/* Copyright 2016-2023 melonDS team This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include #include #include "NDS.h" #include "ARM.h" #include "NDSCart.h" #include "GBACart.h" #include "DMA.h" #include "FIFO.h" #include "GPU.h" #include "SPU.h" #include "SPI.h" #include "RTC.h" #include "Wifi.h" #include "AREngine.h" #include "Platform.h" #include "FreeBIOS.h" #include "Args.h" #include "DSi.h" #include "DSi_SPI_TSC.h" #include "DSi_NWifi.h" #include "DSi_Camera.h" #include "DSi_DSP.h" #include "ARMJIT.h" #include "ARMJIT_Memory.h" namespace melonDS { using namespace Platform; const s32 kMaxIterationCycles = 64; const s32 kIterationCycleMargin = 8; // timing notes // // * this implementation is technically wrong for VRAM // each bank is considered a separate region // but this would only matter in specific VRAM->VRAM DMA transfers or // when running code in VRAM, which is way unlikely // // bus/basedelay/nspenalty // // bus types: // * 0 / 32-bit: nothing special // * 1 / 16-bit: 32-bit accesses split into two 16-bit accesses, second is always sequential // * 2 / 8-bit/GBARAM: (presumably) split into multiple 8-bit accesses? // * 3 / ARM9 internal: cache/TCM // // ARM9 always gets 3c nonseq penalty when using the bus (except for mainRAM where the penalty is 7c) // /!\ 3c penalty doesn't apply to DMA! // // ARM7 only gets nonseq penalty when accessing mainRAM (7c as for ARM9) // // timings for GBA slot and wifi are set up at runtime NDS* NDS::Current = nullptr; NDS::NDS() noexcept : NDS( NDSArgs { nullptr, nullptr, bios_arm9_bin, bios_arm7_bin, Firmware(0), } ) { } NDS::NDS(NDSArgs&& args, int type) noexcept : ConsoleType(type), ARM7BIOS(args.ARM7BIOS), ARM9BIOS(args.ARM9BIOS), ARM7BIOSNative(CRC32(ARM7BIOS.data(), ARM7BIOS.size()) == ARM7BIOSCRC32), ARM9BIOSNative(CRC32(ARM9BIOS.data(), ARM9BIOS.size()) == ARM9BIOSCRC32), JIT(*this, args.JIT), SPU(*this, args.BitDepth, args.Interpolation), GPU(*this, std::move(args.Renderer3D)), SPI(*this, std::move(args.Firmware)), RTC(*this), Wifi(*this), NDSCartSlot(*this, std::move(args.NDSROM)), GBACartSlot(type == 1 ? nullptr : std::move(args.GBAROM)), AREngine(*this), ARM9(*this, args.GDB, args.JIT.has_value()), ARM7(*this, args.GDB, args.JIT.has_value()), #ifdef JIT_ENABLED EnableJIT(args.JIT.has_value()), #endif DMAs { DMA(0, 0, *this), DMA(0, 1, *this), DMA(0, 2, *this), DMA(0, 3, *this), DMA(1, 0, *this), DMA(1, 1, *this), DMA(1, 2, *this), DMA(1, 3, *this), } { RegisterEventFunc(Event_Div, 0, MemberEventFunc(NDS, DivDone)); RegisterEventFunc(Event_Sqrt, 0, MemberEventFunc(NDS, SqrtDone)); MainRAM = JIT.Memory.GetMainRAM(); SharedWRAM = JIT.Memory.GetSharedWRAM(); ARM7WRAM = JIT.Memory.GetARM7WRAM(); } NDS::~NDS() noexcept { UnregisterEventFunc(Event_Div, 0); UnregisterEventFunc(Event_Sqrt, 0); // The destructor for each component is automatically called by the compiler } void NDS::SetARM9RegionTimings(u32 addrstart, u32 addrend, u32 region, int buswidth, int nonseq, int seq) { addrstart >>= 2; addrend >>= 2; int N16, S16, N32, S32, cpuN; N16 = nonseq; S16 = seq; if (buswidth == 16) { N32 = N16 + S16; S32 = S16 + S16; } else { N32 = N16; S32 = S16; } // nonseq accesses on the CPU get a 3-cycle penalty for all regions except main RAM cpuN = (region == Mem9_MainRAM) ? 0 : 3; for (u32 i = addrstart; i < addrend; i++) { // CPU timings ARM9MemTimings[i][0] = N16 + cpuN; ARM9MemTimings[i][1] = S16; ARM9MemTimings[i][2] = N32 + cpuN; ARM9MemTimings[i][3] = S32; // DMA timings ARM9MemTimings[i][4] = N16; ARM9MemTimings[i][5] = S16; ARM9MemTimings[i][6] = N32; ARM9MemTimings[i][7] = S32; ARM9Regions[i] = region; } ARM9.UpdateRegionTimings(addrstart<<2, addrend<<2); } void NDS::SetARM7RegionTimings(u32 addrstart, u32 addrend, u32 region, int buswidth, int nonseq, int seq) { addrstart >>= 3; addrend >>= 3; int N16, S16, N32, S32; N16 = nonseq; S16 = seq; if (buswidth == 16) { N32 = N16 + S16; S32 = S16 + S16; } else { N32 = N16; S32 = S16; } for (u32 i = addrstart; i < addrend; i++) { // CPU and DMA timings are the same ARM7MemTimings[i][0] = N16; ARM7MemTimings[i][1] = S16; ARM7MemTimings[i][2] = N32; ARM7MemTimings[i][3] = S32; ARM7Regions[i] = region; } } #ifdef JIT_ENABLED void NDS::SetJITArgs(std::optional args) noexcept { if (args) { // If we want to turn the JIT on... JIT.SetJITArgs(*args); } else if (args.has_value() != EnableJIT) { // Else if we want to turn the JIT off, and it wasn't already off... JIT.ResetBlockCache(); } EnableJIT = args.has_value(); } #endif void NDS::InitTimings() { // TODO, eventually: // VRAM is initially unmapped. The timings should be those of void regions. // Similarly for any unmapped VRAM area. // Need to check whether supporting these timing characteristics would impact performance // (especially wrt VRAM mirroring and overlapping and whatnot). // Also, each VRAM bank is its own memory region. This would matter when DMAing from a VRAM // bank to another (if this is a thing) for example. // TODO: check in detail how WRAM works, although it seems to be one region. // TODO: DSi-specific timings!! SetARM9RegionTimings(0x00000, 0x100000, 0, 32, 1, 1); // void SetARM9RegionTimings(0xFFFF0, 0x100000, Mem9_BIOS, 32, 1, 1); // BIOS SetARM9RegionTimings(0x02000, 0x03000, Mem9_MainRAM, 16, 8, 1); // main RAM SetARM9RegionTimings(0x03000, 0x04000, Mem9_WRAM, 32, 1, 1); // ARM9/shared WRAM SetARM9RegionTimings(0x04000, 0x05000, Mem9_IO, 32, 1, 1); // IO SetARM9RegionTimings(0x05000, 0x06000, Mem9_Pal, 16, 1, 1); // palette SetARM9RegionTimings(0x06000, 0x07000, Mem9_VRAM, 16, 1, 1); // VRAM SetARM9RegionTimings(0x07000, 0x08000, Mem9_OAM, 32, 1, 1); // OAM // ARM7 SetARM7RegionTimings(0x00000, 0x100000, 0, 32, 1, 1); // void SetARM7RegionTimings(0x00000, 0x00010, Mem7_BIOS, 32, 1, 1); // BIOS SetARM7RegionTimings(0x02000, 0x03000, Mem7_MainRAM, 16, 8, 1); // main RAM SetARM7RegionTimings(0x03000, 0x04000, Mem7_WRAM, 32, 1, 1); // ARM7/shared WRAM SetARM7RegionTimings(0x04000, 0x04800, Mem7_IO, 32, 1, 1); // IO SetARM7RegionTimings(0x06000, 0x07000, Mem7_VRAM, 16, 1, 1); // ARM7 VRAM // handled later: GBA slot, wifi } bool NDS::NeedsDirectBoot() const { if (ConsoleType == 1) { // for now, DSi mode requires original BIOS/NAND return false; } else { // DSi/3DS firmwares aren't bootable, neither is the generated firmware if (!SPI.GetFirmware().IsBootable()) return true; // FreeBIOS requires direct boot (it can't boot firmware) if (!IsLoadedARM9BIOSKnownNative() || !IsLoadedARM7BIOSKnownNative()) return true; return false; } } void NDS::SetupDirectBoot() { const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader(); u32 cartid = NDSCartSlot.GetCart()->ID(); const u8* cartrom = NDSCartSlot.GetCart()->GetROM(); MapSharedWRAM(3); // Copy the Nintendo logo from the NDS ROM header to the ARM9 BIOS if using FreeBIOS // Games need this for DS<->GBA comm to work if (!IsLoadedARM9BIOSKnownNative()) { memcpy(ARM9BIOS.data() + 0x20, header.NintendoLogo, 0x9C); } // setup main RAM data for (u32 i = 0; i < 0x170; i+=4) { u32 tmp = *(u32*)&cartrom[i]; NDS::ARM9Write32(0x027FFE00+i, tmp); } NDS::ARM9Write32(0x027FF800, cartid); NDS::ARM9Write32(0x027FF804, cartid); NDS::ARM9Write16(0x027FF808, header.HeaderCRC16); NDS::ARM9Write16(0x027FF80A, header.SecureAreaCRC16); NDS::ARM9Write16(0x027FF850, 0x5835); NDS::ARM9Write32(0x027FFC00, cartid); NDS::ARM9Write32(0x027FFC04, cartid); NDS::ARM9Write16(0x027FFC08, header.HeaderCRC16); NDS::ARM9Write16(0x027FFC0A, header.SecureAreaCRC16); NDS::ARM9Write16(0x027FFC10, 0x5835); NDS::ARM9Write16(0x027FFC30, 0xFFFF); NDS::ARM9Write16(0x027FFC40, 0x0001); u32 arm9start = 0; // load the ARM9 secure area if (header.ARM9ROMOffset >= 0x4000 && header.ARM9ROMOffset < 0x8000) { u8 securearea[0x800]; NDSCartSlot.DecryptSecureArea(securearea); for (u32 i = 0; i < 0x800; i+=4) { NDS::ARM9Write32(header.ARM9RAMAddress+i, *(u32*)&securearea[i]); arm9start += 4; } } // CHECKME: firmware seems to load this in 0x200 byte chunks for (u32 i = arm9start; i < header.ARM9Size; i+=4) { u32 tmp = *(u32*)&cartrom[header.ARM9ROMOffset+i]; NDS::ARM9Write32(header.ARM9RAMAddress+i, tmp); } for (u32 i = 0; i < header.ARM7Size; i+=4) { u32 tmp = *(u32*)&cartrom[header.ARM7ROMOffset+i]; NDS::ARM7Write32(header.ARM7RAMAddress+i, tmp); } ARM7BIOSProt = 0x1204; SPI.GetFirmwareMem()->SetupDirectBoot(); ARM9.CP15Write(0x100, 0x00012078); ARM9.CP15Write(0x200, 0x00000042); ARM9.CP15Write(0x201, 0x00000042); ARM9.CP15Write(0x300, 0x00000002); ARM9.CP15Write(0x502, 0x15111011); ARM9.CP15Write(0x503, 0x05100011); ARM9.CP15Write(0x600, 0x04000033); ARM9.CP15Write(0x601, 0x04000033); ARM9.CP15Write(0x610, 0x0200002B); ARM9.CP15Write(0x611, 0x0200002B); ARM9.CP15Write(0x620, 0x00000000); ARM9.CP15Write(0x621, 0x00000000); ARM9.CP15Write(0x630, 0x08000035); ARM9.CP15Write(0x631, 0x08000035); ARM9.CP15Write(0x640, 0x0300001B); ARM9.CP15Write(0x641, 0x0300001B); ARM9.CP15Write(0x650, 0x00000000); ARM9.CP15Write(0x651, 0x00000000); ARM9.CP15Write(0x660, 0xFFFF001D); ARM9.CP15Write(0x661, 0xFFFF001D); ARM9.CP15Write(0x670, 0x027FF017); ARM9.CP15Write(0x671, 0x027FF017); ARM9.CP15Write(0x910, 0x0300000A); ARM9.CP15Write(0x911, 0x00000020); } void NDS::SetupDirectBoot(const std::string& romname) { const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader(); SetupDirectBoot(); NDSCartSlot.SetupDirectBoot(romname); ARM9.R[12] = header.ARM9EntryAddress; ARM9.R[13] = 0x03002F7C; ARM9.R[14] = header.ARM9EntryAddress; ARM9.R_IRQ[0] = 0x03003F80; ARM9.R_SVC[0] = 0x03003FC0; ARM7.R[12] = header.ARM7EntryAddress; ARM7.R[13] = 0x0380FD80; ARM7.R[14] = header.ARM7EntryAddress; ARM7.R_IRQ[0] = 0x0380FF80; ARM7.R_SVC[0] = 0x0380FFC0; ARM9.JumpTo(header.ARM9EntryAddress); ARM7.JumpTo(header.ARM7EntryAddress); PostFlag9 = 0x01; PostFlag7 = 0x01; PowerControl9 = 0x820F; GPU.SetPowerCnt(PowerControl9); // checkme RCnt = 0x8000; NDSCartSlot.SetSPICnt(0x8000); SPU.SetBias(0x200); SetWifiWaitCnt(0x0030); } void NDS::Reset() { Platform::FileHandle* f; u32 i; RunningGame = false; LastSysClockCycles = 0; // BIOS files are now loaded by the frontend JIT.Reset(); if (ConsoleType == 1) { // BIOS files are now loaded by the frontend ARM9ClockShift = 2; MainRAMMask = 0xFFFFFF; } else { ARM9ClockShift = 1; MainRAMMask = 0x3FFFFF; } // has to be called before InitTimings // otherwise some PU settings are completely // unitialised on the first run ARM9.CP15Reset(); ARM9Timestamp = 0; ARM9Target = 0; ARM7Timestamp = 0; ARM7Target = 0; SysTimestamp = 0; InitTimings(); memset(MainRAM, 0, MainRAMMask + 1); memset(SharedWRAM, 0, 0x8000); memset(ARM7WRAM, 0, 0x10000); MapSharedWRAM(0); ExMemCnt[0] = 0x4000; ExMemCnt[1] = 0x4000; memset(ROMSeed0, 0, 2*8); memset(ROMSeed1, 0, 2*8); SetGBASlotTimings(); IME[0] = 0; IE[0] = 0; IF[0] = 0; IME[1] = 0; IE[1] = 0; IF[1] = 0; IE2 = 0; IF2 = 0; PostFlag9 = 0x00; PostFlag7 = 0x00; PowerControl9 = 0x0001; PowerControl7 = 0x0001; WifiWaitCnt = 0xFFFF; // temp SetWifiWaitCnt(0); ARM7BIOSProt = 0; IPCSync9 = 0; IPCSync7 = 0; IPCFIFOCnt9 = 0; IPCFIFOCnt7 = 0; IPCFIFO9.Clear(); IPCFIFO7.Clear(); DivCnt = 0; SqrtCnt = 0; ARM9.Reset(); ARM7.Reset(); CPUStop = 0; memset(Timers, 0, 8*sizeof(Timer)); TimerCheckMask[0] = 0; TimerCheckMask[1] = 0; TimerTimestamp[0] = 0; TimerTimestamp[1] = 0; for (i = 0; i < 8; i++) DMAs[i].Reset(); memset(DMA9Fill, 0, 4*4); for (i = 0; i < Event_MAX; i++) { SchedEvent& evt = SchedList[i]; evt.Timestamp = 0; evt.FuncID = 0; evt.Param = 0; } SchedListMask = 0; KeyInput = 0x007F03FF; KeyCnt[0] = 0; KeyCnt[1] = 0; RCnt = 0; GPU.Reset(); NDSCartSlot.Reset(); GBACartSlot.Reset(); SPU.Reset(); SPI.Reset(); RTC.Reset(); Wifi.Reset(); } void NDS::Start() { Running = true; } static const char* StopReasonName(Platform::StopReason reason) { switch (reason) { case Platform::StopReason::External: return "External"; case Platform::StopReason::PowerOff: return "PowerOff"; case Platform::StopReason::GBAModeNotSupported: return "GBAModeNotSupported"; case Platform::StopReason::BadExceptionRegion: return "BadExceptionRegion"; default: return "Unknown"; } } void NDS::Stop(Platform::StopReason reason) { Platform::LogLevel level; switch (reason) { case Platform::StopReason::External: case Platform::StopReason::PowerOff: level = LogLevel::Info; break; case Platform::StopReason::GBAModeNotSupported: case Platform::StopReason::BadExceptionRegion: level = LogLevel::Error; break; default: level = LogLevel::Warn; break; } Log(level, "Stopping emulated console (Reason: %s)\n", StopReasonName(reason)); Running = false; Platform::SignalStop(reason); GPU.Stop(); SPU.Stop(); } bool NDS::DoSavestate(Savestate* file) { file->Section("NDSG"); if (file->Saving) { u32 console = ConsoleType; file->Var32(&console); } else { u32 console; file->Var32(&console); if (console != ConsoleType) { Log(LogLevel::Error, "savestate: Expected console type %d, got console type %d. cannot load.\n", ConsoleType, console); return false; } } file->VarArray(MainRAM, MainRAMMaxSize); file->VarArray(SharedWRAM, SharedWRAMSize); file->VarArray(ARM7WRAM, ARM7WRAMSize); //file->VarArray(ARM9BIOS, 0x1000); //file->VarArray(ARM7BIOS, 0x4000); file->VarArray(ExMemCnt, 2*sizeof(u16)); file->VarArray(ROMSeed0, 2*8); file->VarArray(ROMSeed1, 2*8); file->Var16(&WifiWaitCnt); file->VarArray(IME, 2*sizeof(u32)); file->VarArray(IE, 2*sizeof(u32)); file->VarArray(IF, 2*sizeof(u32)); file->Var32(&IE2); file->Var32(&IF2); file->Var8(&PostFlag9); file->Var8(&PostFlag7); file->Var16(&PowerControl9); file->Var16(&PowerControl7); file->Var16(&ARM7BIOSProt); file->Var16(&IPCSync9); file->Var16(&IPCSync7); file->Var16(&IPCFIFOCnt9); file->Var16(&IPCFIFOCnt7); IPCFIFO9.DoSavestate(file); IPCFIFO7.DoSavestate(file); file->Var16(&DivCnt); file->Var16(&SqrtCnt); file->Var32(&CPUStop); for (int i = 0; i < 8; i++) { Timer* timer = &Timers[i]; file->Var16(&timer->Reload); file->Var16(&timer->Cnt); file->Var32(&timer->Counter); file->Var32(&timer->CycleShift); } file->VarArray(TimerCheckMask, 2*sizeof(u8)); file->VarArray(TimerTimestamp, 2*sizeof(u64)); file->VarArray(DMA9Fill, 4*sizeof(u32)); for (int i = 0; i < Event_MAX; i++) { SchedEvent& evt = SchedList[i]; file->Var64(&evt.Timestamp); file->Var32(&evt.FuncID); file->Var32(&evt.Param); } file->Var32(&SchedListMask); file->Var64(&ARM9Timestamp); file->Var64(&ARM9Target); file->Var64(&ARM7Timestamp); file->Var64(&ARM7Target); file->Var64(&SysTimestamp); file->Var64(&LastSysClockCycles); file->Var64(&FrameStartTimestamp); file->Var32(&NumFrames); file->Var32(&NumLagFrames); file->Bool32(&LagFrameFlag); // TODO: save KeyInput???? file->VarArray(KeyCnt, 2*sizeof(u16)); file->Var16(&RCnt); file->Var8(&WRAMCnt); file->Bool32(&RunningGame); if (!file->Saving) { // 'dept of redundancy dept' // but we do need to update the mappings MapSharedWRAM(WRAMCnt); InitTimings(); SetGBASlotTimings(); UpdateWifiTimings(); } for (int i = 0; i < 8; i++) DMAs[i].DoSavestate(file); ARM9.DoSavestate(file); ARM7.DoSavestate(file); NDSCartSlot.DoSavestate(file); if (ConsoleType == 0) GBACartSlot.DoSavestate(file); GPU.DoSavestate(file); SPU.DoSavestate(file); SPI.DoSavestate(file); RTC.DoSavestate(file); Wifi.DoSavestate(file); DoSavestateExtra(file); // Handles DSi state if applicable if (!file->Saving) { GPU.SetPowerCnt(PowerControl9); SPU.SetPowerCnt(PowerControl7 & 0x0001); Wifi.SetPowerCnt(PowerControl7 & 0x0002); #ifdef JIT_ENABLED JIT.Reset(); #endif } file->Finish(); return true; } void NDS::SetNDSCart(std::unique_ptr&& cart) { NDSCartSlot.SetCart(std::move(cart)); // The existing cart will always be ejected; // if cart is null, then that's equivalent to ejecting a cart // without inserting a new one. } void NDS::SetNDSSave(const u8* savedata, u32 savelen) { if (savedata && savelen) NDSCartSlot.SetSaveMemory(savedata, savelen); } void NDS::SetGBASave(const u8* savedata, u32 savelen) { if (ConsoleType == 0 && savedata && savelen) { GBACartSlot.SetSaveMemory(savedata, savelen); } } void NDS::LoadGBAAddon(int type) { GBACartSlot.LoadAddon(type); } void NDS::LoadBIOS() { Reset(); } void NDS::SetARM7BIOS(const std::array& bios) noexcept { ARM7BIOS = bios; ARM7BIOSNative = CRC32(ARM7BIOS.data(), ARM7BIOS.size()) == ARM7BIOSCRC32; } void NDS::SetARM9BIOS(const std::array& bios) noexcept { ARM9BIOS = bios; ARM9BIOSNative = CRC32(ARM9BIOS.data(), ARM9BIOS.size()) == ARM9BIOSCRC32; } u64 NDS::NextTarget() { u64 minEvent = UINT64_MAX; u32 mask = SchedListMask; for (int i = 0; i < Event_MAX; i++) { if (!mask) break; if (mask & 0x1) { if (SchedList[i].Timestamp < minEvent) minEvent = SchedList[i].Timestamp; } mask >>= 1; } u64 max = SysTimestamp + kMaxIterationCycles; if (minEvent < max + kIterationCycleMargin) return minEvent; return max; } void NDS::RunSystem(u64 timestamp) { SysTimestamp = timestamp; u32 mask = SchedListMask; for (int i = 0; i < Event_MAX; i++) { if (!mask) break; if (mask & 0x1) { SchedEvent& evt = SchedList[i]; if (evt.Timestamp <= SysTimestamp) { SchedListMask &= ~(1<>= 1; } } u64 NDS::NextTargetSleep() { u64 minEvent = UINT64_MAX; u32 mask = SchedListMask; for (int i = 0; i < Event_MAX; i++) { if (!mask) break; if (i == Event_SPU || i == Event_RTC) { if (mask & 0x1) { if (SchedList[i].Timestamp < minEvent) minEvent = SchedList[i].Timestamp; } } mask >>= 1; } return minEvent; } void NDS::RunSystemSleep(u64 timestamp) { u64 offset = timestamp - SysTimestamp; SysTimestamp = timestamp; u32 mask = SchedListMask; for (int i = 0; i < Event_MAX; i++) { if (!mask) break; if (i == Event_SPU || i == Event_RTC) { if (mask & 0x1) { SchedEvent& evt = SchedList[i]; if (evt.Timestamp <= SysTimestamp) { SchedListMask &= ~(1<>= 1; } } template u32 NDS::RunFrame() { FrameStartTimestamp = SysTimestamp; GPU.TotalScanlines = 0; LagFrameFlag = true; bool runFrame = Running && !(CPUStop & CPUStop_Sleep); while (Running) { u64 frametarget = SysTimestamp + 560190; if (CPUStop & CPUStop_Sleep) { // we are running in sleep mode // we still need to run the RTC during this mode // we also keep outputting audio, so that frontends using audio sync don't skyrocket to 1000+FPS while (Running && (SysTimestamp < frametarget)) { u64 target = NextTargetSleep(); if (target > frametarget) target = frametarget; ARM9Timestamp = target << ARM9ClockShift; ARM7Timestamp = target; TimerTimestamp[0] = target; TimerTimestamp[1] = target; GPU.GPU3D.Timestamp = target; RunSystemSleep(target); if (!(CPUStop & CPUStop_Sleep)) break; } if (SysTimestamp >= frametarget) GPU.BlankFrame(); } else { ARM9.CheckGdbIncoming(); ARM7.CheckGdbIncoming(); if (!(CPUStop & CPUStop_Wakeup)) { GPU.StartFrame(); } CPUStop &= ~CPUStop_Wakeup; while (Running && GPU.TotalScanlines==0) { u64 target = NextTarget(); ARM9Target = target << ARM9ClockShift; CurCPU = 0; if (CPUStop & CPUStop_GXStall) { // GXFIFO stall s32 cycles = GPU.GPU3D.CyclesToRunFor(); ARM9Timestamp = std::min(ARM9Target, ARM9Timestamp+(cycles<(*this); dsi.RunNDMAs(0); } } else { #ifdef JIT_ENABLED if (EnableJIT) ARM9.ExecuteJIT(); else #endif ARM9.Execute(); } RunTimers(0); GPU.GPU3D.Run(); target = ARM9Timestamp >> ARM9ClockShift; CurCPU = 1; while (ARM7Timestamp < target) { ARM7Target = target; // might be changed by a reschedule if (CPUStop & CPUStop_DMA7) { DMAs[4].Run(); DMAs[5].Run(); DMAs[6].Run(); DMAs[7].Run(); if (ConsoleType == 1) { auto& dsi = dynamic_cast(*this); dsi.RunNDMAs(1); } } else { #ifdef JIT_ENABLED if (EnableJIT) ARM7.ExecuteJIT(); else #endif ARM7.Execute(); } RunTimers(1); } RunSystem(target); if (CPUStop & CPUStop_Sleep) { break; } } } if (GPU.TotalScanlines == 0) continue; #ifdef DEBUG_CHECK_DESYNC Log(LogLevel::Debug, "[%08X%08X] ARM9=%ld, ARM7=%ld, GPU=%ld\n", (u32)(SysTimestamp>>32), (u32)SysTimestamp, (ARM9Timestamp>>1)-SysTimestamp, ARM7Timestamp-SysTimestamp, GPU.GPU3D.Timestamp-SysTimestamp); #endif SPU.TransferOutput(); break; } // In the context of TASes, frame count is traditionally the primary measure of emulated time, // so it needs to be tracked even if NDS is powered off. NumFrames++; if (LagFrameFlag) NumLagFrames++; if (Running) return GPU.TotalScanlines; else return 263; } u32 NDS::RunFrame() { #ifdef JIT_ENABLED if (EnableJIT) return RunFrame(); else #endif return RunFrame(); } void NDS::Reschedule(u64 target) { if (CurCPU == 0) { if (target < (ARM9Target >> ARM9ClockShift)) ARM9Target = (target << ARM9ClockShift); } else { if (target < ARM7Target) ARM7Target = target; } } void NDS::RegisterEventFunc(u32 id, u32 funcid, EventFunc func) { SchedEvent& evt = SchedList[id]; evt.Funcs[funcid] = func; } void NDS::UnregisterEventFunc(u32 id, u32 funcid) { SchedEvent& evt = SchedList[id]; evt.Funcs.erase(funcid); } void NDS::ScheduleEvent(u32 id, bool periodic, s32 delay, u32 funcid, u32 param) { if (SchedListMask & (1<> ARM9ClockShift) + delay; else evt.Timestamp = ARM7Timestamp + delay; } evt.FuncID = funcid; evt.Param = param; SchedListMask |= (1<SetTouchCoords(x, y); } void NDS::ReleaseScreen() { SPI.GetTSC()->SetTouchCoords(0x000, 0xFFF); } void NDS::CheckKeyIRQ(u32 cpu, u32 oldkey, u32 newkey) { u16 cnt = KeyCnt[cpu]; if (!(cnt & (1<<14))) // IRQ disabled return; u32 mask = (cnt & 0x03FF); oldkey &= mask; newkey &= mask; bool oldmatch, newmatch; if (cnt & (1<<15)) { // logical AND oldmatch = (oldkey == 0); newmatch = (newkey == 0); } else { // logical OR oldmatch = (oldkey != mask); newmatch = (newkey != mask); } if ((!oldmatch) && newmatch) SetIRQ(cpu, IRQ_Keypad); } void NDS::SetKeyMask(u32 mask) { u32 key_lo = mask & 0x3FF; u32 key_hi = (mask >> 10) & 0x3; u32 oldkey = KeyInput; KeyInput &= 0xFFFCFC00; KeyInput |= key_lo | (key_hi << 16); CheckKeyIRQ(0, oldkey, KeyInput); CheckKeyIRQ(1, oldkey, KeyInput); } bool NDS::IsLidClosed() const { if (KeyInput & (1<<23)) return true; return false; } void NDS::SetLidClosed(bool closed) { if (closed) { KeyInput |= (1<<23); } else { KeyInput &= ~(1<<23); SetIRQ(1, IRQ_LidOpen); } } void NDS::MicInputFrame(s16* data, int samples) { return SPI.GetTSC()->MicInputFrame(data, samples); } /*int ImportSRAM(u8* data, u32 length) { return NDSCart::ImportSRAM(data, length); }*/ void NDS::Halt() { Log(LogLevel::Info, "Halt()\n"); Running = false; } void NDS::MapSharedWRAM(u8 val) { if (val == WRAMCnt) return; JIT.Memory.RemapSWRAM(); WRAMCnt = val; switch (WRAMCnt & 0x3) { case 0: SWRAM_ARM9.Mem = &SharedWRAM[0]; SWRAM_ARM9.Mask = 0x7FFF; SWRAM_ARM7.Mem = NULL; SWRAM_ARM7.Mask = 0; break; case 1: SWRAM_ARM9.Mem = &SharedWRAM[0x4000]; SWRAM_ARM9.Mask = 0x3FFF; SWRAM_ARM7.Mem = &SharedWRAM[0]; SWRAM_ARM7.Mask = 0x3FFF; break; case 2: SWRAM_ARM9.Mem = &SharedWRAM[0]; SWRAM_ARM9.Mask = 0x3FFF; SWRAM_ARM7.Mem = &SharedWRAM[0x4000]; SWRAM_ARM7.Mask = 0x3FFF; break; case 3: SWRAM_ARM9.Mem = NULL; SWRAM_ARM9.Mask = 0; SWRAM_ARM7.Mem = &SharedWRAM[0]; SWRAM_ARM7.Mask = 0x7FFF; break; } } void NDS::UpdateWifiTimings() { if (PowerControl7 & 0x0002) { const int ntimings[4] = {10, 8, 6, 18}; u16 val = WifiWaitCnt; SetARM7RegionTimings(0x04800, 0x04808, Mem7_Wifi0, 16, ntimings[val & 0x3], (val & 0x4) ? 4 : 6); SetARM7RegionTimings(0x04808, 0x04810, Mem7_Wifi1, 16, ntimings[(val>>3) & 0x3], (val & 0x20) ? 4 : 10); } else { SetARM7RegionTimings(0x04800, 0x04808, Mem7_Wifi0, 32, 1, 1); SetARM7RegionTimings(0x04808, 0x04810, Mem7_Wifi1, 32, 1, 1); } } void NDS::SetWifiWaitCnt(u16 val) { if (WifiWaitCnt == val) return; WifiWaitCnt = val; UpdateWifiTimings(); } void NDS::SetGBASlotTimings() { const int ntimings[4] = {10, 8, 6, 18}; const u16 openbus[4] = {0xFE08, 0x0000, 0x0000, 0xFFFF}; u16 curcpu = (ExMemCnt[0] >> 7) & 0x1; u16 curcnt = ExMemCnt[curcpu]; int ramN = ntimings[curcnt & 0x3]; int romN = ntimings[(curcnt>>2) & 0x3]; int romS = (curcnt & 0x10) ? 4 : 6; // GBA slot timings only apply on the selected side if (curcpu == 0) { SetARM9RegionTimings(0x08000, 0x0A000, Mem9_GBAROM, 16, romN, romS); SetARM9RegionTimings(0x0A000, 0x0B000, Mem9_GBARAM, 8, ramN, ramN); SetARM7RegionTimings(0x08000, 0x0A000, 0, 32, 1, 1); SetARM7RegionTimings(0x0A000, 0x0B000, 0, 32, 1, 1); } else { SetARM9RegionTimings(0x08000, 0x0A000, 0, 32, 1, 1); SetARM9RegionTimings(0x0A000, 0x0B000, 0, 32, 1, 1); SetARM7RegionTimings(0x08000, 0x0A000, Mem7_GBAROM, 16, romN, romS); SetARM7RegionTimings(0x0A000, 0x0B000, Mem7_GBARAM, 8, ramN, ramN); } // this open-bus implementation is a rough way of simulating the way values // lingering on the bus decay after a while, which is visible at higher waitstates // for example, the Cartridge Construction Kit relies on this to determine that // the GBA slot is empty GBACartSlot.SetOpenBusDecay(openbus[(curcnt>>2) & 0x3]); } void NDS::UpdateIRQ(u32 cpu) { ARM& arm = cpu ? (ARM&)ARM7 : (ARM&)ARM9; if (IME[cpu] & 0x1) { arm.IRQ = !!(IE[cpu] & IF[cpu]); if ((ConsoleType == 1) && cpu) arm.IRQ |= !!(IE2 & IF2); } else { arm.IRQ = 0; } } void NDS::SetIRQ(u32 cpu, u32 irq) { IF[cpu] |= (1 << irq); UpdateIRQ(cpu); if ((cpu == 1) && (CPUStop & CPUStop_Sleep)) { if (IE[1] & (1 << irq)) { CPUStop &= ~CPUStop_Sleep; CPUStop |= CPUStop_Wakeup; GPU.GPU3D.RestartFrame(GPU); } } } void NDS::ClearIRQ(u32 cpu, u32 irq) { IF[cpu] &= ~(1 << irq); UpdateIRQ(cpu); } void NDS::SetIRQ2(u32 irq) { IF2 |= (1 << irq); UpdateIRQ(1); } void NDS::ClearIRQ2(u32 irq) { IF2 &= ~(1 << irq); UpdateIRQ(1); } bool NDS::HaltInterrupted(u32 cpu) const { if (cpu == 0) { if (!(IME[0] & 0x1)) return false; } if (IF[cpu] & IE[cpu]) return true; if ((ConsoleType == 1) && cpu && (IF2 & IE2)) return true; return false; } void NDS::StopCPU(u32 cpu, u32 mask) { if (cpu) { CPUStop |= (mask << 16); ARM7.Halt(2); } else { CPUStop |= mask; ARM9.Halt(2); } } void NDS::ResumeCPU(u32 cpu, u32 mask) { if (cpu) mask <<= 16; CPUStop &= ~mask; } void NDS::GXFIFOStall() { if (CPUStop & CPUStop_GXStall) return; CPUStop |= CPUStop_GXStall; if (CurCPU == 1) ARM9.Halt(2); else { DMAs[0].StallIfRunning(); DMAs[1].StallIfRunning(); DMAs[2].StallIfRunning(); DMAs[3].StallIfRunning(); if (ConsoleType == 1) { auto& dsi = dynamic_cast(*this); dsi.StallNDMAs(); } } } void NDS::GXFIFOUnstall() { CPUStop &= ~CPUStop_GXStall; } void NDS::EnterSleepMode() { if (CPUStop & CPUStop_Sleep) return; CPUStop |= CPUStop_Sleep; ARM7.Halt(2); } u32 NDS::GetPC(u32 cpu) const { return cpu ? ARM7.R[15] : ARM9.R[15]; } u64 NDS::GetSysClockCycles(int num) { u64 ret; if (num == 0 || num == 2) { if (CurCPU == 0) ret = ARM9Timestamp >> ARM9ClockShift; else ret = ARM7Timestamp; if (num == 2) ret -= FrameStartTimestamp; } else if (num == 1) { ret = LastSysClockCycles; LastSysClockCycles = 0; if (CurCPU == 0) LastSysClockCycles = ARM9Timestamp >> ARM9ClockShift; else LastSysClockCycles = ARM7Timestamp; } return ret; } void NDS::NocashPrint(u32 ncpu, u32 addr) { // addr: debug string ARM* cpu = ncpu ? (ARM*)&ARM7 : (ARM*)&ARM9; u8 (NDS::*readfn)(u32) = ncpu ? &NDS::ARM7Read8 : &NDS::ARM9Read8; char output[1024]; int ptr = 0; for (int i = 0; i < 120 && ptr < 1023; ) { char ch = (this->*readfn)(addr++); i++; if (ch == '%') { char cmd[16]; int j; for (j = 0; j < 15; ) { char ch2 = (this->*readfn)(addr++); i++; if (i >= 120) break; if (ch2 == '%') break; cmd[j++] = ch2; } cmd[j] = '\0'; char subs[64]; if (cmd[0] == 'r') { if (!strcmp(cmd, "r0")) snprintf(subs, sizeof(subs), "%08X", cpu->R[0]); else if (!strcmp(cmd, "r1")) snprintf(subs, sizeof(subs), "%08X", cpu->R[1]); else if (!strcmp(cmd, "r2")) snprintf(subs, sizeof(subs), "%08X", cpu->R[2]); else if (!strcmp(cmd, "r3")) snprintf(subs, sizeof(subs), "%08X", cpu->R[3]); else if (!strcmp(cmd, "r4")) snprintf(subs, sizeof(subs), "%08X", cpu->R[4]); else if (!strcmp(cmd, "r5")) snprintf(subs, sizeof(subs), "%08X", cpu->R[5]); else if (!strcmp(cmd, "r6")) snprintf(subs, sizeof(subs), "%08X", cpu->R[6]); else if (!strcmp(cmd, "r7")) snprintf(subs, sizeof(subs), "%08X", cpu->R[7]); else if (!strcmp(cmd, "r8")) snprintf(subs, sizeof(subs), "%08X", cpu->R[8]); else if (!strcmp(cmd, "r9")) snprintf(subs, sizeof(subs), "%08X", cpu->R[9]); else if (!strcmp(cmd, "r10")) snprintf(subs, sizeof(subs), "%08X", cpu->R[10]); else if (!strcmp(cmd, "r11")) snprintf(subs, sizeof(subs), "%08X", cpu->R[11]); else if (!strcmp(cmd, "r12")) snprintf(subs, sizeof(subs), "%08X", cpu->R[12]); else if (!strcmp(cmd, "r13")) snprintf(subs, sizeof(subs), "%08X", cpu->R[13]); else if (!strcmp(cmd, "r14")) snprintf(subs, sizeof(subs), "%08X", cpu->R[14]); else if (!strcmp(cmd, "r15")) snprintf(subs, sizeof(subs), "%08X", cpu->R[15]); } else { if (!strcmp(cmd, "sp")) snprintf(subs, sizeof(subs), "%08X", cpu->R[13]); else if (!strcmp(cmd, "lr")) snprintf(subs, sizeof(subs), "%08X", cpu->R[14]); else if (!strcmp(cmd, "pc")) snprintf(subs, sizeof(subs), "%08X", cpu->R[15]); else if (!strcmp(cmd, "frame")) snprintf(subs, sizeof(subs), "%u", NumFrames); else if (!strcmp(cmd, "scanline")) snprintf(subs, sizeof(subs), "%u", GPU.VCount); else if (!strcmp(cmd, "totalclks")) snprintf(subs, sizeof(subs), "%" PRIu64, GetSysClockCycles(0)); else if (!strcmp(cmd, "lastclks")) snprintf(subs, sizeof(subs), "%" PRIu64, GetSysClockCycles(1)); else if (!strcmp(cmd, "zeroclks")) { snprintf(subs, sizeof(subs), "%s", ""); GetSysClockCycles(1); } } int slen = strnlen(subs, sizeof(subs)); if ((ptr+slen) > 1023) slen = 1023-ptr; strncpy(&output[ptr], subs, slen); ptr += slen; } else { output[ptr++] = ch; if (ch == '\0') break; } } output[ptr] = '\0'; Log(LogLevel::Debug, "%s", output); } void NDS::MonitorARM9Jump(u32 addr) { // checkme: can the entrypoint addr be THUMB? // also TODO: make it work in DSi mode if ((!RunningGame) && NDSCartSlot.GetCart()) { const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader(); if (addr == header.ARM9EntryAddress) { Log(LogLevel::Info, "Game is now booting\n"); RunningGame = true; } } } void NDS::HandleTimerOverflow(u32 tid) { Timer* timer = &Timers[tid]; timer->Counter += (timer->Reload << 10); if (timer->Cnt & (1<<6)) SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3)); if ((tid & 0x3) == 3) return; for (;;) { tid++; timer = &Timers[tid]; if ((timer->Cnt & 0x84) != 0x84) break; timer->Counter += (1 << 10); if (!(timer->Counter >> 26)) break; timer->Counter = timer->Reload << 10; if (timer->Cnt & (1<<6)) SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3)); if ((tid & 0x3) == 3) break; } } void NDS::RunTimer(u32 tid, s32 cycles) { Timer* timer = &Timers[tid]; timer->Counter += (cycles << timer->CycleShift); while (timer->Counter >> 26) { timer->Counter -= (1 << 26); HandleTimerOverflow(tid); } } void NDS::RunTimers(u32 cpu) { u32 timermask = TimerCheckMask[cpu]; s32 cycles; if (cpu == 0) cycles = (ARM9Timestamp >> ARM9ClockShift) - TimerTimestamp[0]; else cycles = ARM7Timestamp - TimerTimestamp[1]; if (timermask & 0x1) RunTimer((cpu<<2)+0, cycles); if (timermask & 0x2) RunTimer((cpu<<2)+1, cycles); if (timermask & 0x4) RunTimer((cpu<<2)+2, cycles); if (timermask & 0x8) RunTimer((cpu<<2)+3, cycles); TimerTimestamp[cpu] += cycles; } const s32 TimerPrescaler[4] = {0, 6, 8, 10}; u16 NDS::TimerGetCounter(u32 timer) { RunTimers(timer>>2); u32 ret = Timers[timer].Counter; return ret >> 10; } void NDS::TimerStart(u32 id, u16 cnt) { Timer* timer = &Timers[id]; u16 curstart = timer->Cnt & (1<<7); u16 newstart = cnt & (1<<7); RunTimers(id>>2); timer->Cnt = cnt; timer->CycleShift = 10 - TimerPrescaler[cnt & 0x03]; if ((!curstart) && newstart) { timer->Counter = timer->Reload << 10; } if ((cnt & 0x84) == 0x80) TimerCheckMask[id>>2] |= 0x01 << (id&0x3); else TimerCheckMask[id>>2] &= ~(0x01 << (id&0x3)); } bool NDS::DMAsInMode(u32 cpu, u32 mode) const { cpu <<= 2; if (DMAs[cpu+0].IsInMode(mode)) return true; if (DMAs[cpu+1].IsInMode(mode)) return true; if (DMAs[cpu+2].IsInMode(mode)) return true; if (DMAs[cpu+3].IsInMode(mode)) return true; return false; } bool NDS::DMAsRunning(u32 cpu) const { cpu <<= 2; if (DMAs[cpu+0].IsRunning()) return true; if (DMAs[cpu+1].IsRunning()) return true; if (DMAs[cpu+2].IsRunning()) return true; if (DMAs[cpu+3].IsRunning()) return true; return false; } void NDS::CheckDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0].StartIfNeeded(mode); DMAs[cpu+1].StartIfNeeded(mode); DMAs[cpu+2].StartIfNeeded(mode); DMAs[cpu+3].StartIfNeeded(mode); } void NDS::StopDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0].StopIfNeeded(mode); DMAs[cpu+1].StopIfNeeded(mode); DMAs[cpu+2].StopIfNeeded(mode); DMAs[cpu+3].StopIfNeeded(mode); } void NDS::DivDone(u32 param) { DivCnt &= ~0xC000; switch (DivCnt & 0x0003) { case 0x0000: { s32 num = (s32)DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { DivQuotient[0] = (num<0) ? 1:-1; DivQuotient[1] = (num<0) ? -1:0; *(s64*)&DivRemainder[0] = num; } else if (num == -0x80000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x80000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0001: case 0x0003: { s64 num = *(s64*)&DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; *(s64*)&DivRemainder[0] = 0; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0002: { s64 num = *(s64*)&DivNumerator[0]; s64 den = *(s64*)&DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; *(s64*)&DivRemainder[0] = 0; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; } if ((DivDenominator[0] | DivDenominator[1]) == 0) DivCnt |= 0x4000; } void NDS::StartDiv() { CancelEvent(Event_Div); DivCnt |= 0x8000; ScheduleEvent(Event_Div, false, ((DivCnt&0x3)==0) ? 18:34, 0, 0); } // http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2 void NDS::SqrtDone(u32 param) { u64 val; u32 res = 0; u64 rem = 0; u32 prod = 0; u32 nbits, topshift; SqrtCnt &= ~0x8000; if (SqrtCnt & 0x0001) { val = *(u64*)&SqrtVal[0]; nbits = 32; topshift = 62; } else { val = (u64)SqrtVal[0]; // 32bit nbits = 16; topshift = 30; } for (u32 i = 0; i < nbits; i++) { rem = (rem << 2) + ((val >> topshift) & 0x3); val <<= 2; res <<= 1; prod = (res << 1) + 1; if (rem >= prod) { rem -= prod; res++; } } SqrtRes = res; } void NDS::StartSqrt() { CancelEvent(Event_Sqrt); SqrtCnt |= 0x8000; ScheduleEvent(Event_Sqrt, false, 13, 0, 0); } void NDS::debug(u32 param) { Log(LogLevel::Debug, "ARM9 PC=%08X LR=%08X %08X\n", ARM9.R[15], ARM9.R[14], ARM9.R_IRQ[1]); Log(LogLevel::Debug, "ARM7 PC=%08X LR=%08X %08X\n", ARM7.R[15], ARM7.R[14], ARM7.R_IRQ[1]); Log(LogLevel::Debug, "ARM9 IME=%08X IE=%08X IF=%08X\n", IME[0], IE[0], IF[0]); Log(LogLevel::Debug, "ARM7 IME=%08X IE=%08X IF=%08X IE2=%04X IF2=%04X\n", IME[1], IE[1], IF[1], IE2, IF2); //for (int i = 0; i < 9; i++) // printf("VRAM %c: %02X\n", 'A'+i, GPU->VRAMCNT[i]); Platform::FileHandle* shit = Platform::OpenFile("debug/DSfirmware.bin", FileMode::Write); Platform::FileWrite(ARM9.ITCM, 0x8000, 1, shit); for (u32 i = 0x02000000; i < 0x02400000; i+=4) { u32 val = NDS::ARM7Read32(i); Platform::FileWrite(&val, 4, 1, shit); } for (u32 i = 0x037F0000; i < 0x03810000; i+=4) { u32 val = NDS::ARM7Read32(i); Platform::FileWrite(&val, 4, 1, shit); } for (u32 i = 0x06000000; i < 0x06040000; i+=4) { u32 val = NDS::ARM7Read32(i); Platform::FileWrite(&val, 4, 1, shit); } Platform::CloseFile(shit); /*FILE* shit = fopen("debug/directboot9.bin", "wb"); for (u32 i = 0x02000000; i < 0x04000000; i+=4) { u32 val = DSi::ARM9Read32(i); fwrite(&val, 4, 1, shit); } fclose(shit); shit = fopen("debug/camera7.bin", "wb"); for (u32 i = 0x02000000; i < 0x04000000; i+=4) { u32 val = DSi::ARM7Read32(i); fwrite(&val, 4, 1, shit); } fclose(shit);*/ } u8 NDS::ARM9Read8(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u8*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u8*)&MainRAM[addr & MainRAMMask]; case 0x03000000: if (SWRAM_ARM9.Mem) { return *(u8*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask]; } else { return 0; } case 0x04000000: // Specifically want to call the NDS version, not a subclass return NDS::ARM9IORead8(addr); case 0x05000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0; return GPU.ReadPalette(addr); case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: return GPU.ReadVRAM_ABG(addr); case 0x00200000: return GPU.ReadVRAM_BBG(addr); case 0x00400000: return GPU.ReadVRAM_AOBJ(addr); case 0x00600000: return GPU.ReadVRAM_BOBJ(addr); default: return GPU.ReadVRAM_LCDC(addr); } case 0x07000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0; return GPU.ReadOAM(addr); case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled if (addr & 0x1) return GBACartSlot.ROMRead(addr-1) >> 8; return GBACartSlot.ROMRead(addr) & 0xFF; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return 0x00; // deselected CPU is 00h-filled return GBACartSlot.SRAMRead(addr); } Log(LogLevel::Debug, "unknown arm9 read8 %08X\n", addr); return 0; } u16 NDS::ARM9Read16(u32 addr) { addr &= ~0x1; if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u16*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u16*)&MainRAM[addr & MainRAMMask]; case 0x03000000: if (SWRAM_ARM9.Mem) { return *(u16*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask]; } else { return 0; } case 0x04000000: return NDS::ARM9IORead16(addr); case 0x05000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0; return GPU.ReadPalette(addr); case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: return GPU.ReadVRAM_ABG(addr); case 0x00200000: return GPU.ReadVRAM_BBG(addr); case 0x00400000: return GPU.ReadVRAM_AOBJ(addr); case 0x00600000: return GPU.ReadVRAM_BOBJ(addr); default: return GPU.ReadVRAM_LCDC(addr); } case 0x07000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0; return GPU.ReadOAM(addr); case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled return GBACartSlot.ROMRead(addr); case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return 0x0000; // deselected CPU is 00h-filled return GBACartSlot.SRAMRead(addr) | (GBACartSlot.SRAMRead(addr+1) << 8); } //if (addr) Log(LogLevel::Warn, "unknown arm9 read16 %08X %08X\n", addr, ARM9.R[15]); return 0; } u32 NDS::ARM9Read32(u32 addr) { addr &= ~0x3; if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u32*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u32*)&MainRAM[addr & MainRAMMask]; case 0x03000000: if (SWRAM_ARM9.Mem) { return *(u32*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask]; } else { return 0; } case 0x04000000: return NDS::ARM9IORead32(addr); case 0x05000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0; return GPU.ReadPalette(addr); case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: return GPU.ReadVRAM_ABG(addr); case 0x00200000: return GPU.ReadVRAM_BBG(addr); case 0x00400000: return GPU.ReadVRAM_AOBJ(addr); case 0x00600000: return GPU.ReadVRAM_BOBJ(addr); default: return GPU.ReadVRAM_LCDC(addr); } case 0x07000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return 0; return GPU.ReadOAM(addr & 0x7FF); case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled return GBACartSlot.ROMRead(addr) | (GBACartSlot.ROMRead(addr+2) << 16); case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return 0x00000000; // deselected CPU is 00h-filled return GBACartSlot.SRAMRead(addr) | (GBACartSlot.SRAMRead(addr+1) << 8) | (GBACartSlot.SRAMRead(addr+2) << 16) | (GBACartSlot.SRAMRead(addr+3) << 24); } //Log(LogLevel::Warn, "unknown arm9 read32 %08X | %08X %08X\n", addr, ARM9.R[15], ARM9.R[12]); return 0; } void NDS::ARM9Write8(u32 addr, u8 val) { switch (addr & 0xFF000000) { case 0x02000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr); *(u8*)&MainRAM[addr & MainRAMMask] = val; return; case 0x03000000: if (SWRAM_ARM9.Mem) { JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr); *(u8*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val; } return; case 0x04000000: NDS::ARM9IOWrite8(addr, val); return; case 0x05000000: case 0x06000000: case 0x07000000: return; case 0x08000000: case 0x09000000: return; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write GBACartSlot.SRAMWrite(addr, val); return; } Log(LogLevel::Debug, "unknown arm9 write8 %08X %02X\n", addr, val); } void NDS::ARM9Write16(u32 addr, u16 val) { addr &= ~0x1; switch (addr & 0xFF000000) { case 0x02000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr); *(u16*)&MainRAM[addr & MainRAMMask] = val; return; case 0x03000000: if (SWRAM_ARM9.Mem) { JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr); *(u16*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val; } return; case 0x04000000: NDS::ARM9IOWrite16(addr, val); return; case 0x05000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return; GPU.WritePalette(addr, val); return; case 0x06000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr); switch (addr & 0x00E00000) { case 0x00000000: GPU.WriteVRAM_ABG(addr, val); return; case 0x00200000: GPU.WriteVRAM_BBG(addr, val); return; case 0x00400000: GPU.WriteVRAM_AOBJ(addr, val); return; case 0x00600000: GPU.WriteVRAM_BOBJ(addr, val); return; default: GPU.WriteVRAM_LCDC(addr, val); return; } case 0x07000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return; GPU.WriteOAM(addr, val); return; case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write GBACartSlot.ROMWrite(addr, val); return; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write GBACartSlot.SRAMWrite(addr, val & 0xFF); GBACartSlot.SRAMWrite(addr+1, val >> 8); return; } //if (addr) Log(LogLevel::Warn, "unknown arm9 write16 %08X %04X\n", addr, val); } void NDS::ARM9Write32(u32 addr, u32 val) { addr &= ~0x3; switch (addr & 0xFF000000) { case 0x02000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr); *(u32*)&MainRAM[addr & MainRAMMask] = val; return ; case 0x03000000: if (SWRAM_ARM9.Mem) { JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(addr); *(u32*)&SWRAM_ARM9.Mem[addr & SWRAM_ARM9.Mask] = val; } return; case 0x04000000: NDS::ARM9IOWrite32(addr, val); return; case 0x05000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return; GPU.WritePalette(addr, val); return; case 0x06000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr); switch (addr & 0x00E00000) { case 0x00000000: GPU.WriteVRAM_ABG(addr, val); return; case 0x00200000: GPU.WriteVRAM_BBG(addr, val); return; case 0x00400000: GPU.WriteVRAM_AOBJ(addr, val); return; case 0x00600000: GPU.WriteVRAM_BOBJ(addr, val); return; default: GPU.WriteVRAM_LCDC(addr, val); return; } case 0x07000000: if (!(PowerControl9 & ((addr & 0x400) ? (1<<9) : (1<<1)))) return; GPU.WriteOAM(addr, val); return; case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write GBACartSlot.ROMWrite(addr, val & 0xFFFF); GBACartSlot.ROMWrite(addr+2, val >> 16); return; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return; // deselected CPU, skip the write GBACartSlot.SRAMWrite(addr, val & 0xFF); GBACartSlot.SRAMWrite(addr+1, (val >> 8) & 0xFF); GBACartSlot.SRAMWrite(addr+2, (val >> 16) & 0xFF); GBACartSlot.SRAMWrite(addr+3, val >> 24); return; } //Log(LogLevel::Warn, "unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9.R[15]); } bool NDS::ARM9GetMemRegion(u32 addr, bool write, MemRegion* region) { switch (addr & 0xFF000000) { case 0x02000000: region->Mem = MainRAM; region->Mask = MainRAMMask; return true; case 0x03000000: if (SWRAM_ARM9.Mem) { region->Mem = SWRAM_ARM9.Mem; region->Mask = SWRAM_ARM9.Mask; return true; } break; } if ((addr & 0xFFFFF000) == 0xFFFF0000 && !write) { region->Mem = &ARM9BIOS[0]; region->Mask = 0xFFF; return true; } region->Mem = NULL; return false; } u8 NDS::ARM7Read8(u32 addr) { if (addr < 0x00004000) { // TODO: check the boundary? is it 4000 or higher on regular DS? if (ARM7.R[15] >= 0x00004000) return 0xFF; if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt) return 0xFF; return *(u8*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u8*)&MainRAM[addr & MainRAMMask]; case 0x03000000: if (SWRAM_ARM7.Mem) { return *(u8*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask]; } else { return *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)]; } case 0x03800000: return *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)]; case 0x04000000: return NDS::ARM7IORead8(addr); case 0x04800000: if (addr < 0x04810000) { if (!(PowerControl7 & (1<<1))) return 0; if (addr & 0x1) return Wifi.Read(addr-1) >> 8; return Wifi.Read(addr) & 0xFF; } break; case 0x06000000: case 0x06800000: return GPU.ReadVRAM_ARM7(addr); case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled if (addr & 0x1) return GBACartSlot.ROMRead(addr-1) >> 8; return GBACartSlot.ROMRead(addr) & 0xFF; case 0x0A000000: case 0x0A800000: if (!(ExMemCnt[0] & (1<<7))) return 0x00; // deselected CPU is 00h-filled return GBACartSlot.SRAMRead(addr); } Log(LogLevel::Debug, "unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7.R[15], ARM7.R[0], ARM7.R[1]); return 0; } u16 NDS::ARM7Read16(u32 addr) { addr &= ~0x1; if (addr < 0x00004000) { if (ARM7.R[15] >= 0x00004000) return 0xFFFF; if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt) return 0xFFFF; return *(u16*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u16*)&MainRAM[addr & MainRAMMask]; case 0x03000000: if (SWRAM_ARM7.Mem) { return *(u16*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask]; } else { return *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)]; } case 0x03800000: return *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)]; case 0x04000000: return NDS::ARM7IORead16(addr); case 0x04800000: if (addr < 0x04810000) { if (!(PowerControl7 & (1<<1))) return 0; return Wifi.Read(addr); } break; case 0x06000000: case 0x06800000: return GPU.ReadVRAM_ARM7(addr); case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled return GBACartSlot.ROMRead(addr); case 0x0A000000: case 0x0A800000: if (!(ExMemCnt[0] & (1<<7))) return 0x0000; // deselected CPU is 00h-filled return GBACartSlot.SRAMRead(addr) | (GBACartSlot.SRAMRead(addr+1) << 8); } Log(LogLevel::Debug, "unknown arm7 read16 %08X %08X\n", addr, ARM7.R[15]); return 0; } u32 NDS::ARM7Read32(u32 addr) { addr &= ~0x3; if (addr < 0x00004000) { if (ARM7.R[15] >= 0x00004000) return 0xFFFFFFFF; if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt) return 0xFFFFFFFF; return *(u32*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u32*)&MainRAM[addr & MainRAMMask]; case 0x03000000: if (SWRAM_ARM7.Mem) { return *(u32*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask]; } else { return *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)]; } case 0x03800000: return *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)]; case 0x04000000: return NDS::ARM7IORead32(addr); case 0x04800000: if (addr < 0x04810000) { if (!(PowerControl7 & (1<<1))) return 0; return Wifi.Read(addr) | (Wifi.Read(addr+2) << 16); } break; case 0x06000000: case 0x06800000: return GPU.ReadVRAM_ARM7(addr); case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled return GBACartSlot.ROMRead(addr) | (GBACartSlot.ROMRead(addr+2) << 16); case 0x0A000000: case 0x0A800000: if (!(ExMemCnt[0] & (1<<7))) return 0x00000000; // deselected CPU is 00h-filled return GBACartSlot.SRAMRead(addr) | (GBACartSlot.SRAMRead(addr+1) << 8) | (GBACartSlot.SRAMRead(addr+2) << 16) | (GBACartSlot.SRAMRead(addr+3) << 24); } //Log(LogLevel::Warn, "unknown arm7 read32 %08X | %08X\n", addr, ARM7.R[15]); return 0; } void NDS::ARM7Write8(u32 addr, u8 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr); *(u8*)&MainRAM[addr & MainRAMMask] = val; return; case 0x03000000: if (SWRAM_ARM7.Mem) { JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr); *(u8*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val; return; } else { JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr); *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val; return; } case 0x03800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr); *(u8*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val; return; case 0x04000000: NDS::ARM7IOWrite8(addr, val); return; case 0x06000000: case 0x06800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr); GPU.WriteVRAM_ARM7(addr, val); return; case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: return; case 0x0A000000: case 0x0A800000: if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write GBACartSlot.SRAMWrite(addr, val); return; } //if (ARM7.R[15] > 0x00002F30) // ARM7 BIOS bug if (addr >= 0x01000000) Log(LogLevel::Debug, "unknown arm7 write8 %08X %02X @ %08X\n", addr, val, ARM7.R[15]); } void NDS::ARM7Write16(u32 addr, u16 val) { addr &= ~0x1; switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr); *(u16*)&MainRAM[addr & MainRAMMask] = val; return; case 0x03000000: if (SWRAM_ARM7.Mem) { JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr); *(u16*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val; return; } else { JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr); *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val; return; } case 0x03800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr); *(u16*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val; return; case 0x04000000: NDS::ARM7IOWrite16(addr, val); return; case 0x04800000: if (addr < 0x04810000) { if (!(PowerControl7 & (1<<1))) return; Wifi.Write(addr, val); return; } break; case 0x06000000: case 0x06800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr); GPU.WriteVRAM_ARM7(addr, val); return; case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write GBACartSlot.ROMWrite(addr, val); return; case 0x0A000000: case 0x0A800000: if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write GBACartSlot.SRAMWrite(addr, val & 0xFF); GBACartSlot.SRAMWrite(addr+1, val >> 8); return; } if (addr >= 0x01000000) Log(LogLevel::Debug, "unknown arm7 write16 %08X %04X @ %08X\n", addr, val, ARM7.R[15]); } void NDS::ARM7Write32(u32 addr, u32 val) { addr &= ~0x3; switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr); *(u32*)&MainRAM[addr & MainRAMMask] = val; return; case 0x03000000: if (SWRAM_ARM7.Mem) { JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(addr); *(u32*)&SWRAM_ARM7.Mem[addr & SWRAM_ARM7.Mask] = val; return; } else { JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr); *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val; return; } case 0x03800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(addr); *(u32*)&ARM7WRAM[addr & (ARM7WRAMSize - 1)] = val; return; case 0x04000000: NDS::ARM7IOWrite32(addr, val); return; case 0x04800000: if (addr < 0x04810000) { if (!(PowerControl7 & (1<<1))) return; Wifi.Write(addr, val & 0xFFFF); Wifi.Write(addr+2, val >> 16); return; } break; case 0x06000000: case 0x06800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(addr); GPU.WriteVRAM_ARM7(addr, val); return; case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write GBACartSlot.ROMWrite(addr, val & 0xFFFF); GBACartSlot.ROMWrite(addr+2, val >> 16); return; case 0x0A000000: case 0x0A800000: if (!(ExMemCnt[0] & (1<<7))) return; // deselected CPU, skip the write GBACartSlot.SRAMWrite(addr, val & 0xFF); GBACartSlot.SRAMWrite(addr+1, (val >> 8) & 0xFF); GBACartSlot.SRAMWrite(addr+2, (val >> 16) & 0xFF); GBACartSlot.SRAMWrite(addr+3, val >> 24); return; } if (addr >= 0x01000000) Log(LogLevel::Debug, "unknown arm7 write32 %08X %08X @ %08X\n", addr, val, ARM7.R[15]); } bool NDS::ARM7GetMemRegion(u32 addr, bool write, MemRegion* region) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: region->Mem = MainRAM; region->Mask = MainRAMMask; return true; case 0x03000000: // note on this, and why we can only cover it in one particular case: // it is typical for games to map all shared WRAM to the ARM7 // then access all the WRAM as one contiguous block starting at 0x037F8000 // this case needs a bit of a hack to cover // it's not really worth bothering anyway if (!SWRAM_ARM7.Mem) { region->Mem = ARM7WRAM; region->Mask = ARM7WRAMSize-1; return true; } break; case 0x03800000: region->Mem = ARM7WRAM; region->Mask = ARM7WRAMSize-1; return true; } // BIOS. ARM7 PC has to be within range. if (addr < 0x00004000 && !write) { if (ARM7.R[15] < 0x4000 && (addr >= ARM7BIOSProt || ARM7.R[15] < ARM7BIOSProt)) { region->Mem = &ARM7BIOS[0]; region->Mask = 0x3FFF; return true; } } region->Mem = NULL; return false; } #define CASE_READ8_16BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return (val) >> 8; #define CASE_READ8_32BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return ((val) >> 8) & 0xFF; \ case (addr+2): return ((val) >> 16) & 0xFF; \ case (addr+3): return (val) >> 24; u8 NDS::ARM9IORead8(u32 addr) { switch (addr) { case 0x04000130: LagFrameFlag = false; return KeyInput & 0xFF; case 0x04000131: LagFrameFlag = false; return (KeyInput >> 8) & 0xFF; case 0x04000132: return KeyCnt[0] & 0xFF; case 0x04000133: return KeyCnt[0] >> 8; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetSPICnt() & 0xFF; return 0; case 0x040001A1: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetSPICnt() >> 8; return 0; case 0x040001A2: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.ReadSPIData(); return 0; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCnt() & 0xFF; return 0; case 0x040001A5: if (!(ExMemCnt[0] & (1<<11))) return (NDSCartSlot.GetROMCnt() >> 8) & 0xFF; return 0; case 0x040001A6: if (!(ExMemCnt[0] & (1<<11))) return (NDSCartSlot.GetROMCnt() >> 16) & 0xFF; return 0; case 0x040001A7: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCnt() >> 24; return 0; case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(0); return 0; case 0x040001A9: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(1); return 0; case 0x040001AA: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(2); return 0; case 0x040001AB: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(3); return 0; case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(4); return 0; case 0x040001AD: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(5); return 0; case 0x040001AE: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(6); return 0; case 0x040001AF: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(7); return 0; case 0x04000208: return IME[0]; case 0x04000240: return GPU.VRAMCNT[0]; case 0x04000241: return GPU.VRAMCNT[1]; case 0x04000242: return GPU.VRAMCNT[2]; case 0x04000243: return GPU.VRAMCNT[3]; case 0x04000244: return GPU.VRAMCNT[4]; case 0x04000245: return GPU.VRAMCNT[5]; case 0x04000246: return GPU.VRAMCNT[6]; case 0x04000247: return WRAMCnt; case 0x04000248: return GPU.VRAMCNT[7]; case 0x04000249: return GPU.VRAMCNT[8]; CASE_READ8_16BIT(0x04000280, DivCnt) CASE_READ8_32BIT(0x04000290, DivNumerator[0]) CASE_READ8_32BIT(0x04000294, DivNumerator[1]) CASE_READ8_32BIT(0x04000298, DivDenominator[0]) CASE_READ8_32BIT(0x0400029C, DivDenominator[1]) CASE_READ8_32BIT(0x040002A0, DivQuotient[0]) CASE_READ8_32BIT(0x040002A4, DivQuotient[1]) CASE_READ8_32BIT(0x040002A8, DivRemainder[0]) CASE_READ8_32BIT(0x040002AC, DivRemainder[1]) CASE_READ8_16BIT(0x040002B0, SqrtCnt) CASE_READ8_32BIT(0x040002B4, SqrtRes) CASE_READ8_32BIT(0x040002B8, SqrtVal[0]) CASE_READ8_32BIT(0x040002BC, SqrtVal[1]) case 0x04000300: return PostFlag9; } if (addr >= 0x04000000 && addr < 0x04000060) { return GPU.GPU2D_A.Read8(addr); } if (addr >= 0x04001000 && addr < 0x04001060) { return GPU.GPU2D_B.Read8(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU.GPU3D.Read8(addr); } // NO$GBA debug register "Emulation ID" if(addr >= 0x04FFFA00 && addr < 0x04FFFA10) { // FIX: GBATek says this should be padded with spaces static char const emuID[16] = "melonDS " MELONDS_VERSION; auto idx = addr - 0x04FFFA00; return (u8)(emuID[idx]); } if ((addr & 0xFFFFF000) != 0x04004000) Log(LogLevel::Debug, "unknown ARM9 IO read8 %08X %08X\n", addr, ARM9.R[15]); return 0; } u16 NDS::ARM9IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU.DispStat[0]; case 0x04000006: return GPU.VCount; case 0x04000060: return GPU.GPU3D.Read16(addr); case 0x04000064: case 0x04000066: return GPU.GPU2D_A.Read16(addr); case 0x040000B8: return DMAs[0].Cnt & 0xFFFF; case 0x040000BA: return DMAs[0].Cnt >> 16; case 0x040000C4: return DMAs[1].Cnt & 0xFFFF; case 0x040000C6: return DMAs[1].Cnt >> 16; case 0x040000D0: return DMAs[2].Cnt & 0xFFFF; case 0x040000D2: return DMAs[2].Cnt >> 16; case 0x040000DC: return DMAs[3].Cnt & 0xFFFF; case 0x040000DE: return DMAs[3].Cnt >> 16; case 0x040000E0: return ((u16*)DMA9Fill)[0]; case 0x040000E2: return ((u16*)DMA9Fill)[1]; case 0x040000E4: return ((u16*)DMA9Fill)[2]; case 0x040000E6: return ((u16*)DMA9Fill)[3]; case 0x040000E8: return ((u16*)DMA9Fill)[4]; case 0x040000EA: return ((u16*)DMA9Fill)[5]; case 0x040000EC: return ((u16*)DMA9Fill)[6]; case 0x040000EE: return ((u16*)DMA9Fill)[7]; case 0x04000100: return TimerGetCounter(0); case 0x04000102: return Timers[0].Cnt; case 0x04000104: return TimerGetCounter(1); case 0x04000106: return Timers[1].Cnt; case 0x04000108: return TimerGetCounter(2); case 0x0400010A: return Timers[2].Cnt; case 0x0400010C: return TimerGetCounter(3); case 0x0400010E: return Timers[3].Cnt; case 0x04000130: LagFrameFlag = false; return KeyInput & 0xFFFF; case 0x04000132: return KeyCnt[0]; case 0x04000180: return IPCSync9; case 0x04000184: { u16 val = IPCFIFOCnt9; if (IPCFIFO9.IsEmpty()) val |= 0x0001; else if (IPCFIFO9.IsFull()) val |= 0x0002; if (IPCFIFO7.IsEmpty()) val |= 0x0100; else if (IPCFIFO7.IsFull()) val |= 0x0200; return val; } case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetSPICnt(); return 0; case 0x040001A2: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.ReadSPIData(); return 0; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCnt() & 0xFFFF; return 0; case 0x040001A6: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCnt() >> 16; return 0; case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(0) | (NDSCartSlot.GetROMCommand(1) << 8); return 0; case 0x040001AA: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(2) | (NDSCartSlot.GetROMCommand(3) << 8); return 0; case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(4) | (NDSCartSlot.GetROMCommand(5) << 8); return 0; case 0x040001AE: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(6) | (NDSCartSlot.GetROMCommand(7) << 8); return 0; case 0x04000204: return ExMemCnt[0]; case 0x04000208: return IME[0]; case 0x04000210: return IE[0] & 0xFFFF; case 0x04000212: return IE[0] >> 16; case 0x04000240: return GPU.VRAMCNT[0] | (GPU.VRAMCNT[1] << 8); case 0x04000242: return GPU.VRAMCNT[2] | (GPU.VRAMCNT[3] << 8); case 0x04000244: return GPU.VRAMCNT[4] | (GPU.VRAMCNT[5] << 8); case 0x04000246: return GPU.VRAMCNT[6] | (WRAMCnt << 8); case 0x04000248: return GPU.VRAMCNT[7] | (GPU.VRAMCNT[8] << 8); case 0x04000280: return DivCnt; case 0x04000290: return DivNumerator[0] & 0xFFFF; case 0x04000292: return DivNumerator[0] >> 16; case 0x04000294: return DivNumerator[1] & 0xFFFF; case 0x04000296: return DivNumerator[1] >> 16; case 0x04000298: return DivDenominator[0] & 0xFFFF; case 0x0400029A: return DivDenominator[0] >> 16; case 0x0400029C: return DivDenominator[1] & 0xFFFF; case 0x0400029E: return DivDenominator[1] >> 16; case 0x040002A0: return DivQuotient[0] & 0xFFFF; case 0x040002A2: return DivQuotient[0] >> 16; case 0x040002A4: return DivQuotient[1] & 0xFFFF; case 0x040002A6: return DivQuotient[1] >> 16; case 0x040002A8: return DivRemainder[0] & 0xFFFF; case 0x040002AA: return DivRemainder[0] >> 16; case 0x040002AC: return DivRemainder[1] & 0xFFFF; case 0x040002AE: return DivRemainder[1] >> 16; case 0x040002B0: return SqrtCnt; case 0x040002B4: return SqrtRes & 0xFFFF; case 0x040002B6: return SqrtRes >> 16; case 0x040002B8: return SqrtVal[0] & 0xFFFF; case 0x040002BA: return SqrtVal[0] >> 16; case 0x040002BC: return SqrtVal[1] & 0xFFFF; case 0x040002BE: return SqrtVal[1] >> 16; case 0x04000300: return PostFlag9; case 0x04000304: return PowerControl9; case 0x04004000: case 0x04004004: case 0x04004010: // shut up logging for DSi registers return 0; } if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C)) { return GPU.GPU2D_A.Read16(addr); } if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C)) { return GPU.GPU2D_B.Read16(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU.GPU3D.Read16(addr); } if ((addr & 0xFFFFF000) != 0x04004000) Log(LogLevel::Debug, "unknown ARM9 IO read16 %08X %08X\n", addr, ARM9.R[15]); return 0; } u32 NDS::ARM9IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU.DispStat[0] | (GPU.VCount << 16); case 0x04000060: return GPU.GPU3D.Read32(addr); case 0x04000064: return GPU.GPU2D_A.Read32(addr); case 0x040000B0: return DMAs[0].SrcAddr; case 0x040000B4: return DMAs[0].DstAddr; case 0x040000B8: return DMAs[0].Cnt; case 0x040000BC: return DMAs[1].SrcAddr; case 0x040000C0: return DMAs[1].DstAddr; case 0x040000C4: return DMAs[1].Cnt; case 0x040000C8: return DMAs[2].SrcAddr; case 0x040000CC: return DMAs[2].DstAddr; case 0x040000D0: return DMAs[2].Cnt; case 0x040000D4: return DMAs[3].SrcAddr; case 0x040000D8: return DMAs[3].DstAddr; case 0x040000DC: return DMAs[3].Cnt; case 0x040000E0: return DMA9Fill[0]; case 0x040000E4: return DMA9Fill[1]; case 0x040000E8: return DMA9Fill[2]; case 0x040000EC: return DMA9Fill[3]; case 0x040000F4: return 0; // ???? Golden Sun Dark Dawn keeps reading this case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16); case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16); case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16); case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16); case 0x04000130: LagFrameFlag = false; return (KeyInput & 0xFFFF) | (KeyCnt[0] << 16); case 0x04000180: return IPCSync9; case 0x04000184: return NDS::ARM9IORead16(addr); case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetSPICnt() | (NDSCartSlot.ReadSPIData() << 16); return 0; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCnt(); return 0; case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(0) | (NDSCartSlot.GetROMCommand(1) << 8) | (NDSCartSlot.GetROMCommand(2) << 16) | (NDSCartSlot.GetROMCommand(3) << 24); return 0; case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.GetROMCommand(4) | (NDSCartSlot.GetROMCommand(5) << 8) | (NDSCartSlot.GetROMCommand(6) << 16) | (NDSCartSlot.GetROMCommand(7) << 24); return 0; case 0x04000208: return IME[0]; case 0x04000210: return IE[0]; case 0x04000214: return IF[0]; case 0x04000240: return GPU.VRAMCNT[0] | (GPU.VRAMCNT[1] << 8) | (GPU.VRAMCNT[2] << 16) | (GPU.VRAMCNT[3] << 24); case 0x04000244: return GPU.VRAMCNT[4] | (GPU.VRAMCNT[5] << 8) | (GPU.VRAMCNT[6] << 16) | (WRAMCnt << 24); case 0x04000248: return GPU.VRAMCNT[7] | (GPU.VRAMCNT[8] << 8); case 0x04000280: return DivCnt; case 0x04000290: return DivNumerator[0]; case 0x04000294: return DivNumerator[1]; case 0x04000298: return DivDenominator[0]; case 0x0400029C: return DivDenominator[1]; case 0x040002A0: return DivQuotient[0]; case 0x040002A4: return DivQuotient[1]; case 0x040002A8: return DivRemainder[0]; case 0x040002AC: return DivRemainder[1]; case 0x040002B0: return SqrtCnt; case 0x040002B4: return SqrtRes; case 0x040002B8: return SqrtVal[0]; case 0x040002BC: return SqrtVal[1]; case 0x04000300: return PostFlag9; case 0x04000304: return PowerControl9; case 0x04100000: if (IPCFIFOCnt9 & 0x8000) { u32 ret; if (IPCFIFO7.IsEmpty()) { IPCFIFOCnt9 |= 0x4000; ret = IPCFIFO7.Peek(); } else { ret = IPCFIFO7.Read(); if (IPCFIFO7.IsEmpty() && (IPCFIFOCnt7 & 0x0004)) SetIRQ(1, IRQ_IPCSendDone); } return ret; } else return IPCFIFO7.Peek(); case 0x04100010: if (!(ExMemCnt[0] & (1<<11))) return NDSCartSlot.ReadROMData(); return 0; case 0x04004000: case 0x04004004: case 0x04004010: // shut up logging for DSi registers return 0; // NO$GBA debug register "Clock Cycles" // Since it's a 64 bit reg. the CPU will access it in two parts: case 0x04FFFA20: return (u32)(GetSysClockCycles(0) & 0xFFFFFFFF); case 0x04FFFA24: return (u32)(GetSysClockCycles(0) >> 32); } if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C)) { return GPU.GPU2D_A.Read32(addr); } if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C)) { return GPU.GPU2D_B.Read32(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU.GPU3D.Read32(addr); } if ((addr & 0xFFFFF000) != 0x04004000) Log(LogLevel::Debug, "unknown ARM9 IO read32 %08X %08X\n", addr, ARM9.R[15]); return 0; } void NDS::ARM9IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x0400006C: case 0x0400006D: GPU.GPU2D_A.Write8(addr, val); return; case 0x0400106C: case 0x0400106D: GPU.GPU2D_B.Write8(addr, val); return; case 0x04000132: KeyCnt[0] = (KeyCnt[0] & 0xFF00) | val; return; case 0x04000133: KeyCnt[0] = (KeyCnt[0] & 0x00FF) | (val << 8); return; case 0x04000188: NDS::ARM9IOWrite32(addr, val | (val << 8) | (val << 16) | (val << 24)); return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0xFF00) | val); return; case 0x040001A1: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0x00FF) | (val << 8)); return; case 0x040001A2: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteSPIData(val); return; case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(0, val); return; case 0x040001A9: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(1, val); return; case 0x040001AA: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(2, val); return; case 0x040001AB: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(3, val); return; case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(4, val); return; case 0x040001AD: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(5, val); return; case 0x040001AE: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(6, val); return; case 0x040001AF: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.SetROMCommand(7, val); return; case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return; case 0x04000240: GPU.MapVRAM_AB(0, val); return; case 0x04000241: GPU.MapVRAM_AB(1, val); return; case 0x04000242: GPU.MapVRAM_CD(2, val); return; case 0x04000243: GPU.MapVRAM_CD(3, val); return; case 0x04000244: GPU.MapVRAM_E(4, val); return; case 0x04000245: GPU.MapVRAM_FG(5, val); return; case 0x04000246: GPU.MapVRAM_FG(6, val); return; case 0x04000247: MapSharedWRAM(val); return; case 0x04000248: GPU.MapVRAM_H(7, val); return; case 0x04000249: GPU.MapVRAM_I(8, val); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU.GPU2D_A.Write8(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU.GPU2D_B.Write8(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU.GPU3D.Write8(addr, val); return; } Log(LogLevel::Debug, "unknown ARM9 IO write8 %08X %02X %08X\n", addr, val, ARM9.R[15]); } void NDS::ARM9IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU.SetDispStat(0, val); return; case 0x04000006: GPU.SetVCount(val); return; case 0x04000060: GPU.GPU3D.Write16(addr, val); return; case 0x04000068: case 0x0400006A: GPU.GPU2D_A.Write16(addr, val); return; case 0x0400006C: GPU.GPU2D_A.Write16(addr, val); return; case 0x0400106C: GPU.GPU2D_B.Write16(addr, val); return; case 0x040000B8: DMAs[0].WriteCnt((DMAs[0].Cnt & 0xFFFF0000) | val); return; case 0x040000BA: DMAs[0].WriteCnt((DMAs[0].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000C4: DMAs[1].WriteCnt((DMAs[1].Cnt & 0xFFFF0000) | val); return; case 0x040000C6: DMAs[1].WriteCnt((DMAs[1].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000D0: DMAs[2].WriteCnt((DMAs[2].Cnt & 0xFFFF0000) | val); return; case 0x040000D2: DMAs[2].WriteCnt((DMAs[2].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000DC: DMAs[3].WriteCnt((DMAs[3].Cnt & 0xFFFF0000) | val); return; case 0x040000DE: DMAs[3].WriteCnt((DMAs[3].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000E0: DMA9Fill[0] = (DMA9Fill[0] & 0xFFFF0000) | val; return; case 0x040000E2: DMA9Fill[0] = (DMA9Fill[0] & 0x0000FFFF) | (val << 16); return; case 0x040000E4: DMA9Fill[1] = (DMA9Fill[1] & 0xFFFF0000) | val; return; case 0x040000E6: DMA9Fill[1] = (DMA9Fill[1] & 0x0000FFFF) | (val << 16); return; case 0x040000E8: DMA9Fill[2] = (DMA9Fill[2] & 0xFFFF0000) | val; return; case 0x040000EA: DMA9Fill[2] = (DMA9Fill[2] & 0x0000FFFF) | (val << 16); return; case 0x040000EC: DMA9Fill[3] = (DMA9Fill[3] & 0xFFFF0000) | val; return; case 0x040000EE: DMA9Fill[3] = (DMA9Fill[3] & 0x0000FFFF) | (val << 16); return; case 0x04000100: Timers[0].Reload = val; return; case 0x04000102: TimerStart(0, val); return; case 0x04000104: Timers[1].Reload = val; return; case 0x04000106: TimerStart(1, val); return; case 0x04000108: Timers[2].Reload = val; return; case 0x0400010A: TimerStart(2, val); return; case 0x0400010C: Timers[3].Reload = val; return; case 0x0400010E: TimerStart(3, val); return; case 0x04000132: KeyCnt[0] = val; return; case 0x04000180: IPCSync7 &= 0xFFF0; IPCSync7 |= ((val & 0x0F00) >> 8); IPCSync9 &= 0xB0FF; IPCSync9 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync7 & 0x4000)) { SetIRQ(1, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO9.Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9.IsEmpty()) SetIRQ(0, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7.IsEmpty())) SetIRQ(0, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt9 &= ~0x4000; IPCFIFOCnt9 = (val & 0x8404) | (IPCFIFOCnt9 & 0x4000); return; case 0x04000188: NDS::ARM9IOWrite32(addr, val | (val << 16)); return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteSPICnt(val); return; case 0x040001A2: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteSPIData(val & 0xFF); return; case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.SetROMCommand(0, val & 0xFF); NDSCartSlot.SetROMCommand(1, val >> 8); } return; case 0x040001AA: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.SetROMCommand(2, val & 0xFF); NDSCartSlot.SetROMCommand(3, val >> 8); } return; case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.SetROMCommand(4, val & 0xFF); NDSCartSlot.SetROMCommand(5, val >> 8); } return; case 0x040001AE: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.SetROMCommand(6, val & 0xFF); NDSCartSlot.SetROMCommand(7, val >> 8); } return; case 0x040001B8: ROMSeed0[4] = val & 0x7F; return; case 0x040001BA: ROMSeed1[4] = val & 0x7F; return; case 0x04000204: { u16 oldVal = ExMemCnt[0]; ExMemCnt[0] = val; ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80); if ((oldVal ^ ExMemCnt[0]) & 0xFF) SetGBASlotTimings(); return; } case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return; case 0x04000210: IE[0] = (IE[0] & 0xFFFF0000) | val; UpdateIRQ(0); return; case 0x04000212: IE[0] = (IE[0] & 0x0000FFFF) | (val << 16); UpdateIRQ(0); return; // TODO: what happens when writing to IF this way?? case 0x04000240: GPU.MapVRAM_AB(0, val & 0xFF); GPU.MapVRAM_AB(1, val >> 8); return; case 0x04000242: GPU.MapVRAM_CD(2, val & 0xFF); GPU.MapVRAM_CD(3, val >> 8); return; case 0x04000244: GPU.MapVRAM_E(4, val & 0xFF); GPU.MapVRAM_FG(5, val >> 8); return; case 0x04000246: GPU.MapVRAM_FG(6, val & 0xFF); MapSharedWRAM(val >> 8); return; case 0x04000248: GPU.MapVRAM_H(7, val & 0xFF); GPU.MapVRAM_I(8, val >> 8); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x040002B0: SqrtCnt = val; StartSqrt(); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; case 0x04000304: PowerControl9 = val & 0x820F; GPU.SetPowerCnt(PowerControl9); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU.GPU2D_A.Write16(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU.GPU2D_B.Write16(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU.GPU3D.Write16(addr, val); return; } Log(LogLevel::Debug, "unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9.R[15]); } void NDS::ARM9IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x04000004: GPU.SetDispStat(0, val & 0xFFFF); GPU.SetVCount(val >> 16); return; case 0x04000060: GPU.GPU3D.Write32(addr, val); return; case 0x04000064: case 0x04000068: GPU.GPU2D_A.Write32(addr, val); return; case 0x0400006C: GPU.GPU2D_A.Write16(addr, val&0xFFFF); return; case 0x0400106C: GPU.GPU2D_B.Write16(addr, val&0xFFFF); return; case 0x040000B0: DMAs[0].SrcAddr = val; return; case 0x040000B4: DMAs[0].DstAddr = val; return; case 0x040000B8: DMAs[0].WriteCnt(val); return; case 0x040000BC: DMAs[1].SrcAddr = val; return; case 0x040000C0: DMAs[1].DstAddr = val; return; case 0x040000C4: DMAs[1].WriteCnt(val); return; case 0x040000C8: DMAs[2].SrcAddr = val; return; case 0x040000CC: DMAs[2].DstAddr = val; return; case 0x040000D0: DMAs[2].WriteCnt(val); return; case 0x040000D4: DMAs[3].SrcAddr = val; return; case 0x040000D8: DMAs[3].DstAddr = val; return; case 0x040000DC: DMAs[3].WriteCnt(val); return; case 0x040000E0: DMA9Fill[0] = val; return; case 0x040000E4: DMA9Fill[1] = val; return; case 0x040000E8: DMA9Fill[2] = val; return; case 0x040000EC: DMA9Fill[3] = val; return; case 0x04000100: Timers[0].Reload = val & 0xFFFF; TimerStart(0, val>>16); return; case 0x04000104: Timers[1].Reload = val & 0xFFFF; TimerStart(1, val>>16); return; case 0x04000108: Timers[2].Reload = val & 0xFFFF; TimerStart(2, val>>16); return; case 0x0400010C: Timers[3].Reload = val & 0xFFFF; TimerStart(3, val>>16); return; case 0x04000130: KeyCnt[0] = val >> 16; return; case 0x04000180: case 0x04000184: NDS::ARM9IOWrite16(addr, val); return; case 0x04000188: if (IPCFIFOCnt9 & 0x8000) { if (IPCFIFO9.IsFull()) IPCFIFOCnt9 |= 0x4000; else { bool wasempty = IPCFIFO9.IsEmpty(); IPCFIFO9.Write(val); if ((IPCFIFOCnt7 & 0x0400) && wasempty) SetIRQ(1, IRQ_IPCRecv); } } return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.WriteSPICnt(val & 0xFFFF); NDSCartSlot.WriteSPIData((val >> 16) & 0xFF); } return; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteROMCnt(val); return; case 0x040001A8: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.SetROMCommand(0, val & 0xFF); NDSCartSlot.SetROMCommand(1, (val >> 8) & 0xFF); NDSCartSlot.SetROMCommand(2, (val >> 16) & 0xFF); NDSCartSlot.SetROMCommand(3, val >> 24); } return; case 0x040001AC: if (!(ExMemCnt[0] & (1<<11))) { NDSCartSlot.SetROMCommand(4, val & 0xFF); NDSCartSlot.SetROMCommand(5, (val >> 8) & 0xFF); NDSCartSlot.SetROMCommand(6, (val >> 16) & 0xFF); NDSCartSlot.SetROMCommand(7, val >> 24); } return; case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return; case 0x04000208: IME[0] = val & 0x1; UpdateIRQ(0); return; case 0x04000210: IE[0] = val; UpdateIRQ(0); return; case 0x04000214: IF[0] &= ~val; GPU.GPU3D.CheckFIFOIRQ(); UpdateIRQ(0); return; case 0x04000240: GPU.MapVRAM_AB(0, val & 0xFF); GPU.MapVRAM_AB(1, (val >> 8) & 0xFF); GPU.MapVRAM_CD(2, (val >> 16) & 0xFF); GPU.MapVRAM_CD(3, val >> 24); return; case 0x04000244: GPU.MapVRAM_E(4, val & 0xFF); GPU.MapVRAM_FG(5, (val >> 8) & 0xFF); GPU.MapVRAM_FG(6, (val >> 16) & 0xFF); MapSharedWRAM(val >> 24); return; case 0x04000248: GPU.MapVRAM_H(7, val & 0xFF); GPU.MapVRAM_I(8, (val >> 8) & 0xFF); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x040002B0: SqrtCnt = val; StartSqrt(); return; case 0x04000290: DivNumerator[0] = val; StartDiv(); return; case 0x04000294: DivNumerator[1] = val; StartDiv(); return; case 0x04000298: DivDenominator[0] = val; StartDiv(); return; case 0x0400029C: DivDenominator[1] = val; StartDiv(); return; case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return; case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return; case 0x04000304: PowerControl9 = val & 0x820F; GPU.SetPowerCnt(PowerControl9); return; case 0x04100010: if (!(ExMemCnt[0] & (1<<11))) NDSCartSlot.WriteROMData(val); return; // NO$GBA debug register "String Out (raw)" case 0x04FFFA10: { char output[1024] = { 0 }; char ch = '.'; for (size_t i = 0; i < 1023 && ch != '\0'; i++) { ch = NDS::ARM9Read8(val + i); output[i] = ch; } Log(LogLevel::Debug, "%s", output); return; } // NO$GBA debug registers "String Out (with parameters)" and "String Out (with parameters, plus linefeed)" case 0x04FFFA14: case 0x04FFFA18: { bool appendLF = 0x04FFFA18 == addr; NocashPrint(0, val); if(appendLF) Log(LogLevel::Debug, "\n"); return; } // NO$GBA debug register "Char Out" case 0x04FFFA1C: Log(LogLevel::Debug, "%c", val & 0xFF); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU.GPU2D_A.Write32(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU.GPU2D_B.Write32(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU.GPU3D.Write32(addr, val); return; } Log(LogLevel::Debug, "unknown ARM9 IO write32 %08X %08X %08X\n", addr, val, ARM9.R[15]); } u8 NDS::ARM7IORead8(u32 addr) { switch (addr) { case 0x04000130: return KeyInput & 0xFF; case 0x04000131: return (KeyInput >> 8) & 0xFF; case 0x04000132: return KeyCnt[1] & 0xFF; case 0x04000133: return KeyCnt[1] >> 8; case 0x04000134: return RCnt & 0xFF; case 0x04000135: return RCnt >> 8; case 0x04000136: return (KeyInput >> 16) & 0xFF; case 0x04000137: return KeyInput >> 24; case 0x04000138: return RTC.Read() & 0xFF; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetSPICnt() & 0xFF; return 0; case 0x040001A1: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetSPICnt() >> 8; return 0; case 0x040001A2: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.ReadSPIData(); return 0; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCnt() & 0xFF; return 0; case 0x040001A5: if (ExMemCnt[0] & (1<<11)) return (NDSCartSlot.GetROMCnt() >> 8) & 0xFF; return 0; case 0x040001A6: if (ExMemCnt[0] & (1<<11)) return (NDSCartSlot.GetROMCnt() >> 16) & 0xFF; return 0; case 0x040001A7: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCnt() >> 24; return 0; case 0x040001A8: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(0); return 0; case 0x040001A9: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(1); return 0; case 0x040001AA: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(2); return 0; case 0x040001AB: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(3); return 0; case 0x040001AC: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(4); return 0; case 0x040001AD: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(5); return 0; case 0x040001AE: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(6); return 0; case 0x040001AF: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(7); return 0; case 0x040001C2: return SPI.ReadData(); case 0x04000208: return IME[1]; case 0x04000240: return GPU.VRAMSTAT; case 0x04000241: return WRAMCnt; case 0x04000300: return PostFlag7; case 0x04000304: return PowerControl7; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU.Read8(addr); } if ((addr & 0xFFFFF000) != 0x04004000) Log(LogLevel::Debug, "unknown ARM7 IO read8 %08X %08X\n", addr, ARM7.R[15]); return 0; } u16 NDS::ARM7IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU.DispStat[1]; case 0x04000006: return GPU.VCount; case 0x040000B8: return DMAs[4].Cnt & 0xFFFF; case 0x040000BA: return DMAs[4].Cnt >> 16; case 0x040000C4: return DMAs[5].Cnt & 0xFFFF; case 0x040000C6: return DMAs[5].Cnt >> 16; case 0x040000D0: return DMAs[6].Cnt & 0xFFFF; case 0x040000D2: return DMAs[6].Cnt >> 16; case 0x040000DC: return DMAs[7].Cnt & 0xFFFF; case 0x040000DE: return DMAs[7].Cnt >> 16; case 0x04000100: return TimerGetCounter(4); case 0x04000102: return Timers[4].Cnt; case 0x04000104: return TimerGetCounter(5); case 0x04000106: return Timers[5].Cnt; case 0x04000108: return TimerGetCounter(6); case 0x0400010A: return Timers[6].Cnt; case 0x0400010C: return TimerGetCounter(7); case 0x0400010E: return Timers[7].Cnt; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000132: return KeyCnt[1]; case 0x04000134: return RCnt; case 0x04000136: return KeyInput >> 16; case 0x04000138: return RTC.Read(); case 0x04000180: return IPCSync7; case 0x04000184: { u16 val = IPCFIFOCnt7; if (IPCFIFO7.IsEmpty()) val |= 0x0001; else if (IPCFIFO7.IsFull()) val |= 0x0002; if (IPCFIFO9.IsEmpty()) val |= 0x0100; else if (IPCFIFO9.IsFull()) val |= 0x0200; return val; } case 0x040001A0: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetSPICnt(); return 0; case 0x040001A2: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.ReadSPIData(); return 0; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCnt() & 0xFFFF; return 0; case 0x040001A6: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCnt() >> 16; return 0; case 0x040001A8: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(0) | (NDSCartSlot.GetROMCommand(1) << 8); return 0; case 0x040001AA: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(2) | (NDSCartSlot.GetROMCommand(3) << 8); return 0; case 0x040001AC: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(4) | (NDSCartSlot.GetROMCommand(5) << 8); return 0; case 0x040001AE: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(6) | (NDSCartSlot.GetROMCommand(7) << 8); return 0; case 0x040001C0: return SPI.ReadCnt(); case 0x040001C2: return SPI.ReadData(); case 0x04000204: return ExMemCnt[1]; case 0x04000206: if (!(PowerControl7 & (1<<1))) return 0; return WifiWaitCnt; case 0x04000208: return IME[1]; case 0x04000210: return IE[1] & 0xFFFF; case 0x04000212: return IE[1] >> 16; case 0x04000300: return PostFlag7; case 0x04000304: return PowerControl7; case 0x04000308: return ARM7BIOSProt; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU.Read16(addr); } if ((addr & 0xFFFFF000) != 0x04004000) Log(LogLevel::Debug, "unknown ARM7 IO read16 %08X %08X\n", addr, ARM7.R[15]); return 0; } u32 NDS::ARM7IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU.DispStat[1] | (GPU.VCount << 16); case 0x040000B0: return DMAs[4].SrcAddr; case 0x040000B4: return DMAs[4].DstAddr; case 0x040000B8: return DMAs[4].Cnt; case 0x040000BC: return DMAs[5].SrcAddr; case 0x040000C0: return DMAs[5].DstAddr; case 0x040000C4: return DMAs[5].Cnt; case 0x040000C8: return DMAs[6].SrcAddr; case 0x040000CC: return DMAs[6].DstAddr; case 0x040000D0: return DMAs[6].Cnt; case 0x040000D4: return DMAs[7].SrcAddr; case 0x040000D8: return DMAs[7].DstAddr; case 0x040000DC: return DMAs[7].Cnt; case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16); case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16); case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16); case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16); case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt[1] << 16); case 0x04000134: return RCnt | (KeyInput & 0xFFFF0000); case 0x04000138: return RTC.Read(); case 0x04000180: return IPCSync7; case 0x04000184: return NDS::ARM7IORead16(addr); case 0x040001A0: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetSPICnt() | (NDSCartSlot.ReadSPIData() << 16); return 0; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCnt(); return 0; case 0x040001A8: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(0) | (NDSCartSlot.GetROMCommand(1) << 8) | (NDSCartSlot.GetROMCommand(2) << 16) | (NDSCartSlot.GetROMCommand(3) << 24); return 0; case 0x040001AC: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.GetROMCommand(4) | (NDSCartSlot.GetROMCommand(5) << 8) | (NDSCartSlot.GetROMCommand(6) << 16) | (NDSCartSlot.GetROMCommand(7) << 24); return 0; case 0x040001C0: return SPI.ReadCnt() | (SPI.ReadData() << 16); case 0x04000208: return IME[1]; case 0x04000210: return IE[1]; case 0x04000214: return IF[1]; case 0x04000304: return PowerControl7; case 0x04000308: return ARM7BIOSProt; case 0x04100000: if (IPCFIFOCnt7 & 0x8000) { u32 ret; if (IPCFIFO9.IsEmpty()) { IPCFIFOCnt7 |= 0x4000; ret = IPCFIFO9.Peek(); } else { ret = IPCFIFO9.Read(); if (IPCFIFO9.IsEmpty() && (IPCFIFOCnt9 & 0x0004)) SetIRQ(0, IRQ_IPCSendDone); } return ret; } else return IPCFIFO9.Peek(); case 0x04100010: if (ExMemCnt[0] & (1<<11)) return NDSCartSlot.ReadROMData(); return 0; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU.Read32(addr); } if ((addr & 0xFFFFF000) != 0x04004000) Log(LogLevel::Debug, "unknown ARM7 IO read32 %08X %08X\n", addr, ARM7.R[15]); return 0; } void NDS::ARM7IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x04000132: KeyCnt[1] = (KeyCnt[1] & 0xFF00) | val; return; case 0x04000133: KeyCnt[1] = (KeyCnt[1] & 0x00FF) | (val << 8); return; case 0x04000134: RCnt = (RCnt & 0xFF00) | val; return; case 0x04000135: RCnt = (RCnt & 0x00FF) | (val << 8); return; case 0x04000138: RTC.Write(val, true); return; case 0x04000188: NDS::ARM7IOWrite32(addr, val | (val << 8) | (val << 16) | (val << 24)); return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0xFF00) | val); } return; case 0x040001A1: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteSPICnt((NDSCartSlot.GetSPICnt() & 0x00FF) | (val << 8)); return; case 0x040001A2: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteSPIData(val); return; case 0x040001A8: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(0, val); return; case 0x040001A9: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(1, val); return; case 0x040001AA: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(2, val); return; case 0x040001AB: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(3, val); return; case 0x040001AC: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(4, val); return; case 0x040001AD: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(5, val); return; case 0x040001AE: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(6, val); return; case 0x040001AF: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.SetROMCommand(7, val); return; case 0x040001C2: SPI.WriteData(val); return; case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return; case 0x04000300: if (ARM7.R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000301: val &= 0xC0; if (val == 0x40) Stop(StopReason::GBAModeNotSupported); else if (val == 0x80) ARM7.Halt(1); else if (val == 0xC0) EnterSleepMode(); return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU.Write8(addr, val); return; } Log(LogLevel::Debug, "unknown ARM7 IO write8 %08X %02X %08X\n", addr, val, ARM7.R[15]); } void NDS::ARM7IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU.SetDispStat(1, val); return; case 0x04000006: GPU.SetVCount(val); return; case 0x040000B8: DMAs[4].WriteCnt((DMAs[4].Cnt & 0xFFFF0000) | val); return; case 0x040000BA: DMAs[4].WriteCnt((DMAs[4].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000C4: DMAs[5].WriteCnt((DMAs[5].Cnt & 0xFFFF0000) | val); return; case 0x040000C6: DMAs[5].WriteCnt((DMAs[5].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000D0: DMAs[6].WriteCnt((DMAs[6].Cnt & 0xFFFF0000) | val); return; case 0x040000D2: DMAs[6].WriteCnt((DMAs[6].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000DC: DMAs[7].WriteCnt((DMAs[7].Cnt & 0xFFFF0000) | val); return; case 0x040000DE: DMAs[7].WriteCnt((DMAs[7].Cnt & 0x0000FFFF) | (val << 16)); return; case 0x04000100: Timers[4].Reload = val; return; case 0x04000102: TimerStart(4, val); return; case 0x04000104: Timers[5].Reload = val; return; case 0x04000106: TimerStart(5, val); return; case 0x04000108: Timers[6].Reload = val; return; case 0x0400010A: TimerStart(6, val); return; case 0x0400010C: Timers[7].Reload = val; return; case 0x0400010E: TimerStart(7, val); return; case 0x04000132: KeyCnt[1] = val; return; case 0x04000134: RCnt = val; return; case 0x04000138: RTC.Write(val, false); return; case 0x04000180: IPCSync9 &= 0xFFF0; IPCSync9 |= ((val & 0x0F00) >> 8); IPCSync7 &= 0xB0FF; IPCSync7 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync9 & 0x4000)) { SetIRQ(0, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO7.Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7.IsEmpty()) SetIRQ(1, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9.IsEmpty())) SetIRQ(1, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt7 &= ~0x4000; IPCFIFOCnt7 = (val & 0x8404) | (IPCFIFOCnt7 & 0x4000); return; case 0x04000188: NDS::ARM7IOWrite32(addr, val | (val << 16)); return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteSPICnt(val); return; case 0x040001A2: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteSPIData(val & 0xFF); return; case 0x040001A8: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.SetROMCommand(0, val & 0xFF); NDSCartSlot.SetROMCommand(1, val >> 8); } return; case 0x040001AA: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.SetROMCommand(2, val & 0xFF); NDSCartSlot.SetROMCommand(3, val >> 8); } return; case 0x040001AC: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.SetROMCommand(4, val & 0xFF); NDSCartSlot.SetROMCommand(5, val >> 8); } return; case 0x040001AE: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.SetROMCommand(6, val & 0xFF); NDSCartSlot.SetROMCommand(7, val >> 8); } return; case 0x040001B8: ROMSeed0[12] = val & 0x7F; return; case 0x040001BA: ROMSeed1[12] = val & 0x7F; return; case 0x040001C0: SPI.WriteCnt(val); return; case 0x040001C2: SPI.WriteData(val & 0xFF); return; case 0x04000204: { u16 oldVal = ExMemCnt[1]; ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F); if ((ExMemCnt[1] ^ oldVal) & 0xFF) SetGBASlotTimings(); return; } case 0x04000206: if (!(PowerControl7 & (1<<1))) return; SetWifiWaitCnt(val); return; case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return; case 0x04000210: IE[1] = (IE[1] & 0xFFFF0000) | val; UpdateIRQ(1); return; case 0x04000212: IE[1] = (IE[1] & 0x0000FFFF) | (val << 16); UpdateIRQ(1); return; // TODO: what happens when writing to IF this way?? case 0x04000300: if (ARM7.R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000304: { u16 change = PowerControl7 ^ val; PowerControl7 = val & 0x0003; SPU.SetPowerCnt(val & 0x0001); Wifi.SetPowerCnt(val & 0x0002); if (change & 0x0002) UpdateWifiTimings(); } return; case 0x04000308: if (ARM7BIOSProt == 0) ARM7BIOSProt = val & 0xFFFE; return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU.Write16(addr, val); return; } Log(LogLevel::Debug, "unknown ARM7 IO write16 %08X %04X %08X\n", addr, val, ARM7.R[15]); } void NDS::ARM7IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x04000004: GPU.SetDispStat(1, val & 0xFFFF); GPU.SetVCount(val >> 16); return; case 0x040000B0: DMAs[4].SrcAddr = val; return; case 0x040000B4: DMAs[4].DstAddr = val; return; case 0x040000B8: DMAs[4].WriteCnt(val); return; case 0x040000BC: DMAs[5].SrcAddr = val; return; case 0x040000C0: DMAs[5].DstAddr = val; return; case 0x040000C4: DMAs[5].WriteCnt(val); return; case 0x040000C8: DMAs[6].SrcAddr = val; return; case 0x040000CC: DMAs[6].DstAddr = val; return; case 0x040000D0: DMAs[6].WriteCnt(val); return; case 0x040000D4: DMAs[7].SrcAddr = val; return; case 0x040000D8: DMAs[7].DstAddr = val; return; case 0x040000DC: DMAs[7].WriteCnt(val); return; case 0x04000100: Timers[4].Reload = val & 0xFFFF; TimerStart(4, val>>16); return; case 0x04000104: Timers[5].Reload = val & 0xFFFF; TimerStart(5, val>>16); return; case 0x04000108: Timers[6].Reload = val & 0xFFFF; TimerStart(6, val>>16); return; case 0x0400010C: Timers[7].Reload = val & 0xFFFF; TimerStart(7, val>>16); return; case 0x04000130: KeyCnt[1] = val >> 16; return; case 0x04000134: RCnt = val & 0xFFFF; return; case 0x04000138: RTC.Write(val & 0xFFFF, false); return; case 0x04000180: case 0x04000184: NDS::ARM7IOWrite16(addr, val); return; case 0x04000188: if (IPCFIFOCnt7 & 0x8000) { if (IPCFIFO7.IsFull()) IPCFIFOCnt7 |= 0x4000; else { bool wasempty = IPCFIFO7.IsEmpty(); IPCFIFO7.Write(val); if ((IPCFIFOCnt9 & 0x0400) && wasempty) SetIRQ(0, IRQ_IPCRecv); } } return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.WriteSPICnt(val & 0xFFFF); NDSCartSlot.WriteSPIData((val >> 16) & 0xFF); } return; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteROMCnt(val); return; case 0x040001A8: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.SetROMCommand(0, val & 0xFF); NDSCartSlot.SetROMCommand(1, (val >> 8) & 0xFF); NDSCartSlot.SetROMCommand(2, (val >> 16) & 0xFF); NDSCartSlot.SetROMCommand(3, val >> 24); } return; case 0x040001AC: if (ExMemCnt[0] & (1<<11)) { NDSCartSlot.SetROMCommand(4, val & 0xFF); NDSCartSlot.SetROMCommand(5, (val >> 8) & 0xFF); NDSCartSlot.SetROMCommand(6, (val >> 16) & 0xFF); NDSCartSlot.SetROMCommand(7, val >> 24); } return; case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return; case 0x040001C0: SPI.WriteCnt(val & 0xFFFF); SPI.WriteData((val >> 16) & 0xFF); return; case 0x04000208: IME[1] = val & 0x1; UpdateIRQ(1); return; case 0x04000210: IE[1] = val; UpdateIRQ(1); return; case 0x04000214: IF[1] &= ~val; UpdateIRQ(1); return; case 0x04000304: { u16 change = PowerControl7 ^ val; PowerControl7 = val & 0x0003; SPU.SetPowerCnt(val & 0x0001); Wifi.SetPowerCnt(val & 0x0002); if (change & 0x0002) UpdateWifiTimings(); } return; case 0x04000308: if (ARM7BIOSProt == 0) ARM7BIOSProt = val & 0xFFFE; return; case 0x04100010: if (ExMemCnt[0] & (1<<11)) NDSCartSlot.WriteROMData(val); return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU.Write32(addr, val); return; } Log(LogLevel::Debug, "unknown ARM7 IO write32 %08X %08X %08X\n", addr, val, ARM7.R[15]); } }