/* Copyright 2016-2019 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "GPU.h" #include "Config.h" #include "Platform.h" namespace GPU3D { namespace SoftRenderer { // buffer dimensions are 258x194 to add a offscreen 1px border // which simplifies edge marking tests // buffer is duplicated to keep track of the two topmost pixels // TODO: check if the hardware can accidentally plot pixels // offscreen in that border const int ScanlineWidth = 258; const int NumScanlines = 194; const int BufferSize = ScanlineWidth * NumScanlines; const int FirstPixelOffset = ScanlineWidth + 1; u32 ColorBuffer[BufferSize * 2]; u32 DepthBuffer[BufferSize * 2]; u32 AttrBuffer[BufferSize * 2]; // attribute buffer: // bit0-3: edge flags (left/right/top/bottom) // bit4: backfacing flag // bit8-12: antialiasing alpha // bit15: fog enable // bit16-21: polygon ID for translucent pixels // bit22: translucent flag // bit24-29: polygon ID for opaque pixels u8 StencilBuffer[256*2]; bool PrevIsShadowMask; // threading void* RenderThread; bool RenderThreadRunning; bool RenderThreadRendering; void* Sema_RenderStart; void* Sema_RenderDone; void* Sema_ScanlineCount; void RenderThreadFunc(); void StopRenderThread() { if (RenderThreadRunning) { RenderThreadRunning = false; Platform::Semaphore_Post(Sema_RenderStart); Platform::Thread_Wait(RenderThread); Platform::Thread_Free(RenderThread); } } void SetupRenderThread() { if (Config::Threaded3D) { if (!RenderThreadRunning) { RenderThreadRunning = true; RenderThread = Platform::Thread_Create(RenderThreadFunc); } if (RenderThreadRendering) Platform::Semaphore_Wait(Sema_RenderDone); Platform::Semaphore_Reset(Sema_RenderStart); Platform::Semaphore_Reset(Sema_ScanlineCount); Platform::Semaphore_Post(Sema_RenderStart); } else { StopRenderThread(); } } bool Init() { Sema_RenderStart = Platform::Semaphore_Create(); Sema_RenderDone = Platform::Semaphore_Create(); Sema_ScanlineCount = Platform::Semaphore_Create(); RenderThreadRunning = false; RenderThreadRendering = false; return true; } void DeInit() { StopRenderThread(); Platform::Semaphore_Free(Sema_RenderStart); Platform::Semaphore_Free(Sema_RenderDone); Platform::Semaphore_Free(Sema_ScanlineCount); } void Reset() { memset(ColorBuffer, 0, 256*192 * 4); memset(DepthBuffer, 0, 256*192 * 4); memset(AttrBuffer, 0, 256*192 * 4); PrevIsShadowMask = false; SetupRenderThread(); } // Notes on the interpolator: // // This is a theory on how the DS hardware interpolates values. It matches hardware output // in the tests I did, but the hardware may be doing it differently. You never know. // // Assuming you want to perspective-correctly interpolate a variable named A across two points // in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly, // then divide A/W by 1/W to recover the correct A value. // // The DS GPU approximates interpolation by calculating a perspective-correct interpolation // between 0 and 1, then using the result as a factor to linearly interpolate the actual // vertex attributes. The factor has 9 bits of precision when interpolating along Y and // 8 bits along X. // // There's a special path for when the two W values are equal: it directly does linear // interpolation, avoiding precision loss from the aforementioned approximation. // Which is desirable when using the GPU to draw 2D graphics. template class Interpolator { public: Interpolator() {} Interpolator(s32 x0, s32 x1, s32 w0, s32 w1) { Setup(x0, x1, w0, w1); } void Setup(s32 x0, s32 x1, s32 w0, s32 w1) { this->x0 = x0; this->x1 = x1; this->xdiff = x1 - x0; // calculate reciprocals for linear mode and Z interpolation // TODO eventually: use a faster reciprocal function? if (this->xdiff != 0) this->xrecip = (1<<30) / this->xdiff; else this->xrecip = 0; this->xrecip_z = this->xrecip >> 8; // linear mode is used if both W values are equal and have // low-order bits cleared (0-6 along X, 1-6 along Y) u32 mask = dir ? 0x7E : 0x7F; if ((w0 == w1) && !(w0 & mask) && !(w1 & mask)) this->linear = true; else this->linear = false; if (dir) { // along Y if ((w0 & 0x1) && !(w1 & 0x1)) { this->w0n = w0 - 1; this->w0d = w0 + 1; this->w1d = w1; } else { this->w0n = w0 & 0xFFFE; this->w0d = w0 & 0xFFFE; this->w1d = w1 & 0xFFFE; } this->shift = 9; } else { // along X this->w0n = w0; this->w0d = w0; this->w1d = w1; this->shift = 8; } } void SetX(s32 x) { x -= x0; this->x = x; if (xdiff != 0 && !linear) { s64 num = ((s64)x * w0n) << shift; s32 den = (x * w0d) + ((xdiff-x) * w1d); // this seems to be a proper division on hardware :/ // I haven't been able to find cases that produce imperfect output if (den == 0) yfactor = 0; else yfactor = (s32)(num / den); } } s32 Interpolate(s32 y0, s32 y1) { if (xdiff == 0 || y0 == y1) return y0; if (!linear) { // perspective-correct approx. interpolation if (y0 < y1) return y0 + (((y1-y0) * yfactor) >> shift); else return y1 + (((y0-y1) * ((1<> shift); } else { // linear interpolation // checkme: the rounding bias there (3<<24) is a guess if (y0 < y1) return y0 + ((((s64)(y1-y0) * x * xrecip) + (3<<24)) >> 30); else return y1 + ((((s64)(y0-y1) * (xdiff-x) * xrecip) + (3<<24)) >> 30); } } s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer) { if (xdiff == 0 || z0 == z1) return z0; if (wbuffer) { // W-buffering: perspective-correct approx. interpolation if (z0 < z1) return z0 + (((s64)(z1-z0) * yfactor) >> shift); else return z1 + (((s64)(z0-z1) * ((1<> shift); } else { // Z-buffering: linear interpolation // still doesn't quite match hardware... s32 base, disp, factor; if (z0 < z1) { base = z0; disp = z1 - z0; factor = x; } else { base = z1; disp = z0 - z1, factor = xdiff - x; } if (dir) { int shift = 0; while (disp > 0x3FF) { disp >>= 1; shift++; } return base + ((((s64)disp * factor * xrecip_z) >> 22) << shift); } else { disp >>= 9; return base + (((s64)disp * factor * xrecip_z) >> 13); } } } private: s32 x0, x1, xdiff, x; int shift; bool linear; s32 xrecip, xrecip_z; s32 w0n, w0d, w1d; u32 yfactor; }; template class Slope { public: Slope() {} s32 SetupDummy(s32 x0) { if (side) { dx = -0x40000; x0--; } else { dx = 0; } this->x0 = x0; this->xmin = x0; this->xmax = x0; Increment = 0; XMajor = false; Interp.Setup(0, 0, 0, 0); Interp.SetX(0); xcov_incr = 0; return x0; } s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, s32 y) { this->x0 = x0; this->y = y; if (x1 > x0) { this->xmin = x0; this->xmax = x1-1; this->Negative = false; } else if (x1 < x0) { this->xmin = x1; this->xmax = x0-1; this->Negative = true; } else { this->xmin = x0; if (side) this->xmin--; this->xmax = this->xmin; this->Negative = false; } xlen = xmax+1 - xmin; ylen = y1 - y0; // slope increment has a 18-bit fractional part // note: for some reason, x/y isn't calculated directly, // instead, 1/y is calculated and then multiplied by x // TODO: this is still not perfect (see for example x=169 y=33) if (ylen == 0) Increment = 0; else if (ylen == xlen) Increment = 0x40000; else { s32 yrecip = (1<<18) / ylen; Increment = (x1-x0) * yrecip; if (Increment < 0) Increment = -Increment; } XMajor = (Increment > 0x40000); if (side) { // right if (XMajor) dx = Negative ? (0x20000 + 0x40000) : (Increment - 0x20000); else if (Increment != 0) dx = Negative ? 0x40000 : 0; else dx = -0x40000; } else { // left if (XMajor) dx = Negative ? ((Increment - 0x20000) + 0x40000) : 0x20000; else if (Increment != 0) dx = Negative ? 0x40000 : 0; else dx = 0; } dx += (y - y0) * Increment; s32 x = XVal(); if (XMajor) { if (side) Interp.Setup(x0-1, x1-1, w0, w1); // checkme else Interp.Setup(x0, x1, w0, w1); Interp.SetX(x); // used for calculating AA coverage xcov_incr = (ylen << 10) / xlen; } else { Interp.Setup(y0, y1, w0, w1); Interp.SetX(y); } return x; } s32 Step() { dx += Increment; y++; s32 x = XVal(); if (XMajor) { Interp.SetX(x); } else { Interp.SetX(y); } return x; } s32 XVal() { s32 ret; if (Negative) ret = x0 - (dx >> 18); else ret = x0 + (dx >> 18); if (ret < xmin) ret = xmin; else if (ret > xmax) ret = xmax; return ret; } void EdgeParams_XMajor(s32* length, s32* coverage) { if (side ^ Negative) *length = (dx >> 18) - ((dx-Increment) >> 18); else *length = ((dx+Increment) >> 18) - (dx >> 18); // for X-major edges, we return the coverage // for the first pixel, and the increment for // further pixels on the same scanline s32 startx = dx >> 18; if (Negative) startx = xlen - startx; if (side) startx = startx - *length + 1; s32 startcov = (((startx << 10) + 0x1FF) * ylen) / xlen; *coverage = (1<<31) | ((startcov & 0x3FF) << 12) | (xcov_incr & 0x3FF); } void EdgeParams_YMajor(s32* length, s32* coverage) { *length = 1; if (Increment == 0) { *coverage = 31; } else { s32 cov = ((dx >> 9) + (Increment >> 10)) >> 4; if ((cov >> 5) != (dx >> 18)) cov = 31; cov &= 0x1F; if (!(side ^ Negative)) cov = 0x1F - cov; *coverage = cov; } } void EdgeParams(s32* length, s32* coverage) { if (XMajor) return EdgeParams_XMajor(length, coverage); else return EdgeParams_YMajor(length, coverage); } s32 Increment; bool Negative; bool XMajor; Interpolator<1> Interp; private: s32 x0, xmin, xmax; s32 xlen, ylen; s32 dx; s32 y; s32 xcov_incr; s32 ycoverage, ycov_incr; }; typedef struct { Polygon* PolyData; Slope<0> SlopeL; Slope<1> SlopeR; s32 XL, XR; u32 CurVL, CurVR; u32 NextVL, NextVR; } RendererPolygon; RendererPolygon PolygonList[2048]; void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha) { u32 vramaddr = (texparam & 0xFFFF) << 3; s32 width = 8 << ((texparam >> 20) & 0x7); s32 height = 8 << ((texparam >> 23) & 0x7); s >>= 4; t >>= 4; // texture wrapping // TODO: optimize this somehow // testing shows that it's hardly worth optimizing, actually if (texparam & (1<<16)) { if (texparam & (1<<18)) { if (s & width) s = (width-1) - (s & (width-1)); else s = (s & (width-1)); } else s &= width-1; } else { if (s < 0) s = 0; else if (s >= width) s = width-1; } if (texparam & (1<<17)) { if (texparam & (1<<19)) { if (t & height) t = (height-1) - (t & (height-1)); else t = (t & (height-1)); } else t &= height-1; } else { if (t < 0) t = 0; else if (t >= height) t = height-1; } u8 alpha0; if (texparam & (1<<29)) alpha0 = 0; else alpha0 = 31; switch ((texparam >> 26) & 0x7) { case 1: // A3I5 { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + ((pixel&0x1F)<<1)); *alpha = ((pixel >> 3) & 0x1C) + (pixel >> 6); } break; case 2: // 4-color { vramaddr += (((t * width) + s) >> 2); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); pixel >>= ((s & 0x3) << 1); pixel &= 0x3; texpal <<= 3; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 3: // 16-color { vramaddr += (((t * width) + s) >> 1); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); if (s & 0x1) pixel >>= 4; else pixel &= 0xF; texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 4: // 256-color { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 5: // compressed { vramaddr += ((t & 0x3FC) * (width>>2)) + (s & 0x3FC); vramaddr += (t & 0x3); u32 slot1addr = 0x20000 + ((vramaddr & 0x1FFFC) >> 1); if (vramaddr >= 0x40000) slot1addr += 0x10000; u8 val = GPU::ReadVRAM_Texture(vramaddr); val >>= (2 * (s & 0x3)); u16 palinfo = GPU::ReadVRAM_Texture(slot1addr); u32 paloffset = (palinfo & 0x3FFF) << 2; texpal <<= 4; switch (val & 0x3) { case 0: *color = GPU::ReadVRAM_TexPal(texpal + paloffset); *alpha = 31; break; case 1: *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); *alpha = 31; break; case 2: if ((palinfo >> 14) == 1) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0 + r1) >> 1; u32 g = ((g0 + g1) >> 1) & 0x03E0; u32 b = ((b0 + b1) >> 1) & 0x7C00; *color = r | g | b; } else if ((palinfo >> 14) == 3) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0*5 + r1*3) >> 3; u32 g = ((g0*5 + g1*3) >> 3) & 0x03E0; u32 b = ((b0*5 + b1*3) >> 3) & 0x7C00; *color = r | g | b; } else *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 4); *alpha = 31; break; case 3: if ((palinfo >> 14) == 2) { *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 6); *alpha = 31; } else if ((palinfo >> 14) == 3) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0*3 + r1*5) >> 3; u32 g = ((g0*3 + g1*5) >> 3) & 0x03E0; u32 b = ((b0*3 + b1*5) >> 3) & 0x7C00; *color = r | g | b; *alpha = 31; } else { *color = 0; *alpha = 0; } break; } } break; case 6: // A5I3 { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + ((pixel&0x7)<<1)); *alpha = (pixel >> 3); } break; case 7: // direct color { vramaddr += (((t * width) + s) << 1); *color = GPU::ReadVRAM_Texture(vramaddr); *alpha = (*color & 0x8000) ? 31 : 0; } break; } } // depth test is 'less or equal' instead of 'less than' under the following conditions: // * when drawing a front-facing pixel over an opaque back-facing pixel // * when drawing wireframe edges, under certain conditions (TODO) bool DepthTest_Equal(s32 dstz, s32 z, u32 dstattr) { s32 diff = dstz - z; if ((u32)(diff + 0xFF) <= 0x1FE) // range is +-0xFF return true; return false; } bool DepthTest_LessThan(s32 dstz, s32 z, u32 dstattr) { if (z < dstz) return true; return false; } bool DepthTest_LessThan_FrontFacing(s32 dstz, s32 z, u32 dstattr) { if ((dstattr & 0x00400010) == 0x00000010) // opaque, back facing { if (z <= dstz) return true; } else { if (z < dstz) return true; } return false; } u32 AlphaBlend(u32 srccolor, u32 dstcolor, u32 alpha) { u32 dstalpha = dstcolor >> 24; if (dstalpha == 0) return srccolor; u32 srcR = srccolor & 0x3F; u32 srcG = (srccolor >> 8) & 0x3F; u32 srcB = (srccolor >> 16) & 0x3F; if (RenderDispCnt & (1<<3)) { u32 dstR = dstcolor & 0x3F; u32 dstG = (dstcolor >> 8) & 0x3F; u32 dstB = (dstcolor >> 16) & 0x3F; alpha++; srcR = ((srcR * alpha) + (dstR * (32-alpha))) >> 5; srcG = ((srcG * alpha) + (dstG * (32-alpha))) >> 5; srcB = ((srcB * alpha) + (dstB * (32-alpha))) >> 5; alpha--; } if (alpha > dstalpha) dstalpha = alpha; return srcR | (srcG << 8) | (srcB << 16) | (dstalpha << 24); } u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t) { u8 r, g, b, a; u32 blendmode = (polygon->Attr >> 4) & 0x3; u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); if (blendmode == 2) { if (RenderDispCnt & (1<<1)) { // highlight mode: color is calculated normally // except all vertex color components are set // to the red component // the toon color is added to the final color vg = vr; vb = vr; } else { // toon mode: vertex color is replaced by toon color u16 tooncolor = RenderToonTable[vr >> 1]; vr = (tooncolor << 1) & 0x3E; if (vr) vr++; vg = (tooncolor >> 4) & 0x3E; if (vg) vg++; vb = (tooncolor >> 9) & 0x3E; if (vb) vb++; } } if ((RenderDispCnt & (1<<0)) && (((polygon->TexParam >> 26) & 0x7) != 0)) { u8 tr, tg, tb; u16 tcolor; u8 talpha; TextureLookup(polygon->TexParam, polygon->TexPalette, s, t, &tcolor, &talpha); tr = (tcolor << 1) & 0x3E; if (tr) tr++; tg = (tcolor >> 4) & 0x3E; if (tg) tg++; tb = (tcolor >> 9) & 0x3E; if (tb) tb++; if (blendmode & 0x1) { // decal if (talpha == 0) { r = vr; g = vg; b = vb; } else if (talpha == 31) { r = tr; g = tg; b = tb; } else { r = ((tr * talpha) + (vr * (31-talpha))) >> 5; g = ((tg * talpha) + (vg * (31-talpha))) >> 5; b = ((tb * talpha) + (vb * (31-talpha))) >> 5; } a = polyalpha; } else { // modulate r = ((tr+1) * (vr+1) - 1) >> 6; g = ((tg+1) * (vg+1) - 1) >> 6; b = ((tb+1) * (vb+1) - 1) >> 6; a = ((talpha+1) * (polyalpha+1) - 1) >> 5; } } else { r = vr; g = vg; b = vb; a = polyalpha; } if ((blendmode == 2) && (RenderDispCnt & (1<<1))) { u16 tooncolor = RenderToonTable[vr >> 1]; vr = (tooncolor << 1) & 0x3E; if (vr) vr++; vg = (tooncolor >> 4) & 0x3E; if (vg) vg++; vb = (tooncolor >> 9) & 0x3E; if (vb) vb++; r += vr; g += vg; b += vb; if (r > 63) r = 63; if (g > 63) g = 63; if (b > 63) b = 63; } // checkme: can wireframe polygons use texture alpha? if (wireframe) a = 31; return r | (g << 8) | (b << 16) | (a << 24); } void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow) { u32 dstattr = AttrBuffer[pixeladdr]; u32 attr = (polyattr & 0xE0F0) | ((polyattr >> 8) & 0xFF0000) | (1<<22) | (dstattr & 0xFF001F0F); if (shadow) { // for shadows, opaque pixels are also checked if (dstattr & (1<<22)) { if ((dstattr & 0x007F0000) == (attr & 0x007F0000)) return; } else { if ((dstattr & 0x3F000000) == (polyattr & 0x3F000000)) return; } } else { // skip if translucent polygon IDs are equal if ((dstattr & 0x007F0000) == (attr & 0x007F0000)) return; } // fog flag if (!(dstattr & (1<<15))) attr &= ~(1<<15); color = AlphaBlend(color, ColorBuffer[pixeladdr], color>>24); if (z != -1) DepthBuffer[pixeladdr] = z; ColorBuffer[pixeladdr] = color; AttrBuffer[pixeladdr] = attr; } void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; while (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom) { rp->CurVL = rp->NextVL; if (polygon->FacingView) { rp->NextVL = rp->CurVL + 1; if (rp->NextVL >= polygon->NumVertices) rp->NextVL = 0; } else { rp->NextVL = rp->CurVL - 1; if ((s32)rp->NextVL < 0) rp->NextVL = polygon->NumVertices - 1; } } rp->XL = rp->SlopeL.Setup(polygon->Vertices[rp->CurVL]->FinalPosition[0], polygon->Vertices[rp->NextVL]->FinalPosition[0], polygon->Vertices[rp->CurVL]->FinalPosition[1], polygon->Vertices[rp->NextVL]->FinalPosition[1], polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL], y); } void SetupPolygonRightEdge(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; while (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom) { rp->CurVR = rp->NextVR; if (polygon->FacingView) { rp->NextVR = rp->CurVR - 1; if ((s32)rp->NextVR < 0) rp->NextVR = polygon->NumVertices - 1; } else { rp->NextVR = rp->CurVR + 1; if (rp->NextVR >= polygon->NumVertices) rp->NextVR = 0; } } rp->XR = rp->SlopeR.Setup(polygon->Vertices[rp->CurVR]->FinalPosition[0], polygon->Vertices[rp->NextVR]->FinalPosition[0], polygon->Vertices[rp->CurVR]->FinalPosition[1], polygon->Vertices[rp->NextVR]->FinalPosition[1], polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR], y); } void SetupPolygon(RendererPolygon* rp, Polygon* polygon) { u32 nverts = polygon->NumVertices; u32 vtop = polygon->VTop, vbot = polygon->VBottom; s32 ytop = polygon->YTop, ybot = polygon->YBottom; rp->PolyData = polygon; rp->CurVL = vtop; rp->CurVR = vtop; if (polygon->FacingView) { rp->NextVL = rp->CurVL + 1; if (rp->NextVL >= nverts) rp->NextVL = 0; rp->NextVR = rp->CurVR - 1; if ((s32)rp->NextVR < 0) rp->NextVR = nverts - 1; } else { rp->NextVL = rp->CurVL - 1; if ((s32)rp->NextVL < 0) rp->NextVL = nverts - 1; rp->NextVR = rp->CurVR + 1; if (rp->NextVR >= nverts) rp->NextVR = 0; } if (ybot == ytop) { vtop = 0; vbot = 0; int i; i = 1; if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i; if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i; i = nverts - 1; if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i; if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i; rp->CurVL = vtop; rp->NextVL = vtop; rp->CurVR = vbot; rp->NextVR = vbot; rp->XL = rp->SlopeL.SetupDummy(polygon->Vertices[rp->CurVL]->FinalPosition[0]); rp->XR = rp->SlopeR.SetupDummy(polygon->Vertices[rp->CurVR]->FinalPosition[0]); } else { SetupPolygonLeftEdge(rp, ytop); SetupPolygonRightEdge(rp, ytop); } } void RenderShadowMaskScanline(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; u32 polyattr = (polygon->Attr & 0x3F008000); if (!polygon->FacingView) polyattr |= (1<<4); u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); bool (*fnDepthTest)(s32 dstz, s32 z, u32 dstattr); if (polygon->Attr & (1<<14)) fnDepthTest = DepthTest_Equal; else if (polygon->FacingView) fnDepthTest = DepthTest_LessThan_FrontFacing; else fnDepthTest = DepthTest_LessThan; if (!PrevIsShadowMask) memset(&StencilBuffer[256 * (y&0x1)], 0, 256); PrevIsShadowMask = true; if (polygon->YTop != polygon->YBottom) { if (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom) { SetupPolygonLeftEdge(rp, y); } if (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom) { SetupPolygonRightEdge(rp, y); } } Vertex *vlcur, *vlnext, *vrcur, *vrnext; s32 xstart, xend; bool l_filledge, r_filledge; s32 l_edgelen, r_edgelen; s32 l_edgecov, r_edgecov; Interpolator<1>* interp_start; Interpolator<1>* interp_end; xstart = rp->XL; xend = rp->XR; // CHECKME: edge fill rules for opaque shadow mask polygons if ((polyalpha < 31) || (RenderDispCnt & (3<<4))) { l_filledge = true; r_filledge = true; } else { l_filledge = (rp->SlopeL.Negative || !rp->SlopeL.XMajor); r_filledge = (!rp->SlopeR.Negative && rp->SlopeR.XMajor) || (rp->SlopeR.Increment==0); } s32 wl = rp->SlopeL.Interp.Interpolate(polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL]); s32 wr = rp->SlopeR.Interp.Interpolate(polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR]); s32 zl = rp->SlopeL.Interp.InterpolateZ(polygon->FinalZ[rp->CurVL], polygon->FinalZ[rp->NextVL], polygon->WBuffer); s32 zr = rp->SlopeR.Interp.InterpolateZ(polygon->FinalZ[rp->CurVR], polygon->FinalZ[rp->NextVR], polygon->WBuffer); // if the left and right edges are swapped, render backwards. if (xstart > xend) { vlcur = polygon->Vertices[rp->CurVR]; vlnext = polygon->Vertices[rp->NextVR]; vrcur = polygon->Vertices[rp->CurVL]; vrnext = polygon->Vertices[rp->NextVL]; interp_start = &rp->SlopeR.Interp; interp_end = &rp->SlopeL.Interp; rp->SlopeR.EdgeParams_YMajor(&l_edgelen, &l_edgecov); rp->SlopeL.EdgeParams_YMajor(&r_edgelen, &r_edgecov); s32 tmp; tmp = xstart; xstart = xend; xend = tmp; tmp = wl; wl = wr; wr = tmp; tmp = zl; zl = zr; zr = tmp; tmp = (s32)l_filledge; l_filledge = r_filledge; r_filledge = (bool)tmp; } else { vlcur = polygon->Vertices[rp->CurVL]; vlnext = polygon->Vertices[rp->NextVL]; vrcur = polygon->Vertices[rp->CurVR]; vrnext = polygon->Vertices[rp->NextVR]; interp_start = &rp->SlopeL.Interp; interp_end = &rp->SlopeR.Interp; rp->SlopeL.EdgeParams(&l_edgelen, &l_edgecov); rp->SlopeR.EdgeParams(&r_edgelen, &r_edgecov); } // color/texcoord attributes aren't needed for shadow masks // all the pixels are guaranteed to have the same alpha // even if a texture is used (decal blending is used for shadows) // similarly, we can perform alpha test early (checkme) if (wireframe) polyalpha = 31; if (polyalpha <= RenderAlphaRef) return; // in wireframe mode, there are special rules for equal Z (TODO) int yedge = 0; if (y == polygon->YTop) yedge = 0x4; else if (y == polygon->YBottom-1) yedge = 0x8; int edge; s32 x = xstart; Interpolator<0> interpX(xstart, xend+1, wl, wr); if (x < 0) x = 0; s32 xlimit; // for shadow masks: set stencil bits where the depth test fails. // draw nothing. // part 1: left edge edge = yedge | 0x1; xlimit = xstart+l_edgelen; if (xlimit > 256) xlimit = 256; for (; x < xlimit; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); u32 dstattr = AttrBuffer[pixeladdr]; // checkme if (!l_filledge) continue; if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) StencilBuffer[256*(y&0x1) + x] |= 0x1; if (dstattr & 0x3) { pixeladdr += BufferSize; if (!fnDepthTest(DepthBuffer[pixeladdr], z, AttrBuffer[pixeladdr])) StencilBuffer[256*(y&0x1) + x] |= 0x2; } } // part 2: polygon inside edge = yedge; xlimit = xend-r_edgelen+1; if (xlimit > 256) xlimit = 256; if (wireframe && !edge) x = xlimit; else for (; x < xlimit; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); u32 dstattr = AttrBuffer[pixeladdr]; if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) StencilBuffer[256*(y&0x1) + x] = 1; if (dstattr & 0x3) { pixeladdr += BufferSize; if (!fnDepthTest(DepthBuffer[pixeladdr], z, AttrBuffer[pixeladdr])) StencilBuffer[256*(y&0x1) + x] |= 0x2; } } // part 3: right edge edge = yedge | 0x2; xlimit = xend+1; if (xlimit > 256) xlimit = 256; for (; x < xlimit; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); u32 dstattr = AttrBuffer[pixeladdr]; // checkme if (!r_filledge) continue; if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) StencilBuffer[256*(y&0x1) + x] = 1; if (dstattr & 0x3) { pixeladdr += BufferSize; if (!fnDepthTest(DepthBuffer[pixeladdr], z, AttrBuffer[pixeladdr])) StencilBuffer[256*(y&0x1) + x] |= 0x2; } } rp->XL = rp->SlopeL.Step(); rp->XR = rp->SlopeR.Step(); } void RenderPolygonScanline(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; u32 polyattr = (polygon->Attr & 0x3F008000); if (!polygon->FacingView) polyattr |= (1<<4); u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); bool (*fnDepthTest)(s32 dstz, s32 z, u32 dstattr); if (polygon->Attr & (1<<14)) fnDepthTest = DepthTest_Equal; else if (polygon->FacingView) fnDepthTest = DepthTest_LessThan_FrontFacing; else fnDepthTest = DepthTest_LessThan; PrevIsShadowMask = false; if (polygon->YTop != polygon->YBottom) { if (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom) { SetupPolygonLeftEdge(rp, y); } if (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom) { SetupPolygonRightEdge(rp, y); } } Vertex *vlcur, *vlnext, *vrcur, *vrnext; s32 xstart, xend; bool l_filledge, r_filledge; s32 l_edgelen, r_edgelen; s32 l_edgecov, r_edgecov; Interpolator<1>* interp_start; Interpolator<1>* interp_end; xstart = rp->XL; xend = rp->XR; // edge fill rules for opaque pixels: // * right edge is filled if slope > 1 // * left edge is filled if slope <= 1 // * edges with slope = 0 are always filled // right vertical edges are pushed 1px to the left // edges are always filled if antialiasing/edgemarking are enabled or if the pixels are translucent if (wireframe || (RenderDispCnt & (1<<5))) { l_filledge = true; r_filledge = true; } else { l_filledge = (rp->SlopeL.Negative || !rp->SlopeL.XMajor); r_filledge = (!rp->SlopeR.Negative && rp->SlopeR.XMajor) || (rp->SlopeR.Increment==0); } s32 wl = rp->SlopeL.Interp.Interpolate(polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL]); s32 wr = rp->SlopeR.Interp.Interpolate(polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR]); s32 zl = rp->SlopeL.Interp.InterpolateZ(polygon->FinalZ[rp->CurVL], polygon->FinalZ[rp->NextVL], polygon->WBuffer); s32 zr = rp->SlopeR.Interp.InterpolateZ(polygon->FinalZ[rp->CurVR], polygon->FinalZ[rp->NextVR], polygon->WBuffer); // if the left and right edges are swapped, render backwards. // on hardware, swapped edges seem to break edge length calculation, // causing X-major edges to be rendered wrong when // wireframe/edgemarking/antialiasing are used // it also causes bad antialiasing, but not sure what's going on (TODO) // most probable explanation is that such slopes are considered to be Y-major if (xstart > xend) { vlcur = polygon->Vertices[rp->CurVR]; vlnext = polygon->Vertices[rp->NextVR]; vrcur = polygon->Vertices[rp->CurVL]; vrnext = polygon->Vertices[rp->NextVL]; interp_start = &rp->SlopeR.Interp; interp_end = &rp->SlopeL.Interp; rp->SlopeR.EdgeParams_YMajor(&l_edgelen, &l_edgecov); rp->SlopeL.EdgeParams_YMajor(&r_edgelen, &r_edgecov); s32 tmp; tmp = xstart; xstart = xend; xend = tmp; tmp = wl; wl = wr; wr = tmp; tmp = zl; zl = zr; zr = tmp; tmp = (s32)l_filledge; l_filledge = r_filledge; r_filledge = (bool)tmp; } else { vlcur = polygon->Vertices[rp->CurVL]; vlnext = polygon->Vertices[rp->NextVL]; vrcur = polygon->Vertices[rp->CurVR]; vrnext = polygon->Vertices[rp->NextVR]; interp_start = &rp->SlopeL.Interp; interp_end = &rp->SlopeR.Interp; rp->SlopeL.EdgeParams(&l_edgelen, &l_edgecov); rp->SlopeR.EdgeParams(&r_edgelen, &r_edgecov); } // interpolate attributes along Y s32 rl = interp_start->Interpolate(vlcur->FinalColor[0], vlnext->FinalColor[0]); s32 gl = interp_start->Interpolate(vlcur->FinalColor[1], vlnext->FinalColor[1]); s32 bl = interp_start->Interpolate(vlcur->FinalColor[2], vlnext->FinalColor[2]); s32 sl = interp_start->Interpolate(vlcur->TexCoords[0], vlnext->TexCoords[0]); s32 tl = interp_start->Interpolate(vlcur->TexCoords[1], vlnext->TexCoords[1]); s32 rr = interp_end->Interpolate(vrcur->FinalColor[0], vrnext->FinalColor[0]); s32 gr = interp_end->Interpolate(vrcur->FinalColor[1], vrnext->FinalColor[1]); s32 br = interp_end->Interpolate(vrcur->FinalColor[2], vrnext->FinalColor[2]); s32 sr = interp_end->Interpolate(vrcur->TexCoords[0], vrnext->TexCoords[0]); s32 tr = interp_end->Interpolate(vrcur->TexCoords[1], vrnext->TexCoords[1]); // in wireframe mode, there are special rules for equal Z (TODO) int yedge = 0; if (y == polygon->YTop) yedge = 0x4; else if (y == polygon->YBottom-1) yedge = 0x8; int edge; s32 x = xstart; Interpolator<0> interpX(xstart, xend+1, wl, wr); if (x < 0) x = 0; s32 xlimit; s32 xcov = 0; // part 1: left edge edge = yedge | 0x1; xlimit = xstart+l_edgelen; if (xlimit > 256) xlimit = 256; if (l_edgecov & (1<<31)) { xcov = (l_edgecov >> 12) & 0x3FF; if (xcov == 0x3FF) xcov = 0; } for (; x < xlimit; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; u32 dstattr = AttrBuffer[pixeladdr]; // check stencil buffer for shadows if (polygon->IsShadow) { u8 stencil = StencilBuffer[256*(y&0x1) + x]; if (!stencil) continue; if (!(stencil & 0x1)) pixeladdr += BufferSize; if (!(stencil & 0x2)) dstattr &= ~0x3; // quick way to prevent drawing the shadow under antialiased edges } interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); // if depth test against the topmost pixel fails, test // against the pixel underneath if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) { if (!(dstattr & 0x3)) continue; pixeladdr += BufferSize; dstattr = AttrBuffer[pixeladdr]; if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) continue; } u32 vr = interpX.Interpolate(rl, rr); u32 vg = interpX.Interpolate(gl, gr); u32 vb = interpX.Interpolate(bl, br); s16 s = interpX.Interpolate(sl, sr); s16 t = interpX.Interpolate(tl, tr); u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t); u8 alpha = color >> 24; // alpha test if (alpha <= RenderAlphaRef) continue; if (alpha == 31) { u32 attr = polyattr | edge; if (RenderDispCnt & (1<<4)) { // anti-aliasing: all edges are rendered // calculate coverage s32 cov = l_edgecov; if (cov & (1<<31)) { cov = xcov >> 5; if (cov > 31) cov = 31; xcov += (l_edgecov & 0x3FF); } attr |= (cov << 8); // push old pixel down if needed if (pixeladdr < BufferSize) { ColorBuffer[pixeladdr+BufferSize] = ColorBuffer[pixeladdr]; DepthBuffer[pixeladdr+BufferSize] = DepthBuffer[pixeladdr]; AttrBuffer[pixeladdr+BufferSize] = AttrBuffer[pixeladdr]; } } else if (!l_filledge) continue; DepthBuffer[pixeladdr] = z; ColorBuffer[pixeladdr] = color; AttrBuffer[pixeladdr] = attr; } else { if (!(polygon->Attr & (1<<11))) z = -1; PlotTranslucentPixel(pixeladdr, color, z, polyattr, polygon->IsShadow); // blend with bottom pixel too, if needed if ((dstattr & 0x3) && (pixeladdr < BufferSize)) PlotTranslucentPixel(pixeladdr+BufferSize, color, z, polyattr, polygon->IsShadow); } } // part 2: polygon inside edge = yedge; xlimit = xend-r_edgelen+1; if (xlimit > 256) xlimit = 256; if (wireframe && !edge) x = xlimit; else for (; x < xlimit; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; u32 dstattr = AttrBuffer[pixeladdr]; // check stencil buffer for shadows if (polygon->IsShadow) { u8 stencil = StencilBuffer[256*(y&0x1) + x]; if (!stencil) continue; if (!(stencil & 0x1)) pixeladdr += BufferSize; if (!(stencil & 0x2)) dstattr &= ~0x3; // quick way to prevent drawing the shadow under antialiased edges } interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); // if depth test against the topmost pixel fails, test // against the pixel underneath if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) { if (!(dstattr & 0x3)) continue; pixeladdr += BufferSize; dstattr = AttrBuffer[pixeladdr]; if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) continue; } u32 vr = interpX.Interpolate(rl, rr); u32 vg = interpX.Interpolate(gl, gr); u32 vb = interpX.Interpolate(bl, br); s16 s = interpX.Interpolate(sl, sr); s16 t = interpX.Interpolate(tl, tr); u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t); u8 alpha = color >> 24; // alpha test if (alpha <= RenderAlphaRef) continue; if (alpha == 31) { u32 attr = polyattr | edge; DepthBuffer[pixeladdr] = z; ColorBuffer[pixeladdr] = color; AttrBuffer[pixeladdr] = attr; } else { if (!(polygon->Attr & (1<<11))) z = -1; PlotTranslucentPixel(pixeladdr, color, z, polyattr, polygon->IsShadow); // blend with bottom pixel too, if needed if ((dstattr & 0x3) && (pixeladdr < BufferSize)) PlotTranslucentPixel(pixeladdr+BufferSize, color, z, polyattr, polygon->IsShadow); } } // part 3: right edge edge = yedge | 0x2; xlimit = xend+1; if (xlimit > 256) xlimit = 256; if (r_edgecov & (1<<31)) { xcov = (r_edgecov >> 12) & 0x3FF; if (xcov == 0x3FF) xcov = 0; } for (; x < xlimit; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; u32 dstattr = AttrBuffer[pixeladdr]; // check stencil buffer for shadows if (polygon->IsShadow) { u8 stencil = StencilBuffer[256*(y&0x1) + x]; if (!stencil) continue; if (!(stencil & 0x1)) pixeladdr += BufferSize; if (!(stencil & 0x2)) dstattr &= ~0x3; // quick way to prevent drawing the shadow under antialiased edges } interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); // if depth test against the topmost pixel fails, test // against the pixel underneath if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) { if (!(dstattr & 0x3)) continue; pixeladdr += BufferSize; dstattr = AttrBuffer[pixeladdr]; if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr)) continue; } u32 vr = interpX.Interpolate(rl, rr); u32 vg = interpX.Interpolate(gl, gr); u32 vb = interpX.Interpolate(bl, br); s16 s = interpX.Interpolate(sl, sr); s16 t = interpX.Interpolate(tl, tr); u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t); u8 alpha = color >> 24; // alpha test if (alpha <= RenderAlphaRef) continue; if (alpha == 31) { u32 attr = polyattr | edge; if (RenderDispCnt & (1<<4)) { // anti-aliasing: all edges are rendered // calculate coverage s32 cov = r_edgecov; if (cov & (1<<31)) { cov = 0x1F - (xcov >> 5); if (cov < 0) cov = 0; xcov += (r_edgecov & 0x3FF); } attr |= (cov << 8); // push old pixel down if needed if (pixeladdr < BufferSize) { ColorBuffer[pixeladdr+BufferSize] = ColorBuffer[pixeladdr]; DepthBuffer[pixeladdr+BufferSize] = DepthBuffer[pixeladdr]; AttrBuffer[pixeladdr+BufferSize] = AttrBuffer[pixeladdr]; } } else if (!r_filledge) continue; DepthBuffer[pixeladdr] = z; ColorBuffer[pixeladdr] = color; AttrBuffer[pixeladdr] = attr; } else { if (!(polygon->Attr & (1<<11))) z = -1; PlotTranslucentPixel(pixeladdr, color, z, polyattr, polygon->IsShadow); // blend with bottom pixel too, if needed if ((dstattr & 0x3) && (pixeladdr < BufferSize)) PlotTranslucentPixel(pixeladdr+BufferSize, color, z, polyattr, polygon->IsShadow); } } rp->XL = rp->SlopeL.Step(); rp->XR = rp->SlopeR.Step(); } void RenderScanline(s32 y, int npolys) { for (int i = 0; i < npolys; i++) { RendererPolygon* rp = &PolygonList[i]; Polygon* polygon = rp->PolyData; if (y >= polygon->YTop && (y < polygon->YBottom || (y == polygon->YTop && polygon->YBottom == polygon->YTop))) { if (polygon->IsShadowMask) RenderShadowMaskScanline(rp, y); else RenderPolygonScanline(rp, y); } } } u32 CalculateFogDensity(u32 pixeladdr) { u32 z = DepthBuffer[pixeladdr]; u32 densityid, densityfrac; if (z < RenderFogOffset) { densityid = 0; densityfrac = 0; } else { // technically: Z difference is shifted right by two, then shifted left by fog shift // then bit 0-16 are the fractional part and bit 17-31 are the density index // on hardware, the final value can overflow the 32-bit range with a shift big enough, // causing fog to 'wrap around' and accidentally apply to larger Z ranges z -= RenderFogOffset; z = (z >> 2) << RenderFogShift; densityid = z >> 17; if (densityid >= 32) { densityid = 32; densityfrac = 0; } else densityfrac = z & 0x1FFFF; } // checkme (may be too precise?) u32 density = ((RenderFogDensityTable[densityid] * (0x20000-densityfrac)) + (RenderFogDensityTable[densityid+1] * densityfrac)) >> 17; if (density >= 127) density = 128; return density; } void ScanlineFinalPass(s32 y) { // to consider: // clearing all polygon fog flags if the master flag isn't set? // merging all final pass loops into one? if (RenderDispCnt & (1<<5)) { // edge marking // only applied to topmost pixels for (int x = 0; x < 256; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; u32 attr = AttrBuffer[pixeladdr]; if (!(attr & 0xF)) continue; u32 polyid = attr >> 24; // opaque polygon IDs are used for edgemarking u32 z = DepthBuffer[pixeladdr]; if (((polyid != (AttrBuffer[pixeladdr-1] >> 24)) && (z < DepthBuffer[pixeladdr-1])) || ((polyid != (AttrBuffer[pixeladdr+1] >> 24)) && (z < DepthBuffer[pixeladdr+1])) || ((polyid != (AttrBuffer[pixeladdr-ScanlineWidth] >> 24)) && (z < DepthBuffer[pixeladdr-ScanlineWidth])) || ((polyid != (AttrBuffer[pixeladdr+ScanlineWidth] >> 24)) && (z < DepthBuffer[pixeladdr+ScanlineWidth]))) { u16 edgecolor = RenderEdgeTable[polyid >> 3]; u32 edgeR = (edgecolor << 1) & 0x3E; if (edgeR) edgeR++; u32 edgeG = (edgecolor >> 4) & 0x3E; if (edgeG) edgeG++; u32 edgeB = (edgecolor >> 9) & 0x3E; if (edgeB) edgeB++; ColorBuffer[pixeladdr] = edgeR | (edgeG << 8) | (edgeB << 16) | (ColorBuffer[pixeladdr] & 0xFF000000); // break antialiasing coverage (checkme) AttrBuffer[pixeladdr] = (AttrBuffer[pixeladdr] & 0xFFFFE0FF) | 0x00001000; } } } if (RenderDispCnt & (1<<7)) { // fog // hardware testing shows that the fog step is 0x80000>>SHIFT // basically, the depth values used in GBAtek need to be // multiplied by 0x200 to match Z-buffer values // fog is applied to the topmost two pixels, which is required for // proper antialiasing // TODO: check the 'fog alpha glitch with small Z' GBAtek talks about bool fogcolor = !(RenderDispCnt & (1<<6)); u32 fogR = (RenderFogColor << 1) & 0x3E; if (fogR) fogR++; u32 fogG = (RenderFogColor >> 4) & 0x3E; if (fogG) fogG++; u32 fogB = (RenderFogColor >> 9) & 0x3E; if (fogB) fogB++; u32 fogA = (RenderFogColor >> 16) & 0x1F; for (int x = 0; x < 256; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; u32 density, srccolor, srcR, srcG, srcB, srcA; u32 attr = AttrBuffer[pixeladdr]; if (!(attr & (1<<15))) continue; density = CalculateFogDensity(pixeladdr); srccolor = ColorBuffer[pixeladdr]; srcR = srccolor & 0x3F; srcG = (srccolor >> 8) & 0x3F; srcB = (srccolor >> 16) & 0x3F; srcA = (srccolor >> 24) & 0x1F; if (fogcolor) { srcR = ((fogR * density) + (srcR * (128-density))) >> 7; srcG = ((fogG * density) + (srcG * (128-density))) >> 7; srcB = ((fogB * density) + (srcB * (128-density))) >> 7; } srcA = ((fogA * density) + (srcA * (128-density))) >> 7; ColorBuffer[pixeladdr] = srcR | (srcG << 8) | (srcB << 16) | (srcA << 24); // fog for lower pixel // TODO: make this code nicer, but avoid using a loop if (!(attr & 0x3)) continue; pixeladdr += BufferSize; attr = AttrBuffer[pixeladdr]; if (!(attr & (1<<15))) continue; density = CalculateFogDensity(pixeladdr); srccolor = ColorBuffer[pixeladdr]; srcR = srccolor & 0x3F; srcG = (srccolor >> 8) & 0x3F; srcB = (srccolor >> 16) & 0x3F; srcA = (srccolor >> 24) & 0x1F; if (fogcolor) { srcR = ((fogR * density) + (srcR * (128-density))) >> 7; srcG = ((fogG * density) + (srcG * (128-density))) >> 7; srcB = ((fogB * density) + (srcB * (128-density))) >> 7; } srcA = ((fogA * density) + (srcA * (128-density))) >> 7; ColorBuffer[pixeladdr] = srcR | (srcG << 8) | (srcB << 16) | (srcA << 24); } } if (RenderDispCnt & (1<<4)) { // anti-aliasing // edges were flagged and their coverages calculated during rendering // this is where such edge pixels are blended with the pixels underneath for (int x = 0; x < 256; x++) { u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x; u32 attr = AttrBuffer[pixeladdr]; if (!(attr & 0x3)) continue; u32 coverage = (attr >> 8) & 0x1F; if (coverage == 0x1F) continue; if (coverage == 0) { ColorBuffer[pixeladdr] = ColorBuffer[pixeladdr+BufferSize]; continue; } u32 topcolor = ColorBuffer[pixeladdr]; u32 topR = topcolor & 0x3F; u32 topG = (topcolor >> 8) & 0x3F; u32 topB = (topcolor >> 16) & 0x3F; u32 topA = (topcolor >> 24) & 0x1F; u32 botcolor = ColorBuffer[pixeladdr+BufferSize]; u32 botR = botcolor & 0x3F; u32 botG = (botcolor >> 8) & 0x3F; u32 botB = (botcolor >> 16) & 0x3F; u32 botA = (botcolor >> 24) & 0x1F; coverage++; // only blend color if the bottom pixel isn't fully transparent if (botA > 0) { topR = ((topR * coverage) + (botR * (32-coverage))) >> 5; topG = ((topG * coverage) + (botG * (32-coverage))) >> 5; topB = ((topB * coverage) + (botB * (32-coverage))) >> 5; } // alpha is always blended topA = ((topA * coverage) + (botA * (32-coverage))) >> 5; ColorBuffer[pixeladdr] = topR | (topG << 8) | (topB << 16) | (topA << 24); } } } void ClearBuffers() { u32 clearz = ((RenderClearAttr2 & 0x7FFF) * 0x200) + 0x1FF; u32 polyid = RenderClearAttr1 & 0x3F000000; // this sets the opaque polygonID // fill screen borders for edge marking for (int x = 0; x < ScanlineWidth; x++) { ColorBuffer[x] = 0; DepthBuffer[x] = clearz; AttrBuffer[x] = polyid; } for (int x = ScanlineWidth; x < ScanlineWidth*193; x+=ScanlineWidth) { ColorBuffer[x] = 0; DepthBuffer[x] = clearz; AttrBuffer[x] = polyid; ColorBuffer[x+257] = 0; DepthBuffer[x+257] = clearz; AttrBuffer[x+257] = polyid; } for (int x = ScanlineWidth*193; x < ScanlineWidth*194; x++) { ColorBuffer[x] = 0; DepthBuffer[x] = clearz; AttrBuffer[x] = polyid; } // clear the screen if (RenderDispCnt & (1<<14)) { u8 xoff = (RenderClearAttr2 >> 16) & 0xFF; u8 yoff = (RenderClearAttr2 >> 24) & 0xFF; for (int y = 0; y < ScanlineWidth*192; y+=ScanlineWidth) { for (int x = 0; x < 256; x++) { u16 val2 = GPU::ReadVRAM_Texture(0x40000 + (yoff << 9) + (xoff << 1)); u16 val3 = GPU::ReadVRAM_Texture(0x60000 + (yoff << 9) + (xoff << 1)); // TODO: confirm color conversion u32 r = (val2 << 1) & 0x3E; if (r) r++; u32 g = (val2 >> 4) & 0x3E; if (g) g++; u32 b = (val2 >> 9) & 0x3E; if (b) b++; u32 a = (val2 & 0x8000) ? 0x1F000000 : 0; u32 color = r | (g << 8) | (b << 16) | a; u32 z = ((val3 & 0x7FFF) * 0x200) + 0x1FF; u32 pixeladdr = FirstPixelOffset + y + x; ColorBuffer[pixeladdr] = color; DepthBuffer[pixeladdr] = z; AttrBuffer[pixeladdr] = polyid | (val3 & 0x8000); xoff++; } yoff++; } } else { // TODO: confirm color conversion u32 r = (RenderClearAttr1 << 1) & 0x3E; if (r) r++; u32 g = (RenderClearAttr1 >> 4) & 0x3E; if (g) g++; u32 b = (RenderClearAttr1 >> 9) & 0x3E; if (b) b++; u32 a = (RenderClearAttr1 >> 16) & 0x1F; u32 color = r | (g << 8) | (b << 16) | (a << 24); polyid |= (RenderClearAttr1 & 0x8000); for (int y = 0; y < ScanlineWidth*192; y+=ScanlineWidth) { for (int x = 0; x < 256; x++) { u32 pixeladdr = FirstPixelOffset + y + x; ColorBuffer[pixeladdr] = color; DepthBuffer[pixeladdr] = clearz; AttrBuffer[pixeladdr] = polyid; } } } } void RenderPolygons(bool threaded, Polygon** polygons, int npolys) { // polygons with ybottom>192 aren't rendered at all int j = 0; for (int i = 0; i < npolys; i++) { if (polygons[i]->YBottom > 192) continue; SetupPolygon(&PolygonList[j++], polygons[i]); } RenderScanline(0, j); for (s32 y = 1; y < 192; y++) { RenderScanline(y, j); ScanlineFinalPass(y-1); if (threaded) Platform::Semaphore_Post(Sema_ScanlineCount); } ScanlineFinalPass(191); if (threaded) Platform::Semaphore_Post(Sema_ScanlineCount); } void VCount144() { if (RenderThreadRunning) Platform::Semaphore_Wait(Sema_RenderDone); } void RenderFrame() { if (RenderThreadRunning) { Platform::Semaphore_Post(Sema_RenderStart); } else { ClearBuffers(); RenderPolygons(false, &RenderPolygonRAM[0], RenderNumPolygons); } } void RenderThreadFunc() { for (;;) { Platform::Semaphore_Wait(Sema_RenderStart); if (!RenderThreadRunning) return; RenderThreadRendering = true; ClearBuffers(); RenderPolygons(true, &RenderPolygonRAM[0], RenderNumPolygons); Platform::Semaphore_Post(Sema_RenderDone); RenderThreadRendering = false; } } void RequestLine(int line) { if (RenderThreadRunning) { if (line < 192) Platform::Semaphore_Wait(Sema_ScanlineCount); } } u32* GetLine(int line) { return &ColorBuffer[(line * ScanlineWidth) + FirstPixelOffset]; } } }