/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include #include "NDS.h" #include "GPU.h" #include "FIFO.h" // 3D engine notes // // vertex/polygon RAM is filled when a complete polygon is defined, after it's been culled and clipped // 04000604 reads from bank used by renderer // bank used by renderer is emptied at scanline ~192 // banks are swapped at scanline ~194 // TODO: needs more investigation. it's weird. // // clipping rules: // * if a shared vertex in a strip is clipped, affected polygons are converted into single polygons // strip is resumed at the first eligible polygon // // clipping exhibits oddities on the real thing. bad precision? fancy algorithm? TODO: investigate. // // vertex color precision: // * vertex colors are kept at 5-bit during clipping. makes for shitty results. // * vertex colors are converted to 9-bit before drawing, as such: // if (x > 0) x = (x << 4) + 0xF // the added bias affects interpolation. // // depth buffer: // Z-buffering mode: val = ((Z * 0x800 * 0x1000) / W) + 0x7FFEFF // W-buffering mode: val = W // // formula for clear depth: (GBAtek is wrong there) // clearZ = (val * 0x200) + 0x1FF; // // alpha is 5-bit // // matrix push/pop on the position matrix are always applied to the vector matrix too, even in position-only mode // store/restore too, probably (TODO: confirm) // (the idea is that each position matrix has an associated vector matrix) // // TODO: check if translate works on the vector matrix? seems pointless // // viewport Y coordinates are upside-down // // several registers are latched upon VBlank, the renderer uses the latched registers // latched registers include: // DISP3DCNT // alpha test ref value // fog color, offset, density table // toon table // edge table // clear attributes // // TODO: check how DISP_1DOT_DEPTH works and whether it's latched namespace GPU3D { const u32 CmdNumParams[256] = { // 0x00 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x10 1, 0, 1, 1, 1, 0, 16, 12, 16, 12, 9, 3, 3, 0, 0, 0, // 0x20 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, // 0x30 1, 1, 1, 1, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x50 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x70 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x80+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; const s32 CmdNumCycles[256] = { // 0x00 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x10 1, 17, 36, 17, 36, 19, 34, 30, 35, 31, 28, 22, 22, 0, 0, 0, // 0x20 1, 9, 1, 9, 8, 8, 8, 8, 8, 1, 1, 1, 0, 0, 0, 0, // 0x30 4, 4, 6, 1, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x50 392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x70 103, 9, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x80+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; typedef struct { u8 Command; u32 Param; } CmdFIFOEntry; FIFO* CmdFIFO; FIFO* CmdPIPE; u32 NumCommands, CurCommand, ParamCount, TotalParams; u32 DispCnt; u8 AlphaRefVal, AlphaRef; u16 ToonTable[32]; u16 EdgeTable[8]; u32 FogColor, FogOffset; u8 FogDensityTable[32]; u32 ClearAttr1, ClearAttr2; u32 RenderDispCnt; u8 RenderAlphaRef; u16 RenderToonTable[32]; u16 RenderEdgeTable[8]; u32 RenderFogColor, RenderFogOffset, RenderFogShift; u8 RenderFogDensityTable[34]; u32 RenderClearAttr1, RenderClearAttr2; u32 GXStat; u32 ExecParams[32]; u32 ExecParamCount; s32 CycleCount; u32 NumPushPopCommands; u32 NumTestCommands; u32 MatrixMode; s32 ProjMatrix[16]; s32 PosMatrix[16]; s32 VecMatrix[16]; s32 TexMatrix[16]; s32 ClipMatrix[16]; bool ClipMatrixDirty; u32 Viewport[6]; s32 ProjMatrixStack[16]; s32 PosMatrixStack[31][16]; s32 VecMatrixStack[31][16]; s32 TexMatrixStack[16]; s32 ProjMatrixStackPointer; s32 PosMatrixStackPointer; s32 TexMatrixStackPointer; void MatrixLoadIdentity(s32* m); void UpdateClipMatrix(); u32 PolygonMode; s16 CurVertex[3]; u8 VertexColor[3]; s16 TexCoords[2]; s16 RawTexCoords[2]; s16 Normal[3]; s16 LightDirection[4][3]; u8 LightColor[4][3]; u8 MatDiffuse[3]; u8 MatAmbient[3]; u8 MatSpecular[3]; u8 MatEmission[3]; bool UseShininessTable; u8 ShininessTable[128]; u32 PolygonAttr; u32 CurPolygonAttr; u32 TexParam; u32 TexPalette; s32 PosTestResult[4]; s16 VecTestResult[3]; Vertex TempVertexBuffer[4]; u32 VertexNum; u32 VertexNumInPoly; u32 NumConsecutivePolygons; Polygon* LastStripPolygon; u32 NumOpaquePolygons; Vertex VertexRAM[6144 * 2]; Polygon PolygonRAM[2048 * 2]; Vertex* CurVertexRAM; Polygon* CurPolygonRAM; u32 NumVertices, NumPolygons; u32 CurRAMBank; std::array RenderPolygonRAM; u32 RenderNumPolygons; u32 FlushRequest; u32 FlushAttributes; bool Init() { CmdFIFO = new FIFO(256); CmdPIPE = new FIFO(4); if (!SoftRenderer::Init()) return false; return true; } void DeInit() { SoftRenderer::DeInit(); delete CmdFIFO; delete CmdPIPE; } void Reset() { CmdFIFO->Clear(); CmdPIPE->Clear(); NumCommands = 0; CurCommand = 0; ParamCount = 0; TotalParams = 0; NumPushPopCommands = 0; NumTestCommands = 0; DispCnt = 0; AlphaRef = 0; GXStat = 0; memset(ExecParams, 0, 32*4); ExecParamCount = 0; CycleCount = 0; MatrixMode = 0; MatrixLoadIdentity(ProjMatrix); MatrixLoadIdentity(PosMatrix); MatrixLoadIdentity(VecMatrix); MatrixLoadIdentity(TexMatrix); ClipMatrixDirty = true; UpdateClipMatrix(); memset(Viewport, 0, sizeof(Viewport)); memset(ProjMatrixStack, 0, 16*4); memset(PosMatrixStack, 0, 31 * 16*4); memset(VecMatrixStack, 0, 31 * 16*4); memset(TexMatrixStack, 0, 16*4); ProjMatrixStackPointer = 0; PosMatrixStackPointer = 0; TexMatrixStackPointer = 0; memset(PosTestResult, 0, 4*4); memset(VecTestResult, 0, 2*3); VertexNum = 0; VertexNumInPoly = 0; CurRAMBank = 0; CurVertexRAM = &VertexRAM[0]; CurPolygonRAM = &PolygonRAM[0]; NumVertices = 0; NumPolygons = 0; NumOpaquePolygons = 0; // TODO: confirm initial polyid/color/fog values ClearAttr1 = 0x3F000000; ClearAttr2 = 0x00007FFF; FlushRequest = 0; FlushAttributes = 0; SoftRenderer::Reset(); } void MatrixLoadIdentity(s32* m) { m[0] = 0x1000; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = 0; m[5] = 0x1000; m[6] = 0; m[7] = 0; m[8] = 0; m[9] = 0; m[10] = 0x1000; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 0x1000; } void MatrixLoad4x4(s32* m, s32* s) { memcpy(m, s, 16*4); } void MatrixLoad4x3(s32* m, s32* s) { m[0] = s[0]; m[1] = s[1]; m[2] = s[2]; m[3] = 0; m[4] = s[3]; m[5] = s[4]; m[6] = s[5]; m[7] = 0; m[8] = s[6]; m[9] = s[7]; m[10] = s[8]; m[11] = 0; m[12] = s[9]; m[13] = s[10]; m[14] = s[11]; m[15] = 0x1000; } void MatrixMult4x4(s32* m, s32* s) { s32 tmp[16]; memcpy(tmp, m, 16*4); // m = s*m m[0] = ((s64)s[0]*tmp[0] + (s64)s[1]*tmp[4] + (s64)s[2]*tmp[8] + (s64)s[3]*tmp[12]) >> 12; m[1] = ((s64)s[0]*tmp[1] + (s64)s[1]*tmp[5] + (s64)s[2]*tmp[9] + (s64)s[3]*tmp[13]) >> 12; m[2] = ((s64)s[0]*tmp[2] + (s64)s[1]*tmp[6] + (s64)s[2]*tmp[10] + (s64)s[3]*tmp[14]) >> 12; m[3] = ((s64)s[0]*tmp[3] + (s64)s[1]*tmp[7] + (s64)s[2]*tmp[11] + (s64)s[3]*tmp[15]) >> 12; m[4] = ((s64)s[4]*tmp[0] + (s64)s[5]*tmp[4] + (s64)s[6]*tmp[8] + (s64)s[7]*tmp[12]) >> 12; m[5] = ((s64)s[4]*tmp[1] + (s64)s[5]*tmp[5] + (s64)s[6]*tmp[9] + (s64)s[7]*tmp[13]) >> 12; m[6] = ((s64)s[4]*tmp[2] + (s64)s[5]*tmp[6] + (s64)s[6]*tmp[10] + (s64)s[7]*tmp[14]) >> 12; m[7] = ((s64)s[4]*tmp[3] + (s64)s[5]*tmp[7] + (s64)s[6]*tmp[11] + (s64)s[7]*tmp[15]) >> 12; m[8] = ((s64)s[8]*tmp[0] + (s64)s[9]*tmp[4] + (s64)s[10]*tmp[8] + (s64)s[11]*tmp[12]) >> 12; m[9] = ((s64)s[8]*tmp[1] + (s64)s[9]*tmp[5] + (s64)s[10]*tmp[9] + (s64)s[11]*tmp[13]) >> 12; m[10] = ((s64)s[8]*tmp[2] + (s64)s[9]*tmp[6] + (s64)s[10]*tmp[10] + (s64)s[11]*tmp[14]) >> 12; m[11] = ((s64)s[8]*tmp[3] + (s64)s[9]*tmp[7] + (s64)s[10]*tmp[11] + (s64)s[11]*tmp[15]) >> 12; m[12] = ((s64)s[12]*tmp[0] + (s64)s[13]*tmp[4] + (s64)s[14]*tmp[8] + (s64)s[15]*tmp[12]) >> 12; m[13] = ((s64)s[12]*tmp[1] + (s64)s[13]*tmp[5] + (s64)s[14]*tmp[9] + (s64)s[15]*tmp[13]) >> 12; m[14] = ((s64)s[12]*tmp[2] + (s64)s[13]*tmp[6] + (s64)s[14]*tmp[10] + (s64)s[15]*tmp[14]) >> 12; m[15] = ((s64)s[12]*tmp[3] + (s64)s[13]*tmp[7] + (s64)s[14]*tmp[11] + (s64)s[15]*tmp[15]) >> 12; } void MatrixMult4x3(s32* m, s32* s) { s32 tmp[16]; memcpy(tmp, m, 16*4); // m = s*m m[0] = ((s64)s[0]*tmp[0] + (s64)s[1]*tmp[4] + (s64)s[2]*tmp[8]) >> 12; m[1] = ((s64)s[0]*tmp[1] + (s64)s[1]*tmp[5] + (s64)s[2]*tmp[9]) >> 12; m[2] = ((s64)s[0]*tmp[2] + (s64)s[1]*tmp[6] + (s64)s[2]*tmp[10]) >> 12; m[3] = ((s64)s[0]*tmp[3] + (s64)s[1]*tmp[7] + (s64)s[2]*tmp[11]) >> 12; m[4] = ((s64)s[3]*tmp[0] + (s64)s[4]*tmp[4] + (s64)s[5]*tmp[8]) >> 12; m[5] = ((s64)s[3]*tmp[1] + (s64)s[4]*tmp[5] + (s64)s[5]*tmp[9]) >> 12; m[6] = ((s64)s[3]*tmp[2] + (s64)s[4]*tmp[6] + (s64)s[5]*tmp[10]) >> 12; m[7] = ((s64)s[3]*tmp[3] + (s64)s[4]*tmp[7] + (s64)s[5]*tmp[11]) >> 12; m[8] = ((s64)s[6]*tmp[0] + (s64)s[7]*tmp[4] + (s64)s[8]*tmp[8]) >> 12; m[9] = ((s64)s[6]*tmp[1] + (s64)s[7]*tmp[5] + (s64)s[8]*tmp[9]) >> 12; m[10] = ((s64)s[6]*tmp[2] + (s64)s[7]*tmp[6] + (s64)s[8]*tmp[10]) >> 12; m[11] = ((s64)s[6]*tmp[3] + (s64)s[7]*tmp[7] + (s64)s[8]*tmp[11]) >> 12; m[12] = ((s64)s[9]*tmp[0] + (s64)s[10]*tmp[4] + (s64)s[11]*tmp[8] + (s64)0x1000*tmp[12]) >> 12; m[13] = ((s64)s[9]*tmp[1] + (s64)s[10]*tmp[5] + (s64)s[11]*tmp[9] + (s64)0x1000*tmp[13]) >> 12; m[14] = ((s64)s[9]*tmp[2] + (s64)s[10]*tmp[6] + (s64)s[11]*tmp[10] + (s64)0x1000*tmp[14]) >> 12; m[15] = ((s64)s[9]*tmp[3] + (s64)s[10]*tmp[7] + (s64)s[11]*tmp[11] + (s64)0x1000*tmp[15]) >> 12; } void MatrixMult3x3(s32* m, s32* s) { s32 tmp[12]; memcpy(tmp, m, 12*4); // m = s*m m[0] = ((s64)s[0]*tmp[0] + (s64)s[1]*tmp[4] + (s64)s[2]*tmp[8]) >> 12; m[1] = ((s64)s[0]*tmp[1] + (s64)s[1]*tmp[5] + (s64)s[2]*tmp[9]) >> 12; m[2] = ((s64)s[0]*tmp[2] + (s64)s[1]*tmp[6] + (s64)s[2]*tmp[10]) >> 12; m[3] = ((s64)s[0]*tmp[3] + (s64)s[1]*tmp[7] + (s64)s[2]*tmp[11]) >> 12; m[4] = ((s64)s[3]*tmp[0] + (s64)s[4]*tmp[4] + (s64)s[5]*tmp[8]) >> 12; m[5] = ((s64)s[3]*tmp[1] + (s64)s[4]*tmp[5] + (s64)s[5]*tmp[9]) >> 12; m[6] = ((s64)s[3]*tmp[2] + (s64)s[4]*tmp[6] + (s64)s[5]*tmp[10]) >> 12; m[7] = ((s64)s[3]*tmp[3] + (s64)s[4]*tmp[7] + (s64)s[5]*tmp[11]) >> 12; m[8] = ((s64)s[6]*tmp[0] + (s64)s[7]*tmp[4] + (s64)s[8]*tmp[8]) >> 12; m[9] = ((s64)s[6]*tmp[1] + (s64)s[7]*tmp[5] + (s64)s[8]*tmp[9]) >> 12; m[10] = ((s64)s[6]*tmp[2] + (s64)s[7]*tmp[6] + (s64)s[8]*tmp[10]) >> 12; m[11] = ((s64)s[6]*tmp[3] + (s64)s[7]*tmp[7] + (s64)s[8]*tmp[11]) >> 12; } void MatrixScale(s32* m, s32* s) { m[0] = ((s64)s[0]*m[0]) >> 12; m[1] = ((s64)s[0]*m[1]) >> 12; m[2] = ((s64)s[0]*m[2]) >> 12; m[3] = ((s64)s[0]*m[3]) >> 12; m[4] = ((s64)s[1]*m[4]) >> 12; m[5] = ((s64)s[1]*m[5]) >> 12; m[6] = ((s64)s[1]*m[6]) >> 12; m[7] = ((s64)s[1]*m[7]) >> 12; m[8] = ((s64)s[2]*m[8]) >> 12; m[9] = ((s64)s[2]*m[9]) >> 12; m[10] = ((s64)s[2]*m[10]) >> 12; m[11] = ((s64)s[2]*m[11]) >> 12; } void MatrixTranslate(s32* m, s32* s) { m[12] += ((s64)s[0]*m[0] + (s64)s[1]*m[4] + (s64)s[2]*m[8]) >> 12; m[13] += ((s64)s[0]*m[1] + (s64)s[1]*m[5] + (s64)s[2]*m[9]) >> 12; m[14] += ((s64)s[0]*m[2] + (s64)s[1]*m[6] + (s64)s[2]*m[10]) >> 12; m[15] += ((s64)s[0]*m[3] + (s64)s[1]*m[7] + (s64)s[2]*m[11]) >> 12; } void UpdateClipMatrix() { if (!ClipMatrixDirty) return; ClipMatrixDirty = false; memcpy(ClipMatrix, ProjMatrix, 16*4); MatrixMult4x4(ClipMatrix, PosMatrix); } template void ClipSegment(Vertex* outbuf, Vertex* vout, Vertex* vin) { s64 factor_num = vin->Position[3] - (plane*vin->Position[comp]); s32 factor_den = factor_num - (vout->Position[3] - (plane*vout->Position[comp])); #define INTERPOLATE(var) { outbuf->var = (vin->var + ((vout->var - vin->var) * factor_num) / factor_den); } if (comp != 0) INTERPOLATE(Position[0]); if (comp != 1) INTERPOLATE(Position[1]); if (comp != 2) INTERPOLATE(Position[2]); INTERPOLATE(Position[3]); outbuf->Position[comp] = plane*outbuf->Position[3]; if (attribs) { INTERPOLATE(Color[0]); INTERPOLATE(Color[1]); INTERPOLATE(Color[2]); INTERPOLATE(TexCoords[0]); INTERPOLATE(TexCoords[1]); } outbuf->Clipped = true; #undef INTERPOLATE } template int ClipAgainstPlane(Vertex* vertices, int nverts, int clipstart) { Vertex temp[10]; int prev, next; int c = clipstart; if (clipstart == 2) { temp[0] = vertices[0]; temp[1] = vertices[1]; } for (int i = clipstart; i < nverts; i++) { prev = i-1; if (prev < 0) prev = nverts-1; next = i+1; if (next >= nverts) next = 0; Vertex vtx = vertices[i]; if (vtx.Position[comp] > vtx.Position[3]) { if ((comp == 2) && (!(CurPolygonAttr & (1<<12)))) return 0; Vertex* vprev = &vertices[prev]; if (vprev->Position[comp] <= vprev->Position[3]) { ClipSegment(&temp[c], &vtx, vprev); c++; } Vertex* vnext = &vertices[next]; if (vnext->Position[comp] <= vnext->Position[3]) { ClipSegment(&temp[c], &vtx, vnext); c++; } } else temp[c++] = vtx; } nverts = c; c = clipstart; for (int i = clipstart; i < nverts; i++) { prev = i-1; if (prev < 0) prev = nverts-1; next = i+1; if (next >= nverts) next = 0; Vertex vtx = temp[i]; if (vtx.Position[comp] < -vtx.Position[3]) { Vertex* vprev = &temp[prev]; if (vprev->Position[comp] >= -vprev->Position[3]) { ClipSegment(&vertices[c], &vtx, vprev); c++; } Vertex* vnext = &temp[next]; if (vnext->Position[comp] >= -vnext->Position[3]) { ClipSegment(&vertices[c], &vtx, vnext); c++; } } else vertices[c++] = vtx; } // checkme for (int i = 0; i < c; i++) { Vertex* vtx = &vertices[i]; vtx->Color[0] &= ~0xFFF; vtx->Color[0] += 0xFFF; vtx->Color[1] &= ~0xFFF; vtx->Color[1] += 0xFFF; vtx->Color[2] &= ~0xFFF; vtx->Color[2] += 0xFFF; } return c; } template int ClipPolygon(Vertex* vertices, int nverts, int clipstart) { // clip. // for each vertex: // if it's outside, check if the previous and next vertices are inside // if so, place a new vertex at the edge of the view volume // TODO: check for 1-dot polygons // TODO: the hardware seems to use a different algorithm. it reacts differently to vertices with W=0 // some vertices that should get Y=-0x1000 get Y=0x1000 for some reason on hardware. it doesn't make sense. // clipping seems to process the Y plane before the X plane. // also, polygons with any negative W are completely rejected. (TODO) // X clipping nverts = ClipAgainstPlane<0, attribs>(vertices, nverts, clipstart); // Y clipping nverts = ClipAgainstPlane<1, attribs>(vertices, nverts, clipstart); // Z clipping nverts = ClipAgainstPlane<2, attribs>(vertices, nverts, clipstart); return nverts; } void SubmitPolygon() { Vertex clippedvertices[10]; Vertex* reusedvertices[2]; int clipstart = 0; int lastpolyverts = 0; int nverts = PolygonMode & 0x1 ? 4:3; int prev, next; // culling // TODO: work out how it works on the real thing // the normalization part is a wild guess Vertex *v0, *v1, *v2; s64 normalX, normalY, normalZ; s64 dot; v0 = &TempVertexBuffer[0]; v1 = &TempVertexBuffer[1]; v2 = &TempVertexBuffer[2]; normalX = ((s64)(v0->Position[1]-v1->Position[1]) * (v2->Position[3]-v1->Position[3])) - ((s64)(v0->Position[3]-v1->Position[3]) * (v2->Position[1]-v1->Position[1])); normalY = ((s64)(v0->Position[3]-v1->Position[3]) * (v2->Position[0]-v1->Position[0])) - ((s64)(v0->Position[0]-v1->Position[0]) * (v2->Position[3]-v1->Position[3])); normalZ = ((s64)(v0->Position[0]-v1->Position[0]) * (v2->Position[1]-v1->Position[1])) - ((s64)(v0->Position[1]-v1->Position[1]) * (v2->Position[0]-v1->Position[0])); while ((((normalX>>31) ^ (normalX>>63)) != 0) || (((normalY>>31) ^ (normalY>>63)) != 0) || (((normalZ>>31) ^ (normalZ>>63)) != 0)) { normalX >>= 4; normalY >>= 4; normalZ >>= 4; } dot = ((s64)v1->Position[0] * normalX) + ((s64)v1->Position[1] * normalY) + ((s64)v1->Position[3] * normalZ); bool facingview = (dot < 0); if (facingview) { if (!(CurPolygonAttr & (1<<7))) { LastStripPolygon = NULL; return; } } else if (dot > 0) { if (!(CurPolygonAttr & (1<<6))) { LastStripPolygon = NULL; return; } } // for strips, check whether we can attach to the previous polygon // this requires two vertices shared with the previous polygon, and that // the two polygons be of the same type if (PolygonMode >= 2 && LastStripPolygon) { int id0, id1; if (PolygonMode == 2) { if (NumConsecutivePolygons & 1) { id0 = 2; id1 = 1; } else { id0 = 0; id1 = 2; } lastpolyverts = 3; } else { id0 = 3; id1 = 2; lastpolyverts = 4; } if (LastStripPolygon->NumVertices == lastpolyverts && !LastStripPolygon->Vertices[id0]->Clipped && !LastStripPolygon->Vertices[id1]->Clipped) { reusedvertices[0] = LastStripPolygon->Vertices[id0]; reusedvertices[1] = LastStripPolygon->Vertices[id1]; clippedvertices[0] = *reusedvertices[0]; clippedvertices[1] = *reusedvertices[1]; clipstart = 2; } } for (int i = clipstart; i < nverts; i++) clippedvertices[i] = TempVertexBuffer[i]; // clipping nverts = ClipPolygon(clippedvertices, nverts, clipstart); if (nverts == 0) { LastStripPolygon = NULL; return; } // build the actual polygon if (NumPolygons >= 2048 || NumVertices+nverts > 6144) { LastStripPolygon = NULL; DispCnt |= (1<<13); return; } Polygon* poly = &CurPolygonRAM[NumPolygons++]; poly->NumVertices = 0; poly->Attr = CurPolygonAttr; poly->TexParam = TexParam; poly->TexPalette = TexPalette; poly->FacingView = facingview; u32 texfmt = (TexParam >> 26) & 0x7; u32 polyalpha = (CurPolygonAttr >> 16) & 0x1F; poly->Translucent = ((texfmt == 1 || texfmt == 6) && !(CurPolygonAttr & 0x10)) || (polyalpha > 0 && polyalpha < 31); poly->IsShadowMask = ((CurPolygonAttr & 0x3F000030) == 0x00000030); poly->IsShadow = ((CurPolygonAttr & 0x30) == 0x30) && !poly->IsShadowMask; if (!poly->Translucent) NumOpaquePolygons++; if (LastStripPolygon && clipstart > 0) { if (nverts == lastpolyverts) { poly->Vertices[0] = reusedvertices[0]; poly->Vertices[1] = reusedvertices[1]; } else { Vertex v0 = *reusedvertices[0]; Vertex v1 = *reusedvertices[1]; CurVertexRAM[NumVertices] = v0; poly->Vertices[0] = &CurVertexRAM[NumVertices]; CurVertexRAM[NumVertices+1] = v1; poly->Vertices[1] = &CurVertexRAM[NumVertices+1]; NumVertices += 2; } poly->NumVertices += 2; } for (int i = clipstart; i < nverts; i++) { Vertex* vtx = &CurVertexRAM[NumVertices]; *vtx = clippedvertices[i]; poly->Vertices[i] = vtx; NumVertices++; poly->NumVertices++; // viewport transform s32 posX, posY; s32 w = vtx->Position[3]; if (w == 0) { posX = 0; posY = 0; } else { posX = (((s64)(vtx->Position[0] + w) * Viewport[4]) / (((s64)w) << 1)) + Viewport[0]; posY = (((s64)(-vtx->Position[1] + w) * Viewport[5]) / (((s64)w) << 1)) + Viewport[3]; } vtx->FinalPosition[0] = posX & 0x1FF; vtx->FinalPosition[1] = posY & 0xFF; vtx->FinalColor[0] = vtx->Color[0] >> 12; if (vtx->FinalColor[0]) vtx->FinalColor[0] = ((vtx->FinalColor[0] << 4) + 0xF); vtx->FinalColor[1] = vtx->Color[1] >> 12; if (vtx->FinalColor[1]) vtx->FinalColor[1] = ((vtx->FinalColor[1] << 4) + 0xF); vtx->FinalColor[2] = vtx->Color[2] >> 12; if (vtx->FinalColor[2]) vtx->FinalColor[2] = ((vtx->FinalColor[2] << 4) + 0xF); } // determine bounds of the polygon // also determine the W shift and normalize W // normalization works both ways // (ie two W's that span 12 bits or less will be brought to 16 bits) u32 vtop = 0, vbot = 0; s32 ytop = 192, ybot = 0; s32 xtop = 256, xbot = 0; u32 wsize = 0; for (int i = 0; i < nverts; i++) { Vertex* vtx = poly->Vertices[i]; if (vtx->FinalPosition[1] < ytop || (vtx->FinalPosition[1] == ytop && vtx->FinalPosition[0] < xtop)) { xtop = vtx->FinalPosition[0]; ytop = vtx->FinalPosition[1]; vtop = i; } if (vtx->FinalPosition[1] > ybot || (vtx->FinalPosition[1] == ybot && vtx->FinalPosition[0] > xbot)) { xbot = vtx->FinalPosition[0]; ybot = vtx->FinalPosition[1]; vbot = i; } u32 w = (u32)vtx->Position[3]; while ((w >> wsize) && (wsize < 32)) wsize += 4; } poly->VTop = vtop; poly->VBottom = vbot; poly->YTop = ytop; poly->YBottom = ybot; poly->XTop = xtop; poly->XBottom = xbot; poly->SortKey = (ybot << 8) | ytop; if (poly->Translucent) poly->SortKey |= 0x10000; poly->WBuffer = (FlushAttributes & 0x2); for (int i = 0; i < nverts; i++) { Vertex* vtx = poly->Vertices[i]; s32 w, wshifted; // W is normalized, such that all the polygon's W values fit within 16 bits // the viewport transform for X/Y/Z uses the original W values, but // when W-buffering is used, the normalized W is used // W normalization is applied to separate polygons, even within strips if (wsize < 16) { w = vtx->Position[3] << (16 - wsize); wshifted = w >> (16 - wsize); } else { w = vtx->Position[3] >> (wsize - 16); wshifted = w << (wsize - 16); } s32 z; if (FlushAttributes & 0x2) z = wshifted; else if (vtx->Position[3]) z = ((((s64)vtx->Position[2] * 0x4000) / vtx->Position[3]) + 0x3FFF) * 0x200; else z = 0x7FFE00; // checkme (Z<0 shouldn't be possible, but Z>0xFFFFFF is possible) if (z < 0) z = 0; else if (z > 0xFFFFFF) z = 0xFFFFFF; poly->FinalZ[i] = z; poly->FinalW[i] = w; } if (PolygonMode >= 2) LastStripPolygon = poly; else LastStripPolygon = NULL; } void SubmitVertex() { s64 vertex[4] = {(s64)CurVertex[0], (s64)CurVertex[1], (s64)CurVertex[2], 0x1000}; Vertex* vertextrans = &TempVertexBuffer[VertexNumInPoly]; UpdateClipMatrix(); vertextrans->Position[0] = (vertex[0]*ClipMatrix[0] + vertex[1]*ClipMatrix[4] + vertex[2]*ClipMatrix[8] + vertex[3]*ClipMatrix[12]) >> 12; vertextrans->Position[1] = (vertex[0]*ClipMatrix[1] + vertex[1]*ClipMatrix[5] + vertex[2]*ClipMatrix[9] + vertex[3]*ClipMatrix[13]) >> 12; vertextrans->Position[2] = (vertex[0]*ClipMatrix[2] + vertex[1]*ClipMatrix[6] + vertex[2]*ClipMatrix[10] + vertex[3]*ClipMatrix[14]) >> 12; vertextrans->Position[3] = (vertex[0]*ClipMatrix[3] + vertex[1]*ClipMatrix[7] + vertex[2]*ClipMatrix[11] + vertex[3]*ClipMatrix[15]) >> 12; vertextrans->Color[0] = (VertexColor[0] << 12) + 0xFFF; vertextrans->Color[1] = (VertexColor[1] << 12) + 0xFFF; vertextrans->Color[2] = (VertexColor[2] << 12) + 0xFFF; if ((TexParam >> 30) == 3) { vertextrans->TexCoords[0] = ((vertex[0]*TexMatrix[0] + vertex[1]*TexMatrix[4] + vertex[2]*TexMatrix[8]) >> 24) + RawTexCoords[0]; vertextrans->TexCoords[1] = ((vertex[0]*TexMatrix[1] + vertex[1]*TexMatrix[5] + vertex[2]*TexMatrix[9]) >> 24) + RawTexCoords[1]; } else { vertextrans->TexCoords[0] = TexCoords[0]; vertextrans->TexCoords[1] = TexCoords[1]; } vertextrans->Clipped = false; VertexNum++; VertexNumInPoly++; switch (PolygonMode) { case 0: // triangle if (VertexNumInPoly == 3) { VertexNumInPoly = 0; SubmitPolygon(); NumConsecutivePolygons++; } break; case 1: // quad if (VertexNumInPoly == 4) { VertexNumInPoly = 0; SubmitPolygon(); NumConsecutivePolygons++; } break; case 2: // triangle strip if (NumConsecutivePolygons & 1) { Vertex tmp = TempVertexBuffer[1]; TempVertexBuffer[1] = TempVertexBuffer[0]; TempVertexBuffer[0] = tmp; VertexNumInPoly = 2; SubmitPolygon(); NumConsecutivePolygons++; TempVertexBuffer[1] = TempVertexBuffer[2]; } else if (VertexNumInPoly == 3) { VertexNumInPoly = 2; SubmitPolygon(); NumConsecutivePolygons++; TempVertexBuffer[0] = TempVertexBuffer[1]; TempVertexBuffer[1] = TempVertexBuffer[2]; } break; case 3: // quad strip if (VertexNumInPoly == 4) { Vertex tmp = TempVertexBuffer[3]; TempVertexBuffer[3] = TempVertexBuffer[2]; TempVertexBuffer[2] = tmp; VertexNumInPoly = 2; SubmitPolygon(); NumConsecutivePolygons++; TempVertexBuffer[0] = TempVertexBuffer[3]; TempVertexBuffer[1] = TempVertexBuffer[2]; } break; } } s32 CalculateLighting() { if ((TexParam >> 30) == 2) { TexCoords[0] = RawTexCoords[0] + (((s64)Normal[0]*TexMatrix[0] + (s64)Normal[1]*TexMatrix[4] + (s64)Normal[2]*TexMatrix[8]) >> 21); TexCoords[1] = RawTexCoords[1] + (((s64)Normal[0]*TexMatrix[1] + (s64)Normal[1]*TexMatrix[5] + (s64)Normal[2]*TexMatrix[9]) >> 21); } s32 normaltrans[3]; normaltrans[0] = (Normal[0]*VecMatrix[0] + Normal[1]*VecMatrix[4] + Normal[2]*VecMatrix[8]) >> 12; normaltrans[1] = (Normal[0]*VecMatrix[1] + Normal[1]*VecMatrix[5] + Normal[2]*VecMatrix[9]) >> 12; normaltrans[2] = (Normal[0]*VecMatrix[2] + Normal[1]*VecMatrix[6] + Normal[2]*VecMatrix[10]) >> 12; VertexColor[0] = MatEmission[0]; VertexColor[1] = MatEmission[1]; VertexColor[2] = MatEmission[2]; s32 c = 0; for (int i = 0; i < 4; i++) { if (!(CurPolygonAttr & (1<1) // according to some hardware tests // * diffuse level is saturated to 255 // * shininess level mirrors back to 0 and is ANDed with 0xFF, that before being squared // TODO: check how it behaves when the computed shininess is >=0x200 s32 difflevel = (-(LightDirection[i][0]*normaltrans[0] + LightDirection[i][1]*normaltrans[1] + LightDirection[i][2]*normaltrans[2])) >> 10; if (difflevel < 0) difflevel = 0; else if (difflevel > 255) difflevel = 255; s32 shinelevel = -(((LightDirection[i][0]>>1)*normaltrans[0] + (LightDirection[i][1]>>1)*normaltrans[1] + ((LightDirection[i][2]-0x200)>>1)*normaltrans[2]) >> 10); if (shinelevel < 0) shinelevel = 0; else if (shinelevel > 255) shinelevel = (0x100 - shinelevel) & 0xFF; shinelevel = ((shinelevel * shinelevel) >> 7) - 0x100; // really (2*shinelevel*shinelevel)-1 if (shinelevel < 0) shinelevel = 0; if (UseShininessTable) { // checkme shinelevel >>= 1; shinelevel = ShininessTable[shinelevel]; } VertexColor[0] += ((MatSpecular[0] * LightColor[i][0] * shinelevel) >> 13); VertexColor[0] += ((MatDiffuse[0] * LightColor[i][0] * difflevel) >> 13); VertexColor[0] += ((MatAmbient[0] * LightColor[i][0]) >> 5); VertexColor[1] += ((MatSpecular[1] * LightColor[i][1] * shinelevel) >> 13); VertexColor[1] += ((MatDiffuse[1] * LightColor[i][1] * difflevel) >> 13); VertexColor[1] += ((MatAmbient[1] * LightColor[i][1]) >> 5); VertexColor[2] += ((MatSpecular[2] * LightColor[i][2] * shinelevel) >> 13); VertexColor[2] += ((MatDiffuse[2] * LightColor[i][2] * difflevel) >> 13); VertexColor[2] += ((MatAmbient[2] * LightColor[i][2]) >> 5); if (VertexColor[0] > 31) VertexColor[0] = 31; if (VertexColor[1] > 31) VertexColor[1] = 31; if (VertexColor[2] > 31) VertexColor[2] = 31; c++; } // checkme: cycle count return c; } void BoxTest(u32* params) { Vertex cube[8]; Vertex face[10]; int res; GXStat &= ~(1<<1); s16 x0 = (s16)(params[0] & 0xFFFF); s16 y0 = ((s32)params[0]) >> 16; s16 z0 = (s16)(params[1] & 0xFFFF); s16 x1 = ((s32)params[1]) >> 16; s16 y1 = (s16)(params[2] & 0xFFFF); s16 z1 = ((s32)params[2]) >> 16; x1 += x0; y1 += y0; z1 += z0; cube[0].Position[0] = x0; cube[0].Position[1] = y0; cube[0].Position[2] = z0; cube[1].Position[0] = x1; cube[1].Position[1] = y0; cube[1].Position[2] = z0; cube[2].Position[0] = x1; cube[2].Position[1] = y1; cube[2].Position[2] = z0; cube[3].Position[0] = x0; cube[3].Position[1] = y1; cube[3].Position[2] = z0; cube[4].Position[0] = x0; cube[4].Position[1] = y1; cube[4].Position[2] = z1; cube[5].Position[0] = x0; cube[5].Position[1] = y0; cube[5].Position[2] = z1; cube[6].Position[0] = x1; cube[6].Position[1] = y0; cube[6].Position[2] = z1; cube[7].Position[0] = x1; cube[7].Position[1] = y1; cube[7].Position[2] = z1; UpdateClipMatrix(); for (int i = 0; i < 8; i++) { s32 x = cube[i].Position[0]; s32 y = cube[i].Position[1]; s32 z = cube[i].Position[2]; cube[i].Position[0] = ((s64)x*ClipMatrix[0] + (s64)y*ClipMatrix[4] + (s64)z*ClipMatrix[8] + (s64)0x1000*ClipMatrix[12]) >> 12; cube[i].Position[1] = ((s64)x*ClipMatrix[1] + (s64)y*ClipMatrix[5] + (s64)z*ClipMatrix[9] + (s64)0x1000*ClipMatrix[13]) >> 12; cube[i].Position[2] = ((s64)x*ClipMatrix[2] + (s64)y*ClipMatrix[6] + (s64)z*ClipMatrix[10] + (s64)0x1000*ClipMatrix[14]) >> 12; cube[i].Position[3] = ((s64)x*ClipMatrix[3] + (s64)y*ClipMatrix[7] + (s64)z*ClipMatrix[11] + (s64)0x1000*ClipMatrix[15]) >> 12; } // front face (-Z) face[0] = cube[0]; face[1] = cube[1]; face[2] = cube[2]; face[3] = cube[3]; res = ClipPolygon(face, 4, 0); if (res > 0) { GXStat |= (1<<1); return; } // back face (+Z) face[0] = cube[4]; face[1] = cube[5]; face[2] = cube[6]; face[3] = cube[7]; res = ClipPolygon(face, 4, 0); if (res > 0) { GXStat |= (1<<1); return; } // left face (-X) face[0] = cube[0]; face[1] = cube[3]; face[2] = cube[4]; face[3] = cube[5]; res = ClipPolygon(face, 4, 0); if (res > 0) { GXStat |= (1<<1); return; } // right face (+X) face[0] = cube[1]; face[1] = cube[2]; face[2] = cube[7]; face[3] = cube[6]; res = ClipPolygon(face, 4, 0); if (res > 0) { GXStat |= (1<<1); return; } // bottom face (-Y) face[0] = cube[0]; face[1] = cube[1]; face[2] = cube[6]; face[3] = cube[5]; res = ClipPolygon(face, 4, 0); if (res > 0) { GXStat |= (1<<1); return; } // top face (+Y) face[0] = cube[2]; face[1] = cube[3]; face[2] = cube[4]; face[3] = cube[7]; res = ClipPolygon(face, 4, 0); if (res > 0) { GXStat |= (1<<1); return; } } void PosTest() { s64 vertex[4] = {(s64)CurVertex[0], (s64)CurVertex[1], (s64)CurVertex[2], 0x1000}; UpdateClipMatrix(); PosTestResult[0] = (vertex[0]*ClipMatrix[0] + vertex[1]*ClipMatrix[4] + vertex[2]*ClipMatrix[8] + vertex[3]*ClipMatrix[12]) >> 12; PosTestResult[1] = (vertex[0]*ClipMatrix[1] + vertex[1]*ClipMatrix[5] + vertex[2]*ClipMatrix[9] + vertex[3]*ClipMatrix[13]) >> 12; PosTestResult[2] = (vertex[0]*ClipMatrix[2] + vertex[1]*ClipMatrix[6] + vertex[2]*ClipMatrix[10] + vertex[3]*ClipMatrix[14]) >> 12; PosTestResult[3] = (vertex[0]*ClipMatrix[3] + vertex[1]*ClipMatrix[7] + vertex[2]*ClipMatrix[11] + vertex[3]*ClipMatrix[15]) >> 12; } void VecTest(u32* params) { // TODO: maybe it overwrites the normal registers, too s16 normal[3]; normal[0] = (s16)((params[0] & 0x000003FF) << 6) >> 6; normal[1] = (s16)((params[0] & 0x000FFC00) >> 4) >> 6; normal[2] = (s16)((params[0] & 0x3FF00000) >> 14) >> 6; VecTestResult[0] = (normal[0]*VecMatrix[0] + normal[1]*VecMatrix[4] + normal[2]*VecMatrix[8]) >> 9; VecTestResult[1] = (normal[0]*VecMatrix[1] + normal[1]*VecMatrix[5] + normal[2]*VecMatrix[9]) >> 9; VecTestResult[2] = (normal[0]*VecMatrix[2] + normal[1]*VecMatrix[6] + normal[2]*VecMatrix[10]) >> 9; if (VecTestResult[0] & 0x1000) VecTestResult[0] |= 0xF000; if (VecTestResult[1] & 0x1000) VecTestResult[1] |= 0xF000; if (VecTestResult[2] & 0x1000) VecTestResult[2] |= 0xF000; } void CmdFIFOWrite(CmdFIFOEntry& entry) { if (CmdFIFO->IsEmpty() && !CmdPIPE->IsFull()) { CmdPIPE->Write(entry); } else { if (CmdFIFO->IsFull()) { //printf("!!! GX FIFO FULL\n"); //return; // temp. hack // SM64DS seems to overflow the FIFO occasionally // either leftover bugs in our implementation, or the game accidentally doing that // TODO: investigate. // TODO: implement this behavior properly (freezes the bus until the FIFO isn't full anymore) while (CmdFIFO->IsFull()) ExecuteCommand(); } CmdFIFO->Write(entry); } if (entry.Command == 0x11 || entry.Command == 0x12) { GXStat |= (1<<14); // push/pop matrix NumPushPopCommands++; } else if (entry.Command == 0x70 || entry.Command == 0x71 || entry.Command == 0x72) { GXStat |= (1<<0); // box/pos/vec test NumTestCommands++; } } CmdFIFOEntry CmdFIFORead() { CmdFIFOEntry ret = CmdPIPE->Read(); if (CmdPIPE->Level() <= 2) { if (!CmdFIFO->IsEmpty()) CmdPIPE->Write(CmdFIFO->Read()); if (!CmdFIFO->IsEmpty()) CmdPIPE->Write(CmdFIFO->Read()); CheckFIFODMA(); CheckFIFOIRQ(); } return ret; } void ExecuteCommand() { CmdFIFOEntry entry = CmdFIFORead(); //printf("FIFO: processing %02X %08X. Levels: FIFO=%d, PIPE=%d\n", entry.Command, entry.Param, CmdFIFO->Level(), CmdPIPE->Level()); ExecParams[ExecParamCount] = entry.Param; ExecParamCount++; if (ExecParamCount >= CmdNumParams[entry.Command]) { /*printf("0x%02X, ", entry.Command); for (int k = 0; k < ExecParamCount; k++) printf("0x%08X, ", ExecParams[k]); printf("\n");*/ CycleCount += CmdNumCycles[entry.Command]; ExecParamCount = 0; if (CycleCount > 0) GXStat |= (1<<27); switch (entry.Command) { case 0x10: // matrix mode MatrixMode = ExecParams[0] & 0x3; break; case 0x11: // push matrix NumPushPopCommands--; if (MatrixMode == 0) { if (ProjMatrixStackPointer > 0) { printf("!! PROJ MATRIX STACK OVERFLOW\n"); GXStat |= (1<<15); break; } memcpy(ProjMatrixStack, ProjMatrix, 16*4); ProjMatrixStackPointer++; } else if (MatrixMode == 3) { if (TexMatrixStackPointer > 0) { printf("!! TEX MATRIX STACK OVERFLOW\n"); GXStat |= (1<<15); break; } memcpy(TexMatrixStack, TexMatrix, 16*4); TexMatrixStackPointer++; } else { if (PosMatrixStackPointer > 30) { printf("!! POS MATRIX STACK OVERFLOW\n"); GXStat |= (1<<15); break; } memcpy(PosMatrixStack[PosMatrixStackPointer], PosMatrix, 16*4); memcpy(VecMatrixStack[PosMatrixStackPointer], VecMatrix, 16*4); PosMatrixStackPointer++; } break; case 0x12: // pop matrix NumPushPopCommands--; if (MatrixMode == 0) { if (ProjMatrixStackPointer <= 0) { printf("!! PROJ MATRIX STACK UNDERFLOW\n"); GXStat |= (1<<15); break; } ProjMatrixStackPointer--; memcpy(ProjMatrix, ProjMatrixStack, 16*4); ClipMatrixDirty = true; } else if (MatrixMode == 3) { if (TexMatrixStackPointer <= 0) { printf("!! TEX MATRIX STACK UNDERFLOW\n"); GXStat |= (1<<15); break; } TexMatrixStackPointer--; memcpy(TexMatrix, TexMatrixStack, 16*4); } else { s32 offset = (s32)(ExecParams[0] << 26) >> 26; PosMatrixStackPointer -= offset; if (PosMatrixStackPointer < 0 || PosMatrixStackPointer > 30) { //printf("!! POS MATRIX STACK UNDER/OVERFLOW %d\n", PosMatrixStackPointer); PosMatrixStackPointer += offset; GXStat |= (1<<15); break; } memcpy(PosMatrix, PosMatrixStack[PosMatrixStackPointer], 16*4); memcpy(VecMatrix, VecMatrixStack[PosMatrixStackPointer], 16*4); ClipMatrixDirty = true; } break; case 0x13: // store matrix if (MatrixMode == 0) { memcpy(ProjMatrixStack, ProjMatrix, 16*4); } else if (MatrixMode == 3) { memcpy(TexMatrixStack, TexMatrix, 16*4); } else { u32 addr = ExecParams[0] & 0x1F; if (addr > 30) { printf("!! POS MATRIX STORE ADDR 31\n"); GXStat |= (1<<15); break; } memcpy(PosMatrixStack[addr], PosMatrix, 16*4); memcpy(VecMatrixStack[addr], VecMatrix, 16*4); } break; case 0x14: // restore matrix if (MatrixMode == 0) { memcpy(ProjMatrix, ProjMatrixStack, 16*4); ClipMatrixDirty = true; } else if (MatrixMode == 3) { memcpy(TexMatrix, TexMatrixStack, 16*4); } else { u32 addr = ExecParams[0] & 0x1F; if (addr > 30) { printf("!! POS MATRIX STORE ADDR 31\n"); GXStat |= (1<<15); break; } memcpy(PosMatrix, PosMatrixStack[addr], 16*4); memcpy(VecMatrix, VecMatrixStack[addr], 16*4); ClipMatrixDirty = true; } break; case 0x15: // identity if (MatrixMode == 0) { MatrixLoadIdentity(ProjMatrix); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixLoadIdentity(TexMatrix); else { MatrixLoadIdentity(PosMatrix); if (MatrixMode == 2) MatrixLoadIdentity(VecMatrix); ClipMatrixDirty = true; } break; case 0x16: // load 4x4 if (MatrixMode == 0) { MatrixLoad4x4(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixLoad4x4(TexMatrix, (s32*)ExecParams); else { MatrixLoad4x4(PosMatrix, (s32*)ExecParams); if (MatrixMode == 2) MatrixLoad4x4(VecMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } break; case 0x17: // load 4x3 if (MatrixMode == 0) { MatrixLoad4x3(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixLoad4x3(TexMatrix, (s32*)ExecParams); else { MatrixLoad4x3(PosMatrix, (s32*)ExecParams); if (MatrixMode == 2) MatrixLoad4x3(VecMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } break; case 0x18: // mult 4x4 if (MatrixMode == 0) { MatrixMult4x4(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixMult4x4(TexMatrix, (s32*)ExecParams); else { MatrixMult4x4(PosMatrix, (s32*)ExecParams); if (MatrixMode == 2) { MatrixMult4x4(VecMatrix, (s32*)ExecParams); CycleCount += 30; } ClipMatrixDirty = true; } break; case 0x19: // mult 4x3 if (MatrixMode == 0) { MatrixMult4x3(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixMult4x3(TexMatrix, (s32*)ExecParams); else { MatrixMult4x3(PosMatrix, (s32*)ExecParams); if (MatrixMode == 2) { MatrixMult4x3(VecMatrix, (s32*)ExecParams); CycleCount += 30; } ClipMatrixDirty = true; } break; case 0x1A: // mult 3x3 if (MatrixMode == 0) { MatrixMult3x3(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixMult3x3(TexMatrix, (s32*)ExecParams); else { MatrixMult3x3(PosMatrix, (s32*)ExecParams); if (MatrixMode == 2) { MatrixMult3x3(VecMatrix, (s32*)ExecParams); CycleCount += 30; } ClipMatrixDirty = true; } break; case 0x1B: // scale if (MatrixMode == 0) { MatrixScale(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixScale(TexMatrix, (s32*)ExecParams); else { MatrixScale(PosMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } break; case 0x1C: // translate if (MatrixMode == 0) { MatrixTranslate(ProjMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } else if (MatrixMode == 3) MatrixTranslate(TexMatrix, (s32*)ExecParams); else { MatrixTranslate(PosMatrix, (s32*)ExecParams); if (MatrixMode == 2) MatrixTranslate(VecMatrix, (s32*)ExecParams); ClipMatrixDirty = true; } break; case 0x20: // vertex color { u32 c = ExecParams[0]; u32 r = c & 0x1F; u32 g = (c >> 5) & 0x1F; u32 b = (c >> 10) & 0x1F; VertexColor[0] = r; VertexColor[1] = g; VertexColor[2] = b; } break; case 0x21: // normal Normal[0] = (s16)((ExecParams[0] & 0x000003FF) << 6) >> 6; Normal[1] = (s16)((ExecParams[0] & 0x000FFC00) >> 4) >> 6; Normal[2] = (s16)((ExecParams[0] & 0x3FF00000) >> 14) >> 6; CycleCount += CalculateLighting(); break; case 0x22: // texcoord RawTexCoords[0] = ExecParams[0] & 0xFFFF; RawTexCoords[1] = ExecParams[0] >> 16; if ((TexParam >> 30) == 1) { TexCoords[0] = (RawTexCoords[0]*TexMatrix[0] + RawTexCoords[1]*TexMatrix[4] + TexMatrix[8] + TexMatrix[12]) >> 12; TexCoords[1] = (RawTexCoords[0]*TexMatrix[1] + RawTexCoords[1]*TexMatrix[5] + TexMatrix[9] + TexMatrix[13]) >> 12; } else { TexCoords[0] = RawTexCoords[0]; TexCoords[1] = RawTexCoords[1]; } break; case 0x23: // full vertex CurVertex[0] = ExecParams[0] & 0xFFFF; CurVertex[1] = ExecParams[0] >> 16; CurVertex[2] = ExecParams[1] & 0xFFFF; SubmitVertex(); break; case 0x24: // 10-bit vertex CurVertex[0] = (ExecParams[0] & 0x000003FF) << 6; CurVertex[1] = (ExecParams[0] & 0x000FFC00) >> 4; CurVertex[2] = (ExecParams[0] & 0x3FF00000) >> 14; SubmitVertex(); break; case 0x25: // vertex XY CurVertex[0] = ExecParams[0] & 0xFFFF; CurVertex[1] = ExecParams[0] >> 16; SubmitVertex(); break; case 0x26: // vertex XZ CurVertex[0] = ExecParams[0] & 0xFFFF; CurVertex[2] = ExecParams[0] >> 16; SubmitVertex(); break; case 0x27: // vertex YZ CurVertex[1] = ExecParams[0] & 0xFFFF; CurVertex[2] = ExecParams[0] >> 16; SubmitVertex(); break; case 0x28: // 10-bit delta vertex CurVertex[0] += (s16)((ExecParams[0] & 0x000003FF) << 6) >> 6; CurVertex[1] += (s16)((ExecParams[0] & 0x000FFC00) >> 4) >> 6; CurVertex[2] += (s16)((ExecParams[0] & 0x3FF00000) >> 14) >> 6; SubmitVertex(); break; case 0x29: // polygon attributes PolygonAttr = ExecParams[0]; break; case 0x2A: // texture param TexParam = ExecParams[0]; break; case 0x2B: // texture palette TexPalette = ExecParams[0] & 0x1FFF; break; case 0x30: // diffuse/ambient material MatDiffuse[0] = ExecParams[0] & 0x1F; MatDiffuse[1] = (ExecParams[0] >> 5) & 0x1F; MatDiffuse[2] = (ExecParams[0] >> 10) & 0x1F; MatAmbient[0] = (ExecParams[0] >> 16) & 0x1F; MatAmbient[1] = (ExecParams[0] >> 21) & 0x1F; MatAmbient[2] = (ExecParams[0] >> 26) & 0x1F; if (ExecParams[0] & 0x8000) { VertexColor[0] = MatDiffuse[0]; VertexColor[1] = MatDiffuse[1]; VertexColor[2] = MatDiffuse[2]; } break; case 0x31: // specular/emission material MatSpecular[0] = ExecParams[0] & 0x1F; MatSpecular[1] = (ExecParams[0] >> 5) & 0x1F; MatSpecular[2] = (ExecParams[0] >> 10) & 0x1F; MatEmission[0] = (ExecParams[0] >> 16) & 0x1F; MatEmission[1] = (ExecParams[0] >> 21) & 0x1F; MatEmission[2] = (ExecParams[0] >> 26) & 0x1F; UseShininessTable = (ExecParams[0] & 0x8000) != 0; break; case 0x32: // light direction { u32 l = ExecParams[0] >> 30; s16 dir[3]; dir[0] = (s16)((ExecParams[0] & 0x000003FF) << 6) >> 6; dir[1] = (s16)((ExecParams[0] & 0x000FFC00) >> 4) >> 6; dir[2] = (s16)((ExecParams[0] & 0x3FF00000) >> 14) >> 6; LightDirection[l][0] = (dir[0]*VecMatrix[0] + dir[1]*VecMatrix[4] + dir[2]*VecMatrix[8]) >> 12; LightDirection[l][1] = (dir[0]*VecMatrix[1] + dir[1]*VecMatrix[5] + dir[2]*VecMatrix[9]) >> 12; LightDirection[l][2] = (dir[0]*VecMatrix[2] + dir[1]*VecMatrix[6] + dir[2]*VecMatrix[10]) >> 12; } break; case 0x33: // light color { u32 l = ExecParams[0] >> 30; LightColor[l][0] = ExecParams[0] & 0x1F; LightColor[l][1] = (ExecParams[0] >> 5) & 0x1F; LightColor[l][2] = (ExecParams[0] >> 10) & 0x1F; } break; case 0x34: // shininess table { for (int i = 0; i < 128; i += 4) { u32 val = ExecParams[i >> 2]; ShininessTable[i + 0] = val & 0xFF; ShininessTable[i + 1] = (val >> 8) & 0xFF; ShininessTable[i + 2] = (val >> 16) & 0xFF; ShininessTable[i + 3] = val >> 24; } } break; case 0x40: // begin polygons PolygonMode = ExecParams[0] & 0x3; VertexNum = 0; VertexNumInPoly = 0; NumConsecutivePolygons = 0; LastStripPolygon = NULL; CurPolygonAttr = PolygonAttr; break; case 0x50: // flush FlushRequest = 1; FlushAttributes = ExecParams[0] & 0x3; CycleCount = 392; break; case 0x60: // viewport x1,y1,x2,y2 // note: viewport Y coordinates are upside-down Viewport[0] = ExecParams[0] & 0xFF; // x0 Viewport[1] = (191 - ((ExecParams[0] >> 8) & 0xFF)) & 0xFF; // y0 Viewport[2] = (ExecParams[0] >> 16) & 0xFF; // x1 Viewport[3] = (191 - (ExecParams[0] >> 24)) & 0xFF; // y1 Viewport[4] = (Viewport[2] - Viewport[0] + 1) & 0x1FF; // width Viewport[5] = (Viewport[1] - Viewport[3] + 1) & 0xFF; // height break; case 0x70: // box test NumTestCommands -= 3; BoxTest(ExecParams); break; case 0x71: // pos test NumTestCommands -= 2; CurVertex[0] = ExecParams[0] & 0xFFFF; CurVertex[1] = ExecParams[0] >> 16; CurVertex[2] = ExecParams[1] & 0xFFFF; PosTest(); break; case 0x72: // vec test NumTestCommands--; VecTest(ExecParams); break; default: //if (entry.Command != 0x41) //printf("!! UNKNOWN GX COMMAND %02X %08X\n", entry.Command, entry.Param); break; } } } void Run(s32 cycles) { if (FlushRequest) return; if (CycleCount <= 0 && CmdPIPE->IsEmpty()) return; CycleCount -= cycles; if (CycleCount <= 0) { while (CycleCount <= 0 && !CmdPIPE->IsEmpty()) { if (NumPushPopCommands == 0) GXStat &= ~(1<<14); if (NumTestCommands == 0) GXStat &= ~(1<<0); ExecuteCommand(); } } if (CycleCount <= 0 && CmdPIPE->IsEmpty()) { CycleCount = 0; GXStat &= ~(1<<27); if (NumPushPopCommands == 0) GXStat &= ~(1<<14); if (NumTestCommands == 0) GXStat &= ~(1<<0); } } void CheckFIFOIRQ() { bool irq = false; switch (GXStat >> 30) { case 1: irq = (CmdFIFO->Level() < 128); break; case 2: irq = CmdFIFO->IsEmpty(); break; } if (irq) NDS::SetIRQ(0, NDS::IRQ_GXFIFO); else NDS::ClearIRQ(0, NDS::IRQ_GXFIFO); } void CheckFIFODMA() { if (CmdFIFO->Level() < 128) NDS::CheckDMAs(0, 0x07); } void VCount144() { SoftRenderer::VCount144(); } bool YSort(Polygon* a, Polygon* b) { // polygon sorting rules: // * opaque polygons come first // * polygons with lower bottom Y come first // * upon equal bottom Y, polygons with lower top Y come first // * upon equal bottom AND top Y, original ordering is used // the SortKey is calculated as to implement these rules return a->SortKey < b->SortKey; } void VBlank() { if (FlushRequest) { if (NumPolygons) { // separate translucent polygons from opaque ones u32 io = 0, it = NumOpaquePolygons; for (u32 i = 0; i < NumPolygons; i++) { Polygon* poly = &CurPolygonRAM[i]; if (poly->Translucent) RenderPolygonRAM[it++] = poly; else RenderPolygonRAM[io++] = poly; } // apply Y-sorting std::stable_sort(RenderPolygonRAM.begin(), RenderPolygonRAM.begin() + ((FlushAttributes & 0x1) ? NumOpaquePolygons : NumPolygons), YSort); } RenderNumPolygons = NumPolygons; RenderDispCnt = DispCnt; RenderAlphaRef = AlphaRef; memcpy(RenderEdgeTable, EdgeTable, 8*2); memcpy(RenderToonTable, ToonTable, 32*2); RenderFogColor = FogColor; RenderFogOffset = FogOffset * 0x200; RenderFogShift = (RenderDispCnt >> 8) & 0xF; RenderFogDensityTable[0] = FogDensityTable[0]; memcpy(&RenderFogDensityTable[1], FogDensityTable, 32); RenderFogDensityTable[33] = FogDensityTable[31]; RenderClearAttr1 = ClearAttr1; RenderClearAttr2 = ClearAttr2; CurRAMBank = CurRAMBank?0:1; CurVertexRAM = &VertexRAM[CurRAMBank ? 6144 : 0]; CurPolygonRAM = &PolygonRAM[CurRAMBank ? 2048 : 0]; NumVertices = 0; NumPolygons = 0; NumOpaquePolygons = 0; FlushRequest = 0; } } void VCount215() { SoftRenderer::RenderFrame(); } void RequestLine(int line) { return SoftRenderer::RequestLine(line); } u32* GetLine(int line) { return SoftRenderer::GetLine(line); } void WriteToGXFIFO(u32 val) { if (NumCommands == 0) { NumCommands = 4; CurCommand = val; ParamCount = 0; TotalParams = CmdNumParams[CurCommand & 0xFF]; if (TotalParams > 0) return; } else ParamCount++; for (;;) { if ((CurCommand & 0xFF) || (NumCommands == 4 && CurCommand == 0)) { CmdFIFOEntry entry; entry.Command = CurCommand & 0xFF; entry.Param = val; CmdFIFOWrite(entry); } if (ParamCount >= TotalParams) { CurCommand >>= 8; NumCommands--; if (NumCommands == 0) break; ParamCount = 0; TotalParams = CmdNumParams[CurCommand & 0xFF]; } if (ParamCount < TotalParams) break; } } u8 Read8(u32 addr) { printf("unknown GPU3D read8 %08X\n", addr); return 0; } u16 Read16(u32 addr) { switch (addr) { case 0x04000060: return DispCnt; case 0x04000320: return 46; // TODO, eventually case 0x04000604: return NumPolygons; case 0x04000606: return NumVertices; case 0x04000630: return VecTestResult[0]; case 0x04000632: return VecTestResult[1]; case 0x04000634: return VecTestResult[2]; } printf("unknown GPU3D read16 %08X\n", addr); return 0; } u32 Read32(u32 addr) { switch (addr) { case 0x04000060: return DispCnt; case 0x04000320: return 46; // TODO, eventually case 0x04000600: { u32 fifolevel = CmdFIFO->Level(); return GXStat | ((PosMatrixStackPointer & 0x1F) << 8) | ((ProjMatrixStackPointer & 0x1) << 13) | (fifolevel << 16) | (fifolevel < 128 ? (1<<25) : 0) | (fifolevel == 0 ? (1<<26) : 0); } case 0x04000604: return NumPolygons | (NumVertices << 16); case 0x04000620: return PosTestResult[0]; case 0x04000624: return PosTestResult[1]; case 0x04000628: return PosTestResult[2]; case 0x0400062C: return PosTestResult[3]; case 0x04000680: return VecMatrix[0]; case 0x04000684: return VecMatrix[1]; case 0x04000688: return VecMatrix[2]; case 0x0400068C: return VecMatrix[4]; case 0x04000690: return VecMatrix[5]; case 0x04000694: return VecMatrix[6]; case 0x04000698: return VecMatrix[8]; case 0x0400069C: return VecMatrix[9]; case 0x040006A0: return VecMatrix[10]; } if (addr >= 0x04000640 && addr < 0x04000680) { UpdateClipMatrix(); return ClipMatrix[(addr & 0x3C) >> 2]; } //printf("unknown GPU3D read32 %08X\n", addr); return 0; } void Write8(u32 addr, u8 val) { switch (addr) { case 0x04000340: AlphaRefVal = val & 0x1F; AlphaRef = (DispCnt & (1<<2)) ? AlphaRefVal : 0; return; } if (addr >= 0x04000360 && addr < 0x04000380) { FogDensityTable[addr - 0x04000360] = val & 0x7F; return; } printf("unknown GPU3D write8 %08X %02X\n", addr, val); } void Write16(u32 addr, u16 val) { switch (addr) { case 0x04000060: DispCnt = (val & 0x4FFF) | (DispCnt & 0x3000); if (val & (1<<12)) DispCnt &= ~(1<<12); if (val & (1<<13)) DispCnt &= ~(1<<13); AlphaRef = (DispCnt & (1<<2)) ? AlphaRefVal : 0; return; case 0x04000340: AlphaRefVal = val & 0x1F; AlphaRef = (DispCnt & (1<<2)) ? AlphaRefVal : 0; return; case 0x04000350: ClearAttr1 = (ClearAttr1 & 0xFFFF0000) | val; return; case 0x04000352: ClearAttr1 = (ClearAttr1 & 0xFFFF) | (val << 16); return; case 0x04000354: ClearAttr2 = (ClearAttr2 & 0xFFFF0000) | val; return; case 0x04000356: ClearAttr2 = (ClearAttr2 & 0xFFFF) | (val << 16); return; case 0x04000358: FogColor = (FogColor & 0xFFFF0000) | val; return; case 0x0400035A: FogColor = (FogColor & 0xFFFF) | (val << 16); return; case 0x0400035C: FogOffset = val & 0x7FFF; return; } if (addr >= 0x04000330 && addr < 0x04000340) { EdgeTable[(addr - 0x04000330) >> 1] = val; return; } if (addr >= 0x04000360 && addr < 0x04000380) { addr -= 0x04000360; FogDensityTable[addr] = val & 0x7F; FogDensityTable[addr+1] = (val >> 8) & 0x7F; return; } if (addr >= 0x04000380 && addr < 0x040003C0) { ToonTable[(addr - 0x04000380) >> 1] = val; return; } printf("unknown GPU3D write16 %08X %04X\n", addr, val); } void Write32(u32 addr, u32 val) { switch (addr) { case 0x04000060: DispCnt = (val & 0x4FFF) | (DispCnt & 0x3000); if (val & (1<<12)) DispCnt &= ~(1<<12); if (val & (1<<13)) DispCnt &= ~(1<<13); AlphaRef = (DispCnt & (1<<2)) ? AlphaRefVal : 0; return; case 0x04000340: AlphaRefVal = val & 0x1F; AlphaRef = (DispCnt & (1<<2)) ? AlphaRefVal : 0; return; case 0x04000350: ClearAttr1 = val; return; case 0x04000354: ClearAttr2 = val; return; case 0x04000358: FogColor = val; return; case 0x0400035C: FogOffset = val & 0x7FFF; return; case 0x04000600: if (val & 0x8000) { GXStat &= ~0x8000; ProjMatrixStackPointer = 0; //PosMatrixStackPointer = 0; TexMatrixStackPointer = 0; } val &= 0xC0000000; GXStat &= 0x3FFFFFFF; GXStat |= val; CheckFIFOIRQ(); return; } if (addr >= 0x04000400 && addr < 0x04000440) { WriteToGXFIFO(val); return; } if (addr >= 0x04000440 && addr < 0x040005CC) { CmdFIFOEntry entry; entry.Command = (addr & 0x1FC) >> 2; entry.Param = val; CmdFIFOWrite(entry); return; } if (addr >= 0x04000330 && addr < 0x04000340) { addr = (addr - 0x04000330) >> 1; EdgeTable[addr] = val & 0xFFFF; EdgeTable[addr+1] = val >> 16; return; } if (addr >= 0x04000360 && addr < 0x04000380) { addr -= 0x04000360; FogDensityTable[addr] = val & 0x7F; FogDensityTable[addr+1] = (val >> 8) & 0x7F; FogDensityTable[addr+2] = (val >> 16) & 0x7F; FogDensityTable[addr+3] = (val >> 24) & 0x7F; return; } if (addr >= 0x04000380 && addr < 0x040003C0) { addr = (addr - 0x04000380) >> 1; ToonTable[addr] = val & 0xFFFF; ToonTable[addr+1] = val >> 16; return; } printf("unknown GPU3D write32 %08X %08X\n", addr, val); } }