/* Copyright 2016-2023 melonDS team This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include "GPU3D_OpenGL.h" #include #include #include #include "NDS.h" #include "GPU.h" #include "GPU3D_OpenGL_shaders.h" namespace melonDS { bool GLRenderer::BuildRenderShader(u32 flags, const char* vs, const char* fs) { char shadername[32]; sprintf(shadername, "RenderShader%02X", flags); int headerlen = strlen(kShaderHeader); int vslen = strlen(vs); int vsclen = strlen(kRenderVSCommon); char* vsbuf = new char[headerlen + vsclen + vslen + 1]; strcpy(&vsbuf[0], kShaderHeader); strcpy(&vsbuf[headerlen], kRenderVSCommon); strcpy(&vsbuf[headerlen + vsclen], vs); int fslen = strlen(fs); int fsclen = strlen(kRenderFSCommon); char* fsbuf = new char[headerlen + fsclen + fslen + 1]; strcpy(&fsbuf[0], kShaderHeader); strcpy(&fsbuf[headerlen], kRenderFSCommon); strcpy(&fsbuf[headerlen + fsclen], fs); bool ret = OpenGL::BuildShaderProgram(vsbuf, fsbuf, RenderShader[flags], shadername); delete[] vsbuf; delete[] fsbuf; if (!ret) return false; GLuint prog = RenderShader[flags][2]; glBindAttribLocation(prog, 0, "vPosition"); glBindAttribLocation(prog, 1, "vColor"); glBindAttribLocation(prog, 2, "vTexcoord"); glBindAttribLocation(prog, 3, "vPolygonAttr"); glBindFragDataLocation(prog, 0, "oColor"); glBindFragDataLocation(prog, 1, "oAttr"); if (!OpenGL::LinkShaderProgram(RenderShader[flags])) return false; GLint uni_id = glGetUniformBlockIndex(prog, "uConfig"); glUniformBlockBinding(prog, uni_id, 0); glUseProgram(prog); uni_id = glGetUniformLocation(prog, "TexMem"); glUniform1i(uni_id, 0); uni_id = glGetUniformLocation(prog, "TexPalMem"); glUniform1i(uni_id, 1); return true; } void GLRenderer::UseRenderShader(u32 flags) { if (CurShaderID == flags) return; glUseProgram(RenderShader[flags][2]); CurShaderID = flags; } void SetupDefaultTexParams(GLuint tex) { glBindTexture(GL_TEXTURE_2D, tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } GLRenderer::GLRenderer(GLCompositor&& compositor, melonDS::GPU& gpu) noexcept : Renderer3D(true), GPU(gpu), CurGLCompositor(std::move(compositor)) { // GLRenderer::New() will be used to actually initialize the renderer; // The various glDelete* functions silently ignore invalid IDs, // so we can just let the destructor clean up a half-initialized renderer. } std::unique_ptr GLRenderer::New(melonDS::GPU& gpu) noexcept { assert(glEnable != nullptr); std::optional compositor = GLCompositor::New(); if (!compositor) return nullptr; // Will be returned if the initialization succeeds, // or cleaned up via RAII if it fails. std::unique_ptr result = std::unique_ptr(new GLRenderer(std::move(*compositor), gpu)); compositor = std::nullopt; glEnable(GL_DEPTH_TEST); glEnable(GL_STENCIL_TEST); glDepthRange(0, 1); glClearDepth(1.0); if (!OpenGL::BuildShaderProgram(kClearVS, kClearFS, result->ClearShaderPlain, "ClearShader")) return nullptr; glBindAttribLocation(result->ClearShaderPlain[2], 0, "vPosition"); glBindFragDataLocation(result->ClearShaderPlain[2], 0, "oColor"); glBindFragDataLocation(result->ClearShaderPlain[2], 1, "oAttr"); if (!OpenGL::LinkShaderProgram(result->ClearShaderPlain)) return nullptr; result->ClearUniformLoc[0] = glGetUniformLocation(result->ClearShaderPlain[2], "uColor"); result->ClearUniformLoc[1] = glGetUniformLocation(result->ClearShaderPlain[2], "uDepth"); result->ClearUniformLoc[2] = glGetUniformLocation(result->ClearShaderPlain[2], "uOpaquePolyID"); result->ClearUniformLoc[3] = glGetUniformLocation(result->ClearShaderPlain[2], "uFogFlag"); memset(result->RenderShader, 0, sizeof(RenderShader)); if (!result->BuildRenderShader(0, kRenderVS_Z, kRenderFS_ZO)) return nullptr; if (!result->BuildRenderShader(RenderFlag_WBuffer, kRenderVS_W, kRenderFS_WO)) return nullptr; if (!result->BuildRenderShader(RenderFlag_Edge, kRenderVS_Z, kRenderFS_ZE)) return nullptr; if (!result->BuildRenderShader(RenderFlag_Edge | RenderFlag_WBuffer, kRenderVS_W, kRenderFS_WE)) return nullptr; if (!result->BuildRenderShader(RenderFlag_Trans, kRenderVS_Z, kRenderFS_ZT)) return nullptr; if (!result->BuildRenderShader(RenderFlag_Trans | RenderFlag_WBuffer, kRenderVS_W, kRenderFS_WT)) return nullptr; if (!result->BuildRenderShader(RenderFlag_ShadowMask, kRenderVS_Z, kRenderFS_ZSM)) return nullptr; if (!result->BuildRenderShader(RenderFlag_ShadowMask | RenderFlag_WBuffer, kRenderVS_W, kRenderFS_WSM)) return nullptr; if (!OpenGL::BuildShaderProgram(kFinalPassVS, kFinalPassEdgeFS, result->FinalPassEdgeShader, "FinalPassEdgeShader")) return nullptr; if (!OpenGL::BuildShaderProgram(kFinalPassVS, kFinalPassFogFS, result->FinalPassFogShader, "FinalPassFogShader")) return nullptr; glBindAttribLocation(result->FinalPassEdgeShader[2], 0, "vPosition"); glBindFragDataLocation(result->FinalPassEdgeShader[2], 0, "oColor"); if (!OpenGL::LinkShaderProgram(result->FinalPassEdgeShader)) return nullptr; GLint uni_id = glGetUniformBlockIndex(result->FinalPassEdgeShader[2], "uConfig"); glUniformBlockBinding(result->FinalPassEdgeShader[2], uni_id, 0); glUseProgram(result->FinalPassEdgeShader[2]); uni_id = glGetUniformLocation(result->FinalPassEdgeShader[2], "DepthBuffer"); glUniform1i(uni_id, 0); uni_id = glGetUniformLocation(result->FinalPassEdgeShader[2], "AttrBuffer"); glUniform1i(uni_id, 1); glBindAttribLocation(result->FinalPassFogShader[2], 0, "vPosition"); glBindFragDataLocation(result->FinalPassFogShader[2], 0, "oColor"); if (!OpenGL::LinkShaderProgram(result->FinalPassFogShader)) return nullptr; uni_id = glGetUniformBlockIndex(result->FinalPassFogShader[2], "uConfig"); glUniformBlockBinding(result->FinalPassFogShader[2], uni_id, 0); glUseProgram(result->FinalPassFogShader[2]); uni_id = glGetUniformLocation(result->FinalPassFogShader[2], "DepthBuffer"); glUniform1i(uni_id, 0); uni_id = glGetUniformLocation(result->FinalPassFogShader[2], "AttrBuffer"); glUniform1i(uni_id, 1); memset(&result->ShaderConfig, 0, sizeof(ShaderConfig)); glGenBuffers(1, &result->ShaderConfigUBO); glBindBuffer(GL_UNIFORM_BUFFER, result->ShaderConfigUBO); static_assert((sizeof(ShaderConfig) & 15) == 0); glBufferData(GL_UNIFORM_BUFFER, sizeof(ShaderConfig), &result->ShaderConfig, GL_STATIC_DRAW); glBindBufferBase(GL_UNIFORM_BUFFER, 0, result->ShaderConfigUBO); float clearvtx[6*2] = { -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0 }; glGenBuffers(1, &result->ClearVertexBufferID); glBindBuffer(GL_ARRAY_BUFFER, result->ClearVertexBufferID); glBufferData(GL_ARRAY_BUFFER, sizeof(clearvtx), clearvtx, GL_STATIC_DRAW); glGenVertexArrays(1, &result->ClearVertexArrayID); glBindVertexArray(result->ClearVertexArrayID); glEnableVertexAttribArray(0); // position glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, (void*)(0)); glGenBuffers(1, &result->VertexBufferID); glBindBuffer(GL_ARRAY_BUFFER, result->VertexBufferID); glBufferData(GL_ARRAY_BUFFER, sizeof(VertexBuffer), nullptr, GL_DYNAMIC_DRAW); glGenVertexArrays(1, &result->VertexArrayID); glBindVertexArray(result->VertexArrayID); glEnableVertexAttribArray(0); // position glVertexAttribIPointer(0, 4, GL_UNSIGNED_SHORT, 7*4, (void*)(0)); glEnableVertexAttribArray(1); // color glVertexAttribIPointer(1, 4, GL_UNSIGNED_BYTE, 7*4, (void*)(2*4)); glEnableVertexAttribArray(2); // texcoords glVertexAttribIPointer(2, 2, GL_SHORT, 7*4, (void*)(3*4)); glEnableVertexAttribArray(3); // attrib glVertexAttribIPointer(3, 3, GL_UNSIGNED_INT, 7*4, (void*)(4*4)); glGenBuffers(1, &result->IndexBufferID); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, result->IndexBufferID); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(IndexBuffer), nullptr, GL_DYNAMIC_DRAW); glGenFramebuffers(4, &result->FramebufferID[0]); glBindFramebuffer(GL_FRAMEBUFFER, result->FramebufferID[0]); glGenTextures(8, &result->FramebufferTex[0]); result->FrontBuffer = 0; // color buffers SetupDefaultTexParams(result->FramebufferTex[0]); SetupDefaultTexParams(result->FramebufferTex[1]); // depth/stencil buffer SetupDefaultTexParams(result->FramebufferTex[4]); SetupDefaultTexParams(result->FramebufferTex[6]); // attribute buffer // R: opaque polyID (for edgemarking) // G: edge flag // B: fog flag SetupDefaultTexParams(result->FramebufferTex[5]); SetupDefaultTexParams(result->FramebufferTex[7]); // downscale framebuffer for display capture (always 256x192) SetupDefaultTexParams(result->FramebufferTex[3]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 256, 192, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glEnable(GL_BLEND); glBlendEquationSeparate(GL_FUNC_ADD, GL_MAX); glGenBuffers(1, &result->PixelbufferID); glActiveTexture(GL_TEXTURE0); glGenTextures(1, &result->TexMemID); glBindTexture(GL_TEXTURE_2D, result->TexMemID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8UI, 1024, 512, 0, GL_RED_INTEGER, GL_UNSIGNED_BYTE, NULL); glActiveTexture(GL_TEXTURE1); glGenTextures(1, &result->TexPalMemID); glBindTexture(GL_TEXTURE_2D, result->TexPalMemID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB5_A1, 1024, 48, 0, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV, NULL); glBindFramebuffer(GL_FRAMEBUFFER, 0); return result; } GLRenderer::~GLRenderer() { assert(glDeleteTextures != nullptr); glDeleteTextures(1, &TexMemID); glDeleteTextures(1, &TexPalMemID); glDeleteFramebuffers(4, &FramebufferID[0]); glDeleteTextures(8, &FramebufferTex[0]); glDeleteVertexArrays(1, &VertexArrayID); glDeleteBuffers(1, &VertexBufferID); glDeleteVertexArrays(1, &ClearVertexArrayID); glDeleteBuffers(1, &ClearVertexBufferID); glDeleteBuffers(1, &ShaderConfigUBO); for (int i = 0; i < 16; i++) { if (!RenderShader[i][2]) continue; OpenGL::DeleteShaderProgram(RenderShader[i]); } } void GLRenderer::Reset() { // This is where the compositor's Reset() method would be called, // except there's no such method right now. } void GLRenderer::SetBetterPolygons(bool betterpolygons) noexcept { SetRenderSettings(betterpolygons, ScaleFactor); } void GLRenderer::SetScaleFactor(int scale) noexcept { SetRenderSettings(BetterPolygons, scale); } void GLRenderer::SetRenderSettings(bool betterpolygons, int scale) noexcept { if (betterpolygons == BetterPolygons && scale == ScaleFactor) return; CurGLCompositor.SetScaleFactor(scale); ScaleFactor = scale; BetterPolygons = betterpolygons; ScreenW = 256 * scale; ScreenH = 192 * scale; glBindTexture(GL_TEXTURE_2D, FramebufferTex[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, ScreenW, ScreenH, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, FramebufferTex[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, ScreenW, ScreenH, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, FramebufferTex[4]); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, ScreenW, ScreenH, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL); glBindTexture(GL_TEXTURE_2D, FramebufferTex[5]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, ScreenW, ScreenH, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, FramebufferTex[6]); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, ScreenW, ScreenH, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL); glBindTexture(GL_TEXTURE_2D, FramebufferTex[7]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, ScreenW, ScreenH, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glBindFramebuffer(GL_FRAMEBUFFER, FramebufferID[3]); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, FramebufferTex[3], 0); GLenum fbassign[2] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1}; glBindFramebuffer(GL_FRAMEBUFFER, FramebufferID[0]); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, FramebufferTex[0], 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, FramebufferTex[4], 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, FramebufferTex[5], 0); glDrawBuffers(2, fbassign); glBindFramebuffer(GL_FRAMEBUFFER, FramebufferID[1]); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, FramebufferTex[1], 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, FramebufferTex[6], 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, FramebufferTex[7], 0); glDrawBuffers(2, fbassign); glBindFramebuffer(GL_FRAMEBUFFER, FramebufferID[0]); glBindBuffer(GL_PIXEL_PACK_BUFFER, PixelbufferID); glBufferData(GL_PIXEL_PACK_BUFFER, 256*192*4, NULL, GL_DYNAMIC_READ); glBindFramebuffer(GL_FRAMEBUFFER, 0); //glLineWidth(scale); //glLineWidth(1.5); } void GLRenderer::SetupPolygon(GLRenderer::RendererPolygon* rp, Polygon* polygon) const { rp->PolyData = polygon; // render key: depending on what we're drawing // opaque polygons: // - depthfunc // -- alpha=0 // regular translucent polygons: // - depthfunc // -- depthwrite // --- polyID // ---- need opaque // shadow mask polygons: // - depthfunc????? // shadow polygons: // - depthfunc // -- depthwrite // --- polyID rp->RenderKey = (polygon->Attr >> 14) & 0x1; // bit14 - depth func if (!polygon->IsShadowMask) { if (polygon->Translucent) { if (polygon->IsShadow) rp->RenderKey |= 0x20000; else rp->RenderKey |= 0x10000; rp->RenderKey |= (polygon->Attr >> 10) & 0x2; // bit11 - depth write rp->RenderKey |= (polygon->Attr >> 13) & 0x4; // bit15 - fog rp->RenderKey |= (polygon->Attr & 0x3F000000) >> 16; // polygon ID if ((polygon->Attr & 0x001F0000) == 0x001F0000) // need opaque rp->RenderKey |= 0x4000; } else { if ((polygon->Attr & 0x001F0000) == 0) rp->RenderKey |= 0x2; rp->RenderKey |= (polygon->Attr & 0x3F000000) >> 16; // polygon ID } } else { rp->RenderKey |= 0x30000; } } u32* GLRenderer::SetupVertex(const Polygon* poly, int vid, const Vertex* vtx, u32 vtxattr, u32* vptr) const { u32 z = poly->FinalZ[vid]; u32 w = poly->FinalW[vid]; u32 alpha = (poly->Attr >> 16) & 0x1F; // Z should always fit within 16 bits, so it's okay to do this u32 zshift = 0; while (z > 0xFFFF) { z >>= 1; zshift++; } u32 x, y; if (ScaleFactor > 1) { x = (vtx->HiresPosition[0] * ScaleFactor) >> 4; y = (vtx->HiresPosition[1] * ScaleFactor) >> 4; } else { x = vtx->FinalPosition[0]; y = vtx->FinalPosition[1]; } // correct nearly-vertical edges that would look vertical on the DS /*{ int vtopid = vid - 1; if (vtopid < 0) vtopid = poly->NumVertices-1; Vertex* vtop = poly->Vertices[vtopid]; if (vtop->FinalPosition[1] >= vtx->FinalPosition[1]) { vtopid = vid + 1; if (vtopid >= poly->NumVertices) vtopid = 0; vtop = poly->Vertices[vtopid]; } if ((vtop->FinalPosition[1] < vtx->FinalPosition[1]) && (vtx->FinalPosition[0] == vtop->FinalPosition[0]-1)) { if (ScaleFactor > 1) x = (vtop->HiresPosition[0] * ScaleFactor) >> 4; else x = vtop->FinalPosition[0]; } }*/ *vptr++ = x | (y << 16); *vptr++ = z | (w << 16); *vptr++ = (vtx->FinalColor[0] >> 1) | ((vtx->FinalColor[1] >> 1) << 8) | ((vtx->FinalColor[2] >> 1) << 16) | (alpha << 24); *vptr++ = (u16)vtx->TexCoords[0] | ((u16)vtx->TexCoords[1] << 16); *vptr++ = vtxattr | (zshift << 16); *vptr++ = poly->TexParam; *vptr++ = poly->TexPalette; return vptr; } void GLRenderer::BuildPolygons(GLRenderer::RendererPolygon* polygons, int npolys) { u32* vptr = &VertexBuffer[0]; u32 vidx = 0; u32 iidx = 0; u32 eidx = EdgeIndicesOffset; for (int i = 0; i < npolys; i++) { RendererPolygon* rp = &polygons[i]; Polygon* poly = rp->PolyData; rp->IndicesOffset = iidx; rp->NumIndices = 0; u32 vidx_first = vidx; u32 polyattr = poly->Attr; u32 alpha = (polyattr >> 16) & 0x1F; u32 vtxattr = polyattr & 0x1F00C8F0; if (poly->FacingView) vtxattr |= (1<<8); if (poly->WBuffer) vtxattr |= (1<<9); // assemble vertices if (poly->Type == 1) // line { rp->PrimType = GL_LINES; u32 lastx, lasty; int nout = 0; for (u32 j = 0; j < poly->NumVertices; j++) { Vertex* vtx = poly->Vertices[j]; if (j > 0) { if (lastx == vtx->FinalPosition[0] && lasty == vtx->FinalPosition[1]) continue; } lastx = vtx->FinalPosition[0]; lasty = vtx->FinalPosition[1]; vptr = SetupVertex(poly, j, vtx, vtxattr, vptr); IndexBuffer[iidx++] = vidx; rp->NumIndices++; vidx++; nout++; if (nout >= 2) break; } } else if (poly->NumVertices == 3) // regular triangle { rp->PrimType = GL_TRIANGLES; for (int j = 0; j < 3; j++) { Vertex* vtx = poly->Vertices[j]; vptr = SetupVertex(poly, j, vtx, vtxattr, vptr); vidx++; } // build a triangle IndexBuffer[iidx++] = vidx_first; IndexBuffer[iidx++] = vidx - 2; IndexBuffer[iidx++] = vidx - 1; rp->NumIndices += 3; } else // quad, pentagon, etc { rp->PrimType = GL_TRIANGLES; if (!BetterPolygons) { // regular triangle-splitting for (u32 j = 0; j < poly->NumVertices; j++) { Vertex* vtx = poly->Vertices[j]; vptr = SetupVertex(poly, j, vtx, vtxattr, vptr); if (j >= 2) { // build a triangle IndexBuffer[iidx++] = vidx_first; IndexBuffer[iidx++] = vidx - 1; IndexBuffer[iidx++] = vidx; rp->NumIndices += 3; } vidx++; } } else { // attempt at 'better' splitting // this doesn't get rid of the error while splitting a bigger polygon into triangles // but we can attempt to reduce it u32 cX = 0, cY = 0; float cZ = 0; float cW = 0; float cR = 0, cG = 0, cB = 0; float cS = 0, cT = 0; for (u32 j = 0; j < poly->NumVertices; j++) { Vertex* vtx = poly->Vertices[j]; cX += vtx->HiresPosition[0]; cY += vtx->HiresPosition[1]; float fw = (float)poly->FinalW[j] * poly->NumVertices; cW += 1.0f / fw; if (poly->WBuffer) cZ += poly->FinalZ[j] / fw; else cZ += poly->FinalZ[j]; cR += (vtx->FinalColor[0] >> 1) / fw; cG += (vtx->FinalColor[1] >> 1) / fw; cB += (vtx->FinalColor[2] >> 1) / fw; cS += vtx->TexCoords[0] / fw; cT += vtx->TexCoords[1] / fw; } cX /= poly->NumVertices; cY /= poly->NumVertices; cW = 1.0f / cW; if (poly->WBuffer) cZ *= cW; else cZ /= poly->NumVertices; cR *= cW; cG *= cW; cB *= cW; cS *= cW; cT *= cW; cX = (cX * ScaleFactor) >> 4; cY = (cY * ScaleFactor) >> 4; u32 w = (u32)cW; u32 z = (u32)cZ; u32 zshift = 0; while (z > 0xFFFF) { z >>= 1; zshift++; } // build center vertex *vptr++ = cX | (cY << 16); *vptr++ = z | (w << 16); *vptr++ = (u32)cR | ((u32)cG << 8) | ((u32)cB << 16) | (alpha << 24); *vptr++ = (u16)cS | ((u16)cT << 16); *vptr++ = vtxattr | (zshift << 16); *vptr++ = poly->TexParam; *vptr++ = poly->TexPalette; vidx++; // build the final polygon for (u32 j = 0; j < poly->NumVertices; j++) { Vertex* vtx = poly->Vertices[j]; vptr = SetupVertex(poly, j, vtx, vtxattr, vptr); if (j >= 1) { // build a triangle IndexBuffer[iidx++] = vidx_first; IndexBuffer[iidx++] = vidx - 1; IndexBuffer[iidx++] = vidx; rp->NumIndices += 3; } vidx++; } IndexBuffer[iidx++] = vidx_first; IndexBuffer[iidx++] = vidx - 1; IndexBuffer[iidx++] = vidx_first + 1; rp->NumIndices += 3; } } rp->EdgeIndicesOffset = eidx; rp->NumEdgeIndices = 0; u32 vidx_cur = vidx_first; for (u32 j = 1; j < poly->NumVertices; j++) { IndexBuffer[eidx++] = vidx_cur; IndexBuffer[eidx++] = vidx_cur + 1; vidx_cur++; rp->NumEdgeIndices += 2; } IndexBuffer[eidx++] = vidx_cur; IndexBuffer[eidx++] = vidx_first; rp->NumEdgeIndices += 2; } NumVertices = vidx; NumIndices = iidx; NumEdgeIndices = eidx - EdgeIndicesOffset; } int GLRenderer::RenderSinglePolygon(int i) const { const RendererPolygon* rp = &PolygonList[i]; glDrawElements(rp->PrimType, rp->NumIndices, GL_UNSIGNED_SHORT, (void*)(uintptr_t)(rp->IndicesOffset * 2)); return 1; } int GLRenderer::RenderPolygonBatch(int i) const { const RendererPolygon* rp = &PolygonList[i]; GLuint primtype = rp->PrimType; u32 key = rp->RenderKey; int numpolys = 0; u32 numindices = 0; for (int iend = i; iend < NumFinalPolys; iend++) { const RendererPolygon* cur_rp = &PolygonList[iend]; if (cur_rp->PrimType != primtype) break; if (cur_rp->RenderKey != key) break; numpolys++; numindices += cur_rp->NumIndices; } glDrawElements(primtype, numindices, GL_UNSIGNED_SHORT, (void*)(uintptr_t)(rp->IndicesOffset * 2)); return numpolys; } int GLRenderer::RenderPolygonEdgeBatch(int i) const { const RendererPolygon* rp = &PolygonList[i]; u32 key = rp->RenderKey; int numpolys = 0; u32 numindices = 0; for (int iend = i; iend < NumFinalPolys; iend++) { const RendererPolygon* cur_rp = &PolygonList[iend]; if (cur_rp->RenderKey != key) break; numpolys++; numindices += cur_rp->NumEdgeIndices; } glDrawElements(GL_LINES, numindices, GL_UNSIGNED_SHORT, (void*)(uintptr_t)(rp->EdgeIndicesOffset * 2)); return numpolys; } void GLRenderer::RenderSceneChunk(int y, int h) { u32 flags = 0; if (GPU.GPU3D.RenderPolygonRAM[0]->WBuffer) flags |= RenderFlag_WBuffer; if (h != 192) glScissor(0, y<PolyData->IsShadowMask) { i++; continue; } if (rp->PolyData->Translucent) { i++; continue; } if (rp->PolyData->Attr & (1<<14)) glDepthFunc(GL_LEQUAL); else glDepthFunc(GL_LESS); u32 polyattr = rp->PolyData->Attr; u32 polyid = (polyattr >> 24) & 0x3F; glStencilFunc(GL_ALWAYS, polyid, 0xFF); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilMask(0xFF); i += RenderPolygonBatch(i); } // if edge marking is enabled, mark all opaque edges // TODO BETTER EDGE MARKING!!! THIS SUCKS /*if (RenderDispCnt & (1<<5)) { UseRenderShader(flags | RenderFlag_Edge); glLineWidth(1.5); glColorMaski(0, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glColorMaski(1, GL_FALSE, GL_TRUE, GL_FALSE, GL_FALSE); glDepthFunc(GL_ALWAYS); glDepthMask(GL_FALSE); glStencilFunc(GL_ALWAYS, 0, 0xFF); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilMask(0); for (int i = 0; i < NumFinalPolys; ) { RendererPolygon* rp = &PolygonList[i]; if (rp->PolyData->IsShadowMask) { i++; continue; } i += RenderPolygonEdgeBatch(i); } glDepthMask(GL_TRUE); }*/ glEnable(GL_BLEND); glBlendEquationSeparate(GL_FUNC_ADD, GL_MAX); if (GPU.GPU3D.RenderDispCnt & (1<<3)) glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE); else glBlendFuncSeparate(GL_ONE, GL_ZERO, GL_ONE, GL_ONE); glLineWidth(1.0); if (NumOpaqueFinalPolys > -1) { // pass 2: if needed, render translucent pixels that are against background pixels // when background alpha is zero, those need to be rendered with blending disabled if ((GPU.GPU3D.RenderClearAttr1 & 0x001F0000) == 0) { glDisable(GL_BLEND); for (int i = 0; i < NumFinalPolys; ) { RendererPolygon* rp = &PolygonList[i]; if (rp->PolyData->IsShadowMask) { // draw actual shadow mask UseRenderShader(flags | RenderFlag_ShadowMask); glDisable(GL_BLEND); glColorMaski(0, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glColorMaski(1, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glDepthMask(GL_FALSE); glDepthFunc(GL_LESS); glStencilFunc(GL_EQUAL, 0xFF, 0xFF); glStencilOp(GL_KEEP, GL_INVERT, GL_KEEP); glStencilMask(0x01); i += RenderPolygonBatch(i); } else if (rp->PolyData->Translucent) { bool needopaque = ((rp->PolyData->Attr & 0x001F0000) == 0x001F0000); u32 polyattr = rp->PolyData->Attr; u32 polyid = (polyattr >> 24) & 0x3F; if (polyattr & (1<<14)) glDepthFunc(GL_LEQUAL); else glDepthFunc(GL_LESS); if (needopaque) { UseRenderShader(flags); glDisable(GL_BLEND); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_TRUE, GL_TRUE, fogenable, GL_FALSE); glStencilFunc(GL_ALWAYS, polyid, 0xFF); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilMask(0xFF); glDepthMask(GL_TRUE); RenderSinglePolygon(i); } UseRenderShader(flags | RenderFlag_Trans); GLboolean transfog; if (!(polyattr & (1<<15))) transfog = fogenable; else transfog = GL_FALSE; if (rp->PolyData->IsShadow) { // shadow against clear-plane will only pass if its polyID matches that of the clear plane u32 clrpolyid = (GPU.GPU3D.RenderClearAttr1 >> 24) & 0x3F; if (polyid != clrpolyid) { i++; continue; } glEnable(GL_BLEND); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_FALSE, GL_FALSE, transfog, GL_FALSE); glStencilFunc(GL_EQUAL, 0xFE, 0xFF); glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); glStencilMask(~(0x40|polyid)); // heheh if (polyattr & (1<<11)) glDepthMask(GL_TRUE); else glDepthMask(GL_FALSE); i += needopaque ? RenderSinglePolygon(i) : RenderPolygonBatch(i); } else { glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_FALSE, GL_FALSE, transfog, GL_FALSE); glStencilFunc(GL_EQUAL, 0xFF, 0xFE); glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); glStencilMask(~(0x40|polyid)); // heheh if (polyattr & (1<<11)) glDepthMask(GL_TRUE); else glDepthMask(GL_FALSE); i += needopaque ? RenderSinglePolygon(i) : RenderPolygonBatch(i); } } else i++; } glEnable(GL_BLEND); glStencilMask(0xFF); } // pass 3: translucent pixels for (int i = 0; i < NumFinalPolys; ) { RendererPolygon* rp = &PolygonList[i]; if (rp->PolyData->IsShadowMask) { // clear shadow bits in stencil buffer glStencilMask(0x80); glClear(GL_STENCIL_BUFFER_BIT); // draw actual shadow mask UseRenderShader(flags | RenderFlag_ShadowMask); glDisable(GL_BLEND); glColorMaski(0, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glColorMaski(1, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glDepthMask(GL_FALSE); glDepthFunc(GL_LESS); glStencilFunc(GL_ALWAYS, 0x80, 0x80); glStencilOp(GL_KEEP, GL_REPLACE, GL_KEEP); i += RenderPolygonBatch(i); } else if (rp->PolyData->Translucent) { bool needopaque = ((rp->PolyData->Attr & 0x001F0000) == 0x001F0000); u32 polyattr = rp->PolyData->Attr; u32 polyid = (polyattr >> 24) & 0x3F; if (polyattr & (1<<14)) glDepthFunc(GL_LEQUAL); else glDepthFunc(GL_LESS); if (needopaque) { UseRenderShader(flags); glDisable(GL_BLEND); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_TRUE, GL_TRUE, fogenable, GL_FALSE); glStencilFunc(GL_ALWAYS, polyid, 0xFF); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilMask(0xFF); glDepthMask(GL_TRUE); RenderSinglePolygon(i); } UseRenderShader(flags | RenderFlag_Trans); GLboolean transfog; if (!(polyattr & (1<<15))) transfog = fogenable; else transfog = GL_FALSE; if (rp->PolyData->IsShadow) { glDisable(GL_BLEND); glColorMaski(0, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glColorMaski(1, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glDepthMask(GL_FALSE); glStencilFunc(GL_EQUAL, polyid, 0x3F); glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO); glStencilMask(0x80); RenderSinglePolygon(i); glEnable(GL_BLEND); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_FALSE, GL_FALSE, transfog, GL_FALSE); glStencilFunc(GL_EQUAL, 0xC0|polyid, 0x80); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilMask(0x7F); if (polyattr & (1<<11)) glDepthMask(GL_TRUE); else glDepthMask(GL_FALSE); i += RenderSinglePolygon(i); } else { glEnable(GL_BLEND); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_FALSE, GL_FALSE, transfog, GL_FALSE); glStencilFunc(GL_NOTEQUAL, 0x40|polyid, 0x7F); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilMask(0x7F); if (polyattr & (1<<11)) glDepthMask(GL_TRUE); else glDepthMask(GL_FALSE); i += needopaque ? RenderSinglePolygon(i) : RenderPolygonBatch(i); } } else i++; } } if (GPU.GPU3D.RenderDispCnt & 0x00A0) // fog/edge enabled { glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glEnable(GL_BLEND); glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD); glDepthFunc(GL_ALWAYS); glDepthMask(GL_FALSE); glStencilFunc(GL_ALWAYS, 0, 0); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilMask(0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, FramebufferTex[FrontBuffer ? 6 : 4]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, FramebufferTex[FrontBuffer ? 7 : 5]); glBindBuffer(GL_ARRAY_BUFFER, ClearVertexBufferID); glBindVertexArray(ClearVertexArrayID); if (GPU.GPU3D.RenderDispCnt & (1<<5)) { // edge marking // TODO: depth/polyid values at screen edges glUseProgram(FinalPassEdgeShader[2]); glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); glDrawArrays(GL_TRIANGLES, 0, 2*3); } if (GPU.GPU3D.RenderDispCnt & (1<<7)) { // fog glUseProgram(FinalPassFogShader[2]); if (GPU.GPU3D.RenderDispCnt & (1<<6)) glBlendFuncSeparate(GL_ZERO, GL_ONE, GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_ALPHA); else glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_ALPHA); { u32 c = GPU.GPU3D.RenderFogColor; u32 r = c & 0x1F; u32 g = (c >> 5) & 0x1F; u32 b = (c >> 10) & 0x1F; u32 a = (c >> 16) & 0x1F; glBlendColor((float)b/31.0, (float)g/31.0, (float)r/31.0, (float)a/31.0); } glDrawArrays(GL_TRIANGLES, 0, 2*3); } } } void GLRenderer::RenderFrame() { CurShaderID = -1; glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, FramebufferID[FrontBuffer]); ShaderConfig.uScreenSize[0] = ScreenW; ShaderConfig.uScreenSize[1] = ScreenH; ShaderConfig.uDispCnt = GPU.GPU3D.RenderDispCnt; for (int i = 0; i < 32; i++) { u16 c = GPU.GPU3D.RenderToonTable[i]; u32 r = c & 0x1F; u32 g = (c >> 5) & 0x1F; u32 b = (c >> 10) & 0x1F; ShaderConfig.uToonColors[i][0] = (float)r / 31.0; ShaderConfig.uToonColors[i][1] = (float)g / 31.0; ShaderConfig.uToonColors[i][2] = (float)b / 31.0; } for (int i = 0; i < 8; i++) { u16 c = GPU.GPU3D.RenderEdgeTable[i]; u32 r = c & 0x1F; u32 g = (c >> 5) & 0x1F; u32 b = (c >> 10) & 0x1F; ShaderConfig.uEdgeColors[i][0] = (float)r / 31.0; ShaderConfig.uEdgeColors[i][1] = (float)g / 31.0; ShaderConfig.uEdgeColors[i][2] = (float)b / 31.0; } { u32 c = GPU.GPU3D.RenderFogColor; u32 r = c & 0x1F; u32 g = (c >> 5) & 0x1F; u32 b = (c >> 10) & 0x1F; u32 a = (c >> 16) & 0x1F; ShaderConfig.uFogColor[0] = (float)r / 31.0; ShaderConfig.uFogColor[1] = (float)g / 31.0; ShaderConfig.uFogColor[2] = (float)b / 31.0; ShaderConfig.uFogColor[3] = (float)a / 31.0; } for (int i = 0; i < 34; i++) { u8 d = GPU.GPU3D.RenderFogDensityTable[i]; ShaderConfig.uFogDensity[i][0] = (float)d / 127.0; } ShaderConfig.uFogOffset = GPU.GPU3D.RenderFogOffset; ShaderConfig.uFogShift = GPU.GPU3D.RenderFogShift; glBindBuffer(GL_UNIFORM_BUFFER, ShaderConfigUBO); void* unibuf = glMapBuffer(GL_UNIFORM_BUFFER, GL_WRITE_ONLY); if (unibuf) memcpy(unibuf, &ShaderConfig, sizeof(ShaderConfig)); glUnmapBuffer(GL_UNIFORM_BUFFER); // SUCKY!!!!!!!!!!!!!!!!!! // TODO: detect when VRAM blocks are modified! glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, TexMemID); for (int i = 0; i < 4; i++) { u32 mask = GPU.VRAMMap_Texture[i]; u8* vram; if (!mask) continue; else if (mask & (1<<0)) vram = GPU.VRAM_A; else if (mask & (1<<1)) vram = GPU.VRAM_B; else if (mask & (1<<2)) vram = GPU.VRAM_C; else if (mask & (1<<3)) vram = GPU.VRAM_D; glTexSubImage2D(GL_TEXTURE_2D, 0, 0, i*128, 1024, 128, GL_RED_INTEGER, GL_UNSIGNED_BYTE, vram); } glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, TexPalMemID); for (int i = 0; i < 6; i++) { // 6 x 16K chunks u32 mask = GPU.VRAMMap_TexPal[i]; u8* vram; if (!mask) continue; else if (mask & (1<<4)) vram = &GPU.VRAM_E[(i&3)*0x4000]; else if (mask & (1<<5)) vram = GPU.VRAM_F; else if (mask & (1<<6)) vram = GPU.VRAM_G; glTexSubImage2D(GL_TEXTURE_2D, 0, 0, i*8, 1024, 8, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV, vram); } glDisable(GL_SCISSOR_TEST); glEnable(GL_DEPTH_TEST); glEnable(GL_STENCIL_TEST); glViewport(0, 0, ScreenW, ScreenH); glDisable(GL_BLEND); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glColorMaski(1, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDepthMask(GL_TRUE); glStencilMask(0xFF); // clear buffers // TODO: clear bitmap // TODO: check whether 'clear polygon ID' affects translucent polyID // (for example when alpha is 1..30) { glUseProgram(ClearShaderPlain[2]); glDepthFunc(GL_ALWAYS); u32 r = GPU.GPU3D.RenderClearAttr1 & 0x1F; u32 g = (GPU.GPU3D.RenderClearAttr1 >> 5) & 0x1F; u32 b = (GPU.GPU3D.RenderClearAttr1 >> 10) & 0x1F; u32 fog = (GPU.GPU3D.RenderClearAttr1 >> 15) & 0x1; u32 a = (GPU.GPU3D.RenderClearAttr1 >> 16) & 0x1F; u32 polyid = (GPU.GPU3D.RenderClearAttr1 >> 24) & 0x3F; u32 z = ((GPU.GPU3D.RenderClearAttr2 & 0x7FFF) * 0x200) + 0x1FF; glStencilFunc(GL_ALWAYS, 0xFF, 0xFF); glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE); /*if (r) r = r*2 + 1; if (g) g = g*2 + 1; if (b) b = b*2 + 1;*/ glUniform4ui(ClearUniformLoc[0], r, g, b, a); glUniform1ui(ClearUniformLoc[1], z); glUniform1ui(ClearUniformLoc[2], polyid); glUniform1ui(ClearUniformLoc[3], fog); glBindBuffer(GL_ARRAY_BUFFER, ClearVertexBufferID); glBindVertexArray(ClearVertexArrayID); glDrawArrays(GL_TRIANGLES, 0, 2*3); } if (GPU.GPU3D.RenderNumPolygons) { // render shit here u32 flags = 0; if (GPU.GPU3D.RenderPolygonRAM[0]->WBuffer) flags |= RenderFlag_WBuffer; int npolys = 0; int firsttrans = -1; for (u32 i = 0; i < GPU.GPU3D.RenderNumPolygons; i++) { if (GPU.GPU3D.RenderPolygonRAM[i]->Degenerate) continue; SetupPolygon(&PolygonList[npolys], GPU.GPU3D.RenderPolygonRAM[i]); if (firsttrans < 0 && GPU.GPU3D.RenderPolygonRAM[i]->Translucent) firsttrans = npolys; npolys++; } NumFinalPolys = npolys; NumOpaqueFinalPolys = firsttrans; BuildPolygons(&PolygonList[0], npolys); glBindBuffer(GL_ARRAY_BUFFER, VertexBufferID); glBufferSubData(GL_ARRAY_BUFFER, 0, NumVertices*7*4, VertexBuffer); // bind to access the index buffer glBindVertexArray(VertexArrayID); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, NumIndices * 2, IndexBuffer); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, EdgeIndicesOffset * 2, NumEdgeIndices * 2, IndexBuffer + EdgeIndicesOffset); RenderSceneChunk(0, 192); } FrontBuffer = FrontBuffer ? 0 : 1; } void GLRenderer::Stop() { CurGLCompositor.Stop(GPU); } void GLRenderer::PrepareCaptureFrame() { // TODO: make sure this picks the right buffer when doing antialiasing int original_fb = FrontBuffer^1; glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferID[original_fb]); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, FramebufferID[3]); glDrawBuffer(GL_COLOR_ATTACHMENT0); glBlitFramebuffer(0, 0, ScreenW, ScreenH, 0, 0, 256, 192, GL_COLOR_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferID[3]); glReadPixels(0, 0, 256, 192, GL_BGRA, GL_UNSIGNED_BYTE, NULL); } void GLRenderer::Blit() { CurGLCompositor.RenderFrame(GPU, *this); } u32* GLRenderer::GetLine(int line) { int stride = 256; if (line == 0) { u8* data = (u8*)glMapBuffer(GL_PIXEL_PACK_BUFFER, GL_READ_ONLY); if (data) memcpy(&Framebuffer[stride*0], data, 4*stride*192); glUnmapBuffer(GL_PIXEL_PACK_BUFFER); } u64* ptr = (u64*)&Framebuffer[stride * line]; for (int i = 0; i < stride; i+=2) { u64 rgb = *ptr & 0x00FCFCFC00FCFCFC; u64 a = *ptr & 0xF8000000F8000000; *ptr++ = (rgb >> 2) | (a >> 3); } return &Framebuffer[stride * line]; } void GLRenderer::SetupAccelFrame() { glBindTexture(GL_TEXTURE_2D, FramebufferTex[FrontBuffer]); } }