] CartROM; CartROM = NULL; CartROMSize = 0; CartID = 0; CartIsHomebrew = false; CmdEncMode = 0; DataEncMode = 0; NDSCart_SRAM::Reset(); } bool LoadROM(const char* path, bool direct) { // TODO: streaming mode? for really big ROMs or systems with limited RAM // for now we're lazy if (CartROM) delete[] CartROM; FILE* f = fopen(path, "rb"); if (!f) { printf("Failed to open ROM file %s\n", path); return false; } fseek(f, 0, SEEK_END); u32 len = (u32)ftell(f); CartROMSize = 0x200; while (CartROMSize < len) CartROMSize <<= 1; u32 gamecode; fseek(f, 0x0C, SEEK_SET); fread(&gamecode, 4, 1, f); CartROM = new u8[CartROMSize]; memset(CartROM, 0, CartROMSize); fseek(f, 0, SEEK_SET); fread(CartROM, 1, len, f); fclose(f); //CartROM = f; if (direct) { NDS::SetupDirectBoot(); CmdEncMode = 2; } CartInserted = true; // generate a ROM ID // note: most games don't check the actual value // it just has to stay the same throughout gameplay CartID = 0x00001FC2; u32 arm9base = *(u32*)&CartROM[0x20]; if (arm9base < 0x8000) { if (arm9base >= 0x4000) { // reencrypt secure area if needed if (*(u32*)&CartROM[arm9base] == 0xE7FFDEFF && *(u32*)&CartROM[arm9base+0x10] != 0xE7FFDEFF) { printf("Re-encrypting cart secure area\n"); strncpy((char*)&CartROM[arm9base], "encryObj", 8); Key1_InitKeycode(gamecode, 3, 2); for (u32 i = 0; i < 0x800; i += 8) Key1_Encrypt((u32*)&CartROM[arm9base + i]); Key1_InitKeycode(gamecode, 2, 2); Key1_Encrypt((u32*)&CartROM[arm9base]); } } else CartIsHomebrew = true; } // encryption Key1_InitKeycode(gamecode, 2, 2); // save char savepath[256]; strncpy(savepath, path, 255); savepath[255] = '\0'; strncpy(savepath + strlen(path) - 3, "sav", 3); printf("Save file: %s\n", savepath); NDSCart_SRAM::LoadSave(savepath); return true; } void ReadROM(u32 addr, u32 len, u32 offset) { if (!CartInserted) return; if (addr >= CartROMSize) return; if ((addr+len) > CartROMSize) len = CartROMSize - addr; memcpy(DataOut+offset, CartROM+addr, len); } void ReadROM_B7(u32 addr, u32 len, u32 offset) { if (!CartInserted) return; addr &= (CartROMSize-1); if (!CartIsHomebrew) { if (addr < 0x8000) addr = 0x8000 + (addr & 0x1FF); } memcpy(DataOut+offset, CartROM+addr, len); } void ROMEndTransfer(u32 param) { ROMCnt &= ~(1<<31); if (SPICnt & (1<<14)) NDS::SetIRQ((NDS::ExMemCnt[0]>>11)&0x1, NDS::IRQ_CartSendDone); } void ROMPrepareData(u32 param) { if (DataOutPos >= DataOutLen) ROMDataOut = 0; else ROMDataOut = *(u32*)&DataOut[DataOutPos]; DataOutPos += 4; ROMCnt |= (1<<23); if (NDS::ExMemCnt[0] & (1<<11)) NDS::CheckDMAs(1, 0x12); else NDS::CheckDMAs(0, 0x05); } void WriteROMCnt(u32 val) { ROMCnt = (val & 0xFF7F7FFF) | (ROMCnt & 0x00800000); if (!(SPICnt & (1<<15))) return; if (val & (1<<15)) { u32 snum = (NDS::ExMemCnt[0]>>8)&0x8; u64 seed0 = *(u32*)&NDS::ROMSeed0[snum] | ((u64)NDS::ROMSeed0[snum+4] << 32); u64 seed1 = *(u32*)&NDS::ROMSeed1[snum] | ((u64)NDS::ROMSeed1[snum+4] << 32); Key2_X = 0; Key2_Y = 0; for (u32 i = 0; i < 39; i++) { if (seed0 & (1ULL << i)) Key2_X |= (1ULL << (38-i)); if (seed1 & (1ULL << i)) Key2_Y |= (1ULL << (38-i)); } printf("seed0: %02X%08X\n", (u32)(seed0>>32), (u32)seed0); printf("seed1: %02X%08X\n", (u32)(seed1>>32), (u32)seed1); printf("key2 X: %02X%08X\n", (u32)(Key2_X>>32), (u32)Key2_X); printf("key2 Y: %02X%08X\n", (u32)(Key2_Y>>32), (u32)Key2_Y); } if (!(ROMCnt & (1<<31))) return; u32 datasize = (ROMCnt >> 24) & 0x7; if (datasize == 7) datasize = 4; else if (datasize > 0) datasize = 0x100 << datasize; DataOutPos = 0; DataOutLen = datasize; // handle KEY1 encryption as needed. // KEY2 encryption is implemented in hardware and doesn't need to be handled. u8 cmd[8]; if (CmdEncMode == 1) { *(u32*)&cmd[0] = ByteSwap(*(u32*)&ROMCommand[4]); *(u32*)&cmd[4] = ByteSwap(*(u32*)&ROMCommand[0]); Key1_Decrypt((u32*)cmd); u32 tmp = ByteSwap(*(u32*)&cmd[4]); *(u32*)&cmd[4] = ByteSwap(*(u32*)&cmd[0]); *(u32*)&cmd[0] = tmp; } else { *(u32*)&cmd[0] = *(u32*)&ROMCommand[0]; *(u32*)&cmd[4] = *(u32*)&ROMCommand[4]; } /*printf("ROM COMMAND %04X %08X %02X%02X%02X%02X%02X%02X%02X%02X SIZE %04X\n", SPICnt, ROMCnt, cmd[0], cmd[1], cmd[2], cmd[3], cmd[4], cmd[5], cmd[6], cmd[7], datasize);*/ switch (cmd[0]) { case 0x9F: memset(DataOut, 0xFF, DataOutLen); break; case 0x00: memset(DataOut, 0, DataOutLen); if (DataOutLen > 0x1000) { ReadROM(0, 0x1000, 0); for (u32 pos = 0x1000; pos < DataOutLen; pos += 0x1000) memcpy(DataOut+pos, DataOut, 0x1000); } else ReadROM(0, DataOutLen, 0); break; case 0x90: case 0xB8: for (u32 pos = 0; pos < DataOutLen; pos += 4) *(u32*)&DataOut[pos] = CartID; break; case 0x3C: if (CartInserted) CmdEncMode = 1; break; case 0xB7: { u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4]; memset(DataOut, 0, DataOutLen); if (((addr + DataOutLen - 1) >> 12) != (addr >> 12)) { u32 len1 = 0x1000 - (addr & 0xFFF); ReadROM_B7(addr, len1, 0); ReadROM_B7(addr+len1, DataOutLen-len1, len1); } else ReadROM_B7(addr, DataOutLen, 0); } break; default: switch (cmd[0] & 0xF0) { case 0x40: DataEncMode = 2; break; case 0x10: for (u32 pos = 0; pos < DataOutLen; pos += 4) *(u32*)&DataOut[pos] = CartID; break; case 0x20: { u32 addr = (cmd[2] & 0xF0) << 8; ReadROM(addr, 0x1000, 0); } break; case 0xA0: CmdEncMode = 2; break; } break; } ROMCnt &= ~(1<<23); // ROM transfer timings // the bus is parallel with 8 bits // thus a command would take 8 cycles to be transferred // and it would take 4 cycles to receive a word of data // TODO: advance read position if bit28 is set u32 xfercycle = (ROMCnt & (1<<27)) ? 8 : 5; u32 cmddelay = 8 + (ROMCnt & 0x1FFF); if (datasize) cmddelay += ((ROMCnt >> 16) & 0x3F); if (datasize == 0) NDS::ScheduleEvent(NDS::Event_ROMTransfer, false, xfercycle*cmddelay, ROMEndTransfer, 0); else NDS::ScheduleEvent(NDS::Event_ROMTransfer, true, xfercycle*(cmddelay+4), ROMPrepareData, 0); } u32 ReadROMData() { if (ROMCnt & (1<<23)) { ROMCnt &= ~(1<<23); if (DataOutPos < DataOutLen) { u32 xfercycle = (ROMCnt & (1<<27)) ? 8 : 5; u32 delay = 4; if (!(DataOutPos & 0x1FF)) delay += ((ROMCnt >> 16) & 0x3F); NDS::ScheduleEvent(NDS::Event_ROMTransfer, true, xfercycle*delay, ROMPrepareData, 0); } else ROMEndTransfer(0); } return ROMDataOut; } void WriteSPICnt(u16 val) { SPICnt = (SPICnt & 0x0080) | (val & 0xE043); } u8 ReadSPIData() { if (!(SPICnt & (1<<15))) return 0; if (!(SPICnt & (1<<13))) return 0; return NDSCart_SRAM::Read(); } void WriteSPIData(u8 val) { if (!(SPICnt & (1<<15))) return; if (!(SPICnt & (1<<13))) return; // TODO: take delays into account NDSCart_SRAM::Write(val, SPICnt&(1<<6)); } }