/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "GPU.h" // notes on color conversion // // * BLDCNT special effects are applied on 18bit colors // -> layers are converted to 18bit before being composited // -> 'brightness up' effect does: x = x + (63-x)*factor // * colors are converted as follows: 18bit = 15bit * 2 // -> white comes out as 62,62,62 and not 63,63,63 // * VRAM/FIFO display modes convert colors the same way // * 3D engine converts colors differently (18bit = 15bit * 2 + 1, except 0 = 0) // * 'screen disabled' white is 63,63,63 // * [Gericom] bit15 is used as bottom green bit for palettes. TODO: check where this applies. // tested on the normal BG palette and applies there // // oh also, changing DISPCNT bit16-17 midframe doesn't work (ignored? applied for next frame?) // TODO, eventually: check whether other DISPCNT bits can be changed midframe // // for VRAM display mode, VRAM must be mapped to LCDC // // FIFO display mode: // * the 'FIFO' is a circular buffer of 32 bytes (16 pixels) // * the buffer doesn't get empty, the display controller keeps reading from it // -> if it isn't updated, the contents will be repeated every 16 pixels // * the write pointer is incremented when writing to the higher 16 bits of the FIFO register (0x04000068) // * the write pointer is reset upon VBlank // * FIFO DMA (mode 4) is triggered every 8 pixels. start bit is cleared upon VBlank. // // sprite blending rules // * destination must be selected as 2nd target // * sprite must be semitransparent or bitmap sprite // * blending is applied instead of the selected color effect, even if it is 'none'. // * for bitmap sprites: EVA = alpha+1, EVB = 16-EVA // * for bitmap sprites: alpha=0 is always transparent, even if blending doesn't apply // // 3D blending rules // // 3D/3D blending seems to follow these equations: // dstColor = srcColor*srcAlpha + dstColor*(1-srcAlpha) // dstAlpha = max(srcAlpha, dstAlpha) // blending isn't applied if dstAlpha is zero. // // 3D/2D blending rules // * if destination selected as 2nd target: // blending is applied instead of the selected color effect, using full 5bit alpha from 3D layer // this even if the selected color effect is 'none'. // apparently this works even if BG0 isn't selected as 1st target // * if BG0 is selected as 1st target, destination not selected as 2nd target: // brightness up/down effect is applied if selected. if blending is selected, it doesn't apply. // * 3D layer pixels with alpha=0 are always transparent. // // mosaic: // * mosaic grid starts at 0,0 regardless of the BG/sprite position // * when changing it midframe: new X setting is applied immediately, new Y setting is applied only // after the end of the current mosaic row // TODO: find which parts of DISPCNT are latched. for example, not possible to change video mode midframe. GPU2D::GPU2D(u32 num) { Num = num; } GPU2D::~GPU2D() { } void GPU2D::Reset() { DispCnt = 0; memset(BGCnt, 0, 4*2); memset(BGXPos, 0, 4*2); memset(BGYPos, 0, 4*2); memset(BGXRef, 0, 2*4); memset(BGYRef, 0, 2*4); memset(BGXRefInternal, 0, 2*4); memset(BGYRefInternal, 0, 2*4); memset(BGRotA, 0, 2*2); memset(BGRotB, 0, 2*2); memset(BGRotC, 0, 2*2); memset(BGRotD, 0, 2*2); memset(Win0Coords, 0, 4); memset(Win1Coords, 0, 4); memset(WinCnt, 0, 4); BGMosaicSize[0] = 0; BGMosaicSize[1] = 0; OBJMosaicSize[0] = 0; OBJMosaicSize[1] = 0; BGMosaicY = 0; BGMosaicYMax = 0; OBJMosaicY = 0; OBJMosaicYMax = 0; BlendCnt = 0; EVA = 16; EVB = 0; EVY = 0; memset(DispFIFO, 0, 16*2); DispFIFOReadPtr = 0; DispFIFOWritePtr = 0; memset(DispFIFOBuffer, 0, 256*2); CaptureCnt = 0; MasterBrightness = 0; BGExtPalStatus[0] = 0; BGExtPalStatus[1] = 0; BGExtPalStatus[2] = 0; BGExtPalStatus[3] = 0; OBJExtPalStatus = 0; } void GPU2D::SetFramebuffer(u32* buf) { Framebuffer = buf; } u8 GPU2D::Read8(u32 addr) { switch (addr & 0x00000FFF) { case 0x048: return WinCnt[0]; case 0x049: return WinCnt[1]; case 0x04A: return WinCnt[2]; case 0x04B: return WinCnt[3]; } printf("unknown GPU read8 %08X\n", addr); return 0; } u16 GPU2D::Read16(u32 addr) { switch (addr & 0x00000FFF) { case 0x000: return DispCnt&0xFFFF; case 0x002: return DispCnt>>16; case 0x008: return BGCnt[0]; case 0x00A: return BGCnt[1]; case 0x00C: return BGCnt[2]; case 0x00E: return BGCnt[3]; case 0x048: return WinCnt[0] | (WinCnt[1] << 8); case 0x04A: return WinCnt[2] | (WinCnt[3] << 8); case 0x050: return BlendCnt; case 0x052: return BlendAlpha; // BLDY is write-only case 0x064: return CaptureCnt & 0xFFFF; case 0x066: return CaptureCnt >> 16; case 0x06C: return MasterBrightness; } printf("unknown GPU read16 %08X\n", addr); return 0; } u32 GPU2D::Read32(u32 addr) { switch (addr & 0x00000FFF) { case 0x000: return DispCnt; case 0x064: return CaptureCnt; } return Read16(addr) | (Read16(addr+2) << 16); } void GPU2D::Write8(u32 addr, u8 val) { switch (addr & 0x00000FFF) { case 0x000: DispCnt = (DispCnt & 0xFFFFFF00) | val; return; case 0x001: DispCnt = (DispCnt & 0xFFFF00FF) | (val << 8); return; case 0x002: DispCnt = (DispCnt & 0xFF00FFFF) | (val << 16); return; case 0x003: DispCnt = (DispCnt & 0x00FFFFFF) | (val << 24); return; case 0x008: BGCnt[0] = (BGCnt[0] & 0xFF00) | val; return; case 0x009: BGCnt[0] = (BGCnt[0] & 0x00FF) | (val << 8); return; case 0x00A: BGCnt[1] = (BGCnt[1] & 0xFF00) | val; return; case 0x00B: BGCnt[1] = (BGCnt[1] & 0x00FF) | (val << 8); return; case 0x00C: BGCnt[2] = (BGCnt[2] & 0xFF00) | val; return; case 0x00D: BGCnt[2] = (BGCnt[2] & 0x00FF) | (val << 8); return; case 0x00E: BGCnt[3] = (BGCnt[3] & 0xFF00) | val; return; case 0x00F: BGCnt[3] = (BGCnt[3] & 0x00FF) | (val << 8); return; case 0x010: BGXPos[0] = (BGXPos[0] & 0xFF00) | val; return; case 0x011: BGXPos[0] = (BGXPos[0] & 0x00FF) | (val << 8); return; case 0x012: BGYPos[0] = (BGYPos[0] & 0xFF00) | val; return; case 0x013: BGYPos[0] = (BGYPos[0] & 0x00FF) | (val << 8); return; case 0x014: BGXPos[1] = (BGXPos[1] & 0xFF00) | val; return; case 0x015: BGXPos[1] = (BGXPos[1] & 0x00FF) | (val << 8); return; case 0x016: BGYPos[1] = (BGYPos[1] & 0xFF00) | val; return; case 0x017: BGYPos[1] = (BGYPos[1] & 0x00FF) | (val << 8); return; case 0x018: BGXPos[2] = (BGXPos[2] & 0xFF00) | val; return; case 0x019: BGXPos[2] = (BGXPos[2] & 0x00FF) | (val << 8); return; case 0x01A: BGYPos[2] = (BGYPos[2] & 0xFF00) | val; return; case 0x01B: BGYPos[2] = (BGYPos[2] & 0x00FF) | (val << 8); return; case 0x01C: BGXPos[3] = (BGXPos[3] & 0xFF00) | val; return; case 0x01D: BGXPos[3] = (BGXPos[3] & 0x00FF) | (val << 8); return; case 0x01E: BGYPos[3] = (BGYPos[3] & 0xFF00) | val; return; case 0x01F: BGYPos[3] = (BGYPos[3] & 0x00FF) | (val << 8); return; case 0x040: Win0Coords[1] = val; return; case 0x041: Win0Coords[0] = val; return; case 0x042: Win1Coords[1] = val; return; case 0x043: Win1Coords[0] = val; return; case 0x044: Win0Coords[3] = val; return; case 0x045: Win0Coords[2] = val; return; case 0x046: Win1Coords[3] = val; return; case 0x047: Win1Coords[2] = val; return; case 0x048: WinCnt[0] = val; return; case 0x049: WinCnt[1] = val; return; case 0x04A: WinCnt[2] = val; return; case 0x04B: WinCnt[3] = val; return; case 0x04C: BGMosaicSize[0] = val & 0xF; BGMosaicSize[1] = val >> 4; return; case 0x04D: OBJMosaicSize[0] = val & 0xF; OBJMosaicSize[1] = val >> 4; return; case 0x050: BlendCnt = (BlendCnt & 0x3F00) | val; return; case 0x051: BlendCnt = (BlendCnt & 0x00FF) | (val << 8); return; case 0x052: BlendAlpha = (BlendAlpha & 0x1F00) | (val & 0x1F); EVA = val & 0x1F; if (EVA > 16) EVA = 16; return; case 0x053: BlendAlpha = (BlendAlpha & 0x001F) | ((val & 0x1F) << 8); EVB = val & 0x1F; if (EVB > 16) EVB = 16; return; case 0x054: EVY = val & 0x1F; if (EVY > 16) EVY = 16; return; } printf("unknown GPU write8 %08X %02X\n", addr, val); } void GPU2D::Write16(u32 addr, u16 val) { switch (addr & 0x00000FFF) { case 0x000: DispCnt = (DispCnt & 0xFFFF0000) | val; return; case 0x002: DispCnt = (DispCnt & 0x0000FFFF) | (val << 16); return; case 0x008: BGCnt[0] = val; return; case 0x00A: BGCnt[1] = val; return; case 0x00C: BGCnt[2] = val; return; case 0x00E: BGCnt[3] = val; return; case 0x010: BGXPos[0] = val; return; case 0x012: BGYPos[0] = val; return; case 0x014: BGXPos[1] = val; return; case 0x016: BGYPos[1] = val; return; case 0x018: BGXPos[2] = val; return; case 0x01A: BGYPos[2] = val; return; case 0x01C: BGXPos[3] = val; return; case 0x01E: BGYPos[3] = val; return; case 0x020: BGRotA[0] = val; return; case 0x022: BGRotB[0] = val; return; case 0x024: BGRotC[0] = val; return; case 0x026: BGRotD[0] = val; return; case 0x028: BGXRef[0] = (BGXRef[0] & 0xFFFF0000) | val; if (GPU::VCount < 192) BGXRefInternal[0] = BGXRef[0]; return; case 0x02A: if (val & 0x0800) val |= 0xF000; BGXRef[0] = (BGXRef[0] & 0xFFFF) | (val << 16); if (GPU::VCount < 192) BGXRefInternal[0] = BGXRef[0]; return; case 0x02C: BGYRef[0] = (BGYRef[0] & 0xFFFF0000) | val; if (GPU::VCount < 192) BGYRefInternal[0] = BGYRef[0]; return; case 0x02E: if (val & 0x0800) val |= 0xF000; BGYRef[0] = (BGYRef[0] & 0xFFFF) | (val << 16); if (GPU::VCount < 192) BGYRefInternal[0] = BGYRef[0]; return; case 0x030: BGRotA[1] = val; return; case 0x032: BGRotB[1] = val; return; case 0x034: BGRotC[1] = val; return; case 0x036: BGRotD[1] = val; return; case 0x038: BGXRef[1] = (BGXRef[1] & 0xFFFF0000) | val; if (GPU::VCount < 192) BGXRefInternal[1] = BGXRef[1]; return; case 0x03A: if (val & 0x0800) val |= 0xF000; BGXRef[1] = (BGXRef[1] & 0xFFFF) | (val << 16); if (GPU::VCount < 192) BGXRefInternal[1] = BGXRef[1]; return; case 0x03C: BGYRef[1] = (BGYRef[1] & 0xFFFF0000) | val; if (GPU::VCount < 192) BGYRefInternal[1] = BGYRef[1]; return; case 0x03E: if (val & 0x0800) val |= 0xF000; BGYRef[1] = (BGYRef[1] & 0xFFFF) | (val << 16); if (GPU::VCount < 192) BGYRefInternal[1] = BGYRef[1]; return; case 0x040: Win0Coords[1] = val & 0xFF; Win0Coords[0] = val >> 8; return; case 0x042: Win1Coords[1] = val & 0xFF; Win1Coords[0] = val >> 8; return; case 0x044: Win0Coords[3] = val & 0xFF; Win0Coords[2] = val >> 8; return; case 0x046: Win1Coords[3] = val & 0xFF; Win1Coords[2] = val >> 8; return; case 0x048: WinCnt[0] = val & 0xFF; WinCnt[1] = val >> 8; return; case 0x04A: WinCnt[2] = val & 0xFF; WinCnt[3] = val >> 8; return; case 0x04C: BGMosaicSize[0] = val & 0xF; BGMosaicSize[1] = (val >> 4) & 0xF; OBJMosaicSize[0] = (val >> 8) & 0xF; OBJMosaicSize[1] = val >> 12; return; case 0x050: BlendCnt = val & 0x3FFF; return; case 0x052: BlendAlpha = val & 0x1F1F; EVA = val & 0x1F; if (EVA > 16) EVA = 16; EVB = (val >> 8) & 0x1F; if (EVB > 16) EVB = 16; return; case 0x054: EVY = val & 0x1F; if (EVY > 16) EVY = 16; return; case 0x068: DispFIFO[DispFIFOWritePtr] = val; return; case 0x06A: DispFIFO[DispFIFOWritePtr+1] = val; DispFIFOWritePtr += 2; DispFIFOWritePtr &= 0xF; return; case 0x06C: MasterBrightness = val; return; } //printf("unknown GPU write16 %08X %04X\n", addr, val); } void GPU2D::Write32(u32 addr, u32 val) { switch (addr & 0x00000FFF) { case 0x000: DispCnt = val; return; case 0x028: if (val & 0x08000000) val |= 0xF0000000; BGXRef[0] = val; if (GPU::VCount < 192) BGXRefInternal[0] = BGXRef[0]; return; case 0x02C: if (val & 0x08000000) val |= 0xF0000000; BGYRef[0] = val; if (GPU::VCount < 192) BGYRefInternal[0] = BGYRef[0]; return; case 0x038: if (val & 0x08000000) val |= 0xF0000000; BGXRef[1] = val; if (GPU::VCount < 192) BGXRefInternal[1] = BGXRef[1]; return; case 0x03C: if (val & 0x08000000) val |= 0xF0000000; BGYRef[1] = val; if (GPU::VCount < 192) BGYRefInternal[1] = BGYRef[1]; return; case 0x064: // TODO: check what happens when writing to it during display // esp. if a capture is happening CaptureCnt = val & 0xEF3F1F1F; return; case 0x068: DispFIFO[DispFIFOWritePtr] = val & 0xFFFF; DispFIFO[DispFIFOWritePtr+1] = val >> 16; DispFIFOWritePtr += 2; DispFIFOWritePtr &= 0xF; return; } Write16(addr, val&0xFFFF); Write16(addr+2, val>>16); } void GPU2D::DrawScanline(u32 line) { u32* dst = &Framebuffer[256*line]; u32 mode1gfx[256]; // request each 3D scanline in advance // this is required for the threaded mode of the software renderer // (alternately we could call GetLine() once and store the result somewhere) if (Num == 0) GPU3D::RequestLine(line); line = GPU::VCount; // scanlines that end up outside of the GPU drawing range // (as a result of writing to VCount) are filled white if (line > 192) { for (int i = 0; i < 256; i++) dst[i] = 0xFFFFFFFF; return; } u32 dispmode = DispCnt >> 16; dispmode &= (Num ? 0x1 : 0x3); // always render regular graphics DrawScanline_Mode1(line, mode1gfx); switch (dispmode) { case 0: // screen off { for (int i = 0; i < 256; i++) dst[i] = 0xFF3F3F3F; } break; case 1: // regular display { for (int i = 0; i < 256; i++) dst[i] = mode1gfx[i]; } break; case 2: // VRAM display { u32 vrambank = (DispCnt >> 18) & 0x3; if (GPU::VRAMMap_LCDC & (1<> 4; u8 b = (color & 0x7C00) >> 9; dst[i] = r | (g << 8) | (b << 16); } } else { for (int i = 0; i < 256; i++) { dst[i] = 0; } } } break; case 3: // FIFO display { for (int i = 0; i < 256; i++) { u16 color = DispFIFOBuffer[i]; u8 r = (color & 0x001F) << 1; u8 g = (color & 0x03E0) >> 4; u8 b = (color & 0x7C00) >> 9; dst[i] = r | (g << 8) | (b << 16); } } break; } // capture if ((Num == 0) && (CaptureCnt & (1<<31))) { u32 capwidth, capheight; switch ((CaptureCnt >> 20) & 0x3) { case 0: capwidth = 128; capheight = 128; break; case 1: capwidth = 256; capheight = 64; break; case 2: capwidth = 256; capheight = 128; break; case 3: capwidth = 256; capheight = 192; break; } if (line < capheight) DoCapture(line, capwidth, mode1gfx); } // master brightness if (dispmode != 0) { if ((MasterBrightness >> 14) == 1) { // up u32 factor = MasterBrightness & 0x1F; if (factor > 16) factor = 16; for (int i = 0; i < 256; i++) { u32 val = dst[i]; u32 r = val & 0x00003F; u32 g = val & 0x003F00; u32 b = val & 0x3F0000; r += (((0x00003F - r) * factor) >> 4); g += ((((0x003F00 - g) * factor) >> 4) & 0x003F00); b += ((((0x3F0000 - b) * factor) >> 4) & 0x3F0000); dst[i] = r | g | b; } } else if ((MasterBrightness >> 14) == 2) { // down u32 factor = MasterBrightness & 0x1F; if (factor > 16) factor = 16; for (int i = 0; i < 256; i++) { u32 val = dst[i]; u32 r = val & 0x00003F; u32 g = val & 0x003F00; u32 b = val & 0x3F0000; r -= ((r * factor) >> 4); g -= (((g * factor) >> 4) & 0x003F00); b -= (((b * factor) >> 4) & 0x3F0000); dst[i] = r | g | b; } } } // convert to 32-bit RGBA for (int i = 0; i < 256; i++) dst[i] = ((dst[i] & 0x003F3F3F) << 2) | ((dst[i] & 0x00303030) >> 4) | 0xFF000000; } void GPU2D::VBlank() { CaptureCnt &= ~(1<<31); DispFIFOReadPtr = 0; DispFIFOWritePtr = 0; } void GPU2D::VBlankEnd() { // TODO: find out the exact time this happens BGXRefInternal[0] = BGXRef[0]; BGXRefInternal[1] = BGXRef[1]; BGYRefInternal[0] = BGYRef[0]; BGYRefInternal[1] = BGYRef[1]; BGMosaicY = 0; BGMosaicYMax = BGMosaicSize[1]; OBJMosaicY = 0; OBJMosaicYMax = OBJMosaicSize[1]; } void GPU2D::DoCapture(u32 line, u32 width, u32* src) { u32 dstvram = (CaptureCnt >> 16) & 0x3; // TODO: confirm this // it should work like VRAM display mode, which requires VRAM to be mapped to LCDC if (!(GPU::VRAMMap_LCDC & (1<> 18) & 0x3) << 14) + (line * width); if (CaptureCnt & (1<<24)) src = (u32*)GPU3D::GetLine(line); u16* srcB = NULL; u32 srcBaddr = line * 256; if (CaptureCnt & (1<<25)) { srcB = &DispFIFOBuffer[0]; srcBaddr = 0; } else { u32 srcvram = (DispCnt >> 18) & 0x3; if (GPU::VRAMMap_LCDC & (1<> 16) & 0x3) != 2) srcBaddr += ((CaptureCnt >> 26) & 0x3) << 14; } dstaddr &= 0xFFFF; srcBaddr &= 0xFFFF; switch ((CaptureCnt >> 29) & 0x3) { case 0: // source A { for (u32 i = 0; i < width; i++) { u32 val = src[i]; // TODO: check what happens when alpha=0 u32 r = (val >> 1) & 0x1F; u32 g = (val >> 9) & 0x1F; u32 b = (val >> 17) & 0x1F; u32 a = ((val >> 24) != 0) ? 0x8000 : 0; dst[dstaddr] = r | (g << 5) | (b << 10) | a; dstaddr = (dstaddr + 1) & 0xFFFF; } } break; case 1: // source B { if (srcB) { for (u32 i = 0; i < width; i++) { dst[dstaddr] = srcB[srcBaddr]; srcBaddr = (srcBaddr + 1) & 0xFFFF; dstaddr = (dstaddr + 1) & 0xFFFF; } } else { for (u32 i = 0; i < width; i++) { dst[dstaddr] = 0; dstaddr = (dstaddr + 1) & 0xFFFF; } } } break; case 2: // sources A+B case 3: { u32 eva = CaptureCnt & 0x1F; u32 evb = (CaptureCnt >> 8) & 0x1F; // checkme if (eva > 16) eva = 16; if (evb > 16) evb = 16; if (srcB) { for (u32 i = 0; i < width; i++) { u32 val = src[i]; // TODO: check what happens when alpha=0 u32 rA = (val >> 1) & 0x1F; u32 gA = (val >> 9) & 0x1F; u32 bA = (val >> 17) & 0x1F; u32 aA = ((val >> 24) != 0) ? 1 : 0; val = srcB[srcBaddr]; u32 rB = val & 0x1F; u32 gB = (val >> 5) & 0x1F; u32 bB = (val >> 10) & 0x1F; u32 aB = val >> 15; u32 rD = ((rA * aA * eva) + (rB * aB * evb)) >> 4; u32 gD = ((gA * aA * eva) + (gB * aB * evb)) >> 4; u32 bD = ((bA * aA * eva) + (bB * aB * evb)) >> 4; u32 aD = (eva>0 ? aA : 0) | (evb>0 ? aB : 0); if (rD > 0x1F) rD = 0x1F; if (gD > 0x1F) gD = 0x1F; if (bD > 0x1F) bD = 0x1F; dst[dstaddr] = rD | (gD << 5) | (bD << 10) | (aD << 15); srcBaddr = (srcBaddr + 1) & 0xFFFF; dstaddr = (dstaddr + 1) & 0xFFFF; } } else { for (u32 i = 0; i < width; i++) { u32 val = src[i]; // TODO: check what happens when alpha=0 u32 rA = (val >> 1) & 0x1F; u32 gA = (val >> 9) & 0x1F; u32 bA = (val >> 17) & 0x1F; u32 aA = ((val >> 24) != 0) ? 1 : 0; u32 rD = (rA * aA * eva) >> 4; u32 gD = (gA * aA * eva) >> 4; u32 bD = (bA * aA * eva) >> 4; u32 aD = (eva>0 ? aA : 0); dst[dstaddr] = rD | (gD << 5) | (bD << 10) | (aD << 15); dstaddr = (dstaddr + 1) & 0xFFFF; } } } break; } } void GPU2D::SampleFIFO(u32 offset, u32 num) { for (u32 i = 0; i < num; i++) { u16 val = DispFIFO[DispFIFOReadPtr]; DispFIFOReadPtr++; DispFIFOReadPtr &= 0xF; DispFIFOBuffer[offset+i] = val; } } void GPU2D::BGExtPalDirty(u32 base) { BGExtPalStatus[base] = 0; BGExtPalStatus[base+1] = 0; } void GPU2D::OBJExtPalDirty() { OBJExtPalStatus = 0; } u16* GPU2D::GetBGExtPal(u32 slot, u32 pal) { u16* dst = &BGExtPalCache[slot][pal << 8]; if (!(BGExtPalStatus[slot] & (1< 0) x2 = 256; if (x1 > x2) x2 = 255; // checkme for (u32 i = x1; i < x2; i++) mask[i] = WinCnt[1]; } if ((DispCnt & (1<<13)) && Win0Active) { // window 0 u32 x1 = Win0Coords[0]; u32 x2 = Win0Coords[1]; if (x2 == 0 && x1 > 0) x2 = 256; if (x1 > x2) x2 = 255; // checkme for (u32 i = x1; i < x2; i++) mask[i] = WinCnt[0]; } } template void GPU2D::DrawScanlineBGMode(u32 line, u32* spritebuf, u32* dst) { for (int i = 3; i >= 0; i--) { if ((BGCnt[3] & 0x3) == i) { if (DispCnt & 0x0800) { if (bgmode >= 3) DrawBG_Extended(line, dst, 3); else if (bgmode >= 1) DrawBG_Affine(line, dst, 3); else DrawBG_Text(line, dst, 3); } } if ((BGCnt[2] & 0x3) == i) { if (DispCnt & 0x0400) { if (bgmode == 5) DrawBG_Extended(line, dst, 2); else if (bgmode == 4 || bgmode == 2) DrawBG_Affine(line, dst, 2); else DrawBG_Text(line, dst, 2); } } if ((BGCnt[1] & 0x3) == i) { if (DispCnt & 0x0200) { DrawBG_Text(line, dst, 1); } } if ((BGCnt[0] & 0x3) == i) { if (DispCnt & 0x0100) { if ((!Num) && (DispCnt & 0x8)) DrawBG_3D(line, dst); else DrawBG_Text(line, dst, 0); } } if (DispCnt & 0x1000) InterleaveSprites(spritebuf, 0x8000 | (i<<16), dst); } } void GPU2D::DrawScanlineBGMode6(u32 line, u32* spritebuf, u32* dst) { if (Num) { printf("GPU2D: MODE6 ON SUB GPU???\n"); return; } for (int i = 3; i >= 0; i--) { if ((BGCnt[2] & 0x3) == i) { if (DispCnt & 0x0400) { DrawBG_Large(line, dst); } } if ((BGCnt[0] & 0x3) == i) { if (DispCnt & 0x0100) { if (DispCnt & 0x8) DrawBG_3D(line, dst); } } if (DispCnt & 0x1000) InterleaveSprites(spritebuf, 0x8000 | (i<<16), dst); } } void GPU2D::DrawScanline_Mode1(u32 line, u32* dst) { u32 linebuf[256*2 + 64]; u8* windowmask = (u8*)&linebuf[256*2]; u32 backdrop; if (Num) backdrop = *(u16*)&GPU::Palette[0x400]; else backdrop = *(u16*)&GPU::Palette[0]; { u8 r = (backdrop & 0x001F) << 1; u8 g = (backdrop & 0x03E0) >> 4; u8 b = (backdrop & 0x7C00) >> 9; backdrop = r | (g << 8) | (b << 16) | 0x20000000; for (int i = 0; i < 256; i++) linebuf[i] = backdrop; } if (DispCnt & 0xE000) CalculateWindowMask(line, windowmask); else memset(windowmask, 0xFF, 256); // prerender sprites u32 spritebuf[256]; memset(spritebuf, 0, 256*4); if (DispCnt & 0x1000) DrawSprites(line, spritebuf); // TODO: what happens in mode 7? mode 6 on the sub engine? switch (DispCnt & 0x7) { case 0: DrawScanlineBGMode<0>(line, spritebuf, linebuf); break; case 1: DrawScanlineBGMode<1>(line, spritebuf, linebuf); break; case 2: DrawScanlineBGMode<2>(line, spritebuf, linebuf); break; case 3: DrawScanlineBGMode<3>(line, spritebuf, linebuf); break; case 4: DrawScanlineBGMode<4>(line, spritebuf, linebuf); break; case 5: DrawScanlineBGMode<5>(line, spritebuf, linebuf); break; case 6: DrawScanlineBGMode6(line, spritebuf, linebuf); break; } // color special effects // can likely be optimized u32 bldcnteffect = (BlendCnt >> 6) & 0x3; for (int i = 0; i < 256; i++) { u32 val1 = linebuf[i]; u32 val2 = linebuf[256+i]; u32 coloreffect, eva, evb; u32 flag1 = val1 >> 24; u32 flag2 = val2 >> 24; u32 target2; if (flag2 & 0x80) target2 = 0x1000; else if (flag2 & 0x40) target2 = 0x0100; else target2 = flag2 << 8; if (!(windowmask[i] & 0x20)) { coloreffect = 0; } else if ((flag1 & 0x80) && (BlendCnt & target2)) { // sprite blending coloreffect = 1; if (flag1 & 0x40) { eva = flag1 & 0x1F; evb = 16 - eva; } else { eva = EVA; evb = EVB; } } else if ((flag1 & 0x40) && (BlendCnt & target2)) { // 3D layer blending eva = (flag1 & 0x1F) + 1; evb = 32 - eva; u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 5; u32 g = ((((val1 & 0x003F00) * eva) + ((val2 & 0x003F00) * evb)) >> 5) & 0x007F00; u32 b = ((((val1 & 0x3F0000) * eva) + ((val2 & 0x3F0000) * evb)) >> 5) & 0x7F0000; if (eva <= 16) { r += 0x000001; g += 0x000100; b += 0x010000; } if (r > 0x00003F) r = 0x00003F; if (g > 0x003F00) g = 0x003F00; if (b > 0x3F0000) b = 0x3F0000; dst[i] = r | g | b | 0xFF000000; continue; } else if (BlendCnt & flag1) { if ((bldcnteffect == 1) && (BlendCnt & target2)) { coloreffect = 1; eva = EVA; evb = EVB; } else if (bldcnteffect >= 2) coloreffect = bldcnteffect; else coloreffect = 0; } else coloreffect = 0; switch (coloreffect) { case 0: dst[i] = val1; break; case 1: { u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 4; u32 g = ((((val1 & 0x003F00) * eva) + ((val2 & 0x003F00) * evb)) >> 4) & 0x007F00; u32 b = ((((val1 & 0x3F0000) * eva) + ((val2 & 0x3F0000) * evb)) >> 4) & 0x7F0000; if (r > 0x00003F) r = 0x00003F; if (g > 0x003F00) g = 0x003F00; if (b > 0x3F0000) b = 0x3F0000; dst[i] = r | g | b | 0xFF000000; } break; case 2: { u32 r = val1 & 0x00003F; u32 g = val1 & 0x003F00; u32 b = val1 & 0x3F0000; r += ((0x00003F - r) * EVY) >> 4; g += (((0x003F00 - g) * EVY) >> 4) & 0x003F00; b += (((0x3F0000 - b) * EVY) >> 4) & 0x3F0000; dst[i] = r | g | b | 0xFF000000; } break; case 3: { u32 r = val1 & 0x00003F; u32 g = val1 & 0x003F00; u32 b = val1 & 0x3F0000; r -= (r * EVY) >> 4; g -= ((g * EVY) >> 4) & 0x003F00; b -= ((b * EVY) >> 4) & 0x3F0000; dst[i] = r | g | b | 0xFF000000; } break; } } if (BGMosaicY >= BGMosaicYMax) { BGMosaicY = 0; BGMosaicYMax = BGMosaicSize[1]; } else BGMosaicY++; if (OBJMosaicY >= OBJMosaicYMax) { OBJMosaicY = 0; OBJMosaicYMax = OBJMosaicSize[1]; } else OBJMosaicY++; } void GPU2D::DrawPixel(u32* dst, u16 color, u32 flag) { u8 r = (color & 0x001F) << 1; u8 g = (color & 0x03E0) >> 4; u8 b = (color & 0x7C00) >> 9; *(dst+256) = *dst; *dst = r | (g << 8) | (b << 16) | flag; } void GPU2D::DrawBG_3D(u32 line, u32* dst) { // TODO: check if window can prevent blending from happening u32* src = GPU3D::GetLine(line); u8* windowmask = (u8*)&dst[256*2]; u16 xoff = BGXPos[0]; int i = 0; int iend = 256; if (xoff & 0x100) { i = (0x100 - (xoff & 0xFF)); xoff += i; } if ((xoff - i + iend - 1) & 0x100) { iend -= (xoff & 0xFF); } for (; i < iend; i++) { u32 c = src[xoff]; xoff++; if ((c >> 24) == 0) continue; if (!(windowmask[i] & 0x01)) continue; dst[i+256] = dst[i]; dst[i] = c | 0x40000000; } } void GPU2D::DrawBG_Text(u32 line, u32* dst, u32 bgnum) { u8* windowmask = (u8*)&dst[256*2]; u16 bgcnt = BGCnt[bgnum]; u32 xmos = 0, xmossize = 0; u32 tilesetaddr, tilemapaddr; u16* pal; u32 extpal, extpalslot; u16 xoff = BGXPos[bgnum]; u16 yoff = BGYPos[bgnum] + line; if (bgcnt & 0x0040) { // mosaic yoff -= BGMosaicY; xmossize = BGMosaicSize[0]; } u32 widexmask = (bgcnt & 0x4000) ? 0x100 : 0; extpal = (DispCnt & 0x40000000); if (extpal) extpalslot = ((bgnum<2) && (bgcnt&0x2000)) ? (2+bgnum) : bgnum; if (Num) { tilesetaddr = 0x06200000 + ((bgcnt & 0x003C) << 12); tilemapaddr = 0x06200000 + ((bgcnt & 0x1F00) << 3); pal = (u16*)&GPU::Palette[0x400]; } else { tilesetaddr = 0x06000000 + ((DispCnt & 0x07000000) >> 8) + ((bgcnt & 0x003C) << 12); tilemapaddr = 0x06000000 + ((DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3); pal = (u16*)&GPU::Palette[0]; } // adjust Y position in tilemap if (bgcnt & 0x8000) { tilemapaddr += ((yoff & 0x1F8) << 3); if (bgcnt & 0x4000) tilemapaddr += ((yoff & 0x100) << 3); } else tilemapaddr += ((yoff & 0xF8) << 3); u16 curtile; u16* curpal; u32 pixelsaddr; u8 color; if (bgcnt & 0x0080) { // 256-color // preload shit as needed if (xoff & 0x7) { // load a new tile curtile = GPU::ReadVRAM_BG(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3)); if (extpal) curpal = GetBGExtPal(extpalslot, curtile>>12); else curpal = pal; pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 6) + (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 3); } for (int i = 0; i < 256; i++) { if (!(xoff & 0x7)) { // load a new tile curtile = GPU::ReadVRAM_BG(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3)); if (extpal) curpal = GetBGExtPal(extpalslot, curtile>>12); else curpal = pal; pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 6) + (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 3); } // draw pixel if (windowmask[i] & (1<(pixelsaddr + tilexoff); xmos = xmossize; } else xmos--; if (color) DrawPixel(&dst[i], curpal[color], 0x01000000<(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3)); curpal = pal + ((curtile & 0xF000) >> 8); pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 5) + (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 2); } for (int i = 0; i < 256; i++) { if (!(xoff & 0x7)) { // load a new tile curtile = GPU::ReadVRAM_BG(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3)); curpal = pal + ((curtile & 0xF000) >> 8); pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 5) + (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 2); } // draw pixel // TODO: optimize VRAM access if (windowmask[i] & (1<(pixelsaddr + (tilexoff >> 1)) >> 4; } else { color = GPU::ReadVRAM_BG(pixelsaddr + (tilexoff >> 1)) & 0x0F; } xmos = xmossize; } else xmos--; if (color) DrawPixel(&dst[i], curpal[color], 0x01000000<> 8) + ((bgcnt & 0x003C) << 12); tilemapaddr = 0x06000000 + ((DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3); pal = (u16*)&GPU::Palette[0]; } u16 curtile; u8 color; yshift -= 3; for (int i = 0; i < 256; i++) { if (windowmask[i] & (1< 0) { if (color) DrawPixel(&dst[i], pal[color], 0x01000000<(tilemapaddr + ((((rotY & coordmask) >> 11) << yshift) + ((rotX & coordmask) >> 11))); // draw pixel u32 tilexoff = (rotX >> 8) & 0x7; u32 tileyoff = (rotY >> 8) & 0x7; color = GPU::ReadVRAM_BG(tilesetaddr + (curtile << 6) + (tileyoff << 3) + tilexoff); if (color) DrawPixel(&dst[i], pal[color], 0x01000000< 0) { if (color & 0x8000) DrawPixel(&dst[i], color, 0x01000000<(tilemapaddr + (((((rotY & ymask) >> 8) << yshift) + ((rotX & xmask) >> 8)) << 1)); if (color & 0x8000) DrawPixel(&dst[i], color, 0x01000000< 0) { if (color) DrawPixel(&dst[i], pal[color], 0x01000000<(tilemapaddr + (((rotY & ymask) >> 8) << yshift) + ((rotX & xmask) >> 8)); if (color) DrawPixel(&dst[i], pal[color], 0x01000000<> 8) + ((bgcnt & 0x003C) << 12); tilemapaddr = 0x06000000 + ((DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3); pal = (u16*)&GPU::Palette[0]; } u16 curtile; u16* curpal; u8 color; yshift -= 3; for (int i = 0; i < 256; i++) { if (windowmask[i] & (1< 0) { if (color) DrawPixel(&dst[i], curpal[color], 0x01000000<(tilemapaddr + (((((rotY & coordmask) >> 11) << yshift) + ((rotX & coordmask) >> 11)) << 1)); if (extpal) curpal = GetBGExtPal(bgnum, curtile>>12); else curpal = pal; // draw pixel u32 tilexoff = (rotX >> 8) & 0x7; u32 tileyoff = (rotY >> 8) & 0x7; if (curtile & 0x0400) tilexoff = 7-tilexoff; if (curtile & 0x0800) tileyoff = 7-tileyoff; color = GPU::ReadVRAM_BG(tilesetaddr + ((curtile & 0x03FF) << 6) + (tileyoff << 3) + tilexoff); if (color) DrawPixel(&dst[i], curpal[color], 0x01000000< 0) { if (color) DrawPixel(&dst[i], pal[color], 0x01000000<<2); xmos--; } else if (!(rotX & ofxmask) && !(rotY & ofymask)) { color = GPU::ReadVRAM_BG(tilemapaddr + (((rotY & ymask) >> 8) << yshift) + ((rotX & xmask) >> 8)); if (color) DrawPixel(&dst[i], pal[color], 0x01000000<<2); } } rotX += rotA; rotY += rotC; } BGXRefInternal[0] += rotB; BGYRefInternal[0] += rotD; } void GPU2D::InterleaveSprites(u32* buf, u32 prio, u32* dst) { u8* windowmask = (u8*)&dst[256*2]; for (u32 i = 0; i < 256; i++) { if (((buf[i] & 0xF8000) == prio) && (windowmask[i] & 0x10)) { u32 blendfunc = 0; DrawPixel(&dst[i], buf[i] & 0x7FFF, buf[i] & 0xFF000000); } } } void GPU2D::DrawSprites(u32 line, u32* dst) { u16* oam = (u16*)&GPU::OAM[Num ? 0x400 : 0]; const s32 spritewidth[16] = { 8, 16, 8, 0, 16, 32, 8, 0, 32, 32, 16, 0, 64, 64, 32, 0 }; const s32 spriteheight[16] = { 8, 8, 16, 0, 16, 8, 32, 0, 32, 16, 32, 0, 64, 32, 64, 0 }; for (int bgnum = 0x0C00; bgnum >= 0x0000; bgnum -= 0x0400) { for (int sprnum = 127; sprnum >= 0; sprnum--) { u16* attrib = &oam[sprnum*4]; if ((attrib[2] & 0x0C00) != bgnum) continue; if (((attrib[0] >> 10) & 0x3) == 2) continue; if (attrib[0] & 0x0100) { u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12); s32 width = spritewidth[sizeparam]; s32 height = spriteheight[sizeparam]; s32 boundwidth = width; s32 boundheight = height; if (attrib[0] & 0x0200) { boundwidth <<= 1; boundheight <<= 1; } u32 ypos = attrib[0] & 0xFF; ypos = (line - ypos) & 0xFF; if (ypos >= (u32)boundheight) continue; s32 xpos = (s32)(attrib[1] << 23) >> 23; if (xpos <= -boundwidth) continue; u32 rotparamgroup = (attrib[1] >> 9) & 0x1F; DrawSprite_Rotscale(attrib, &oam[(rotparamgroup*16) + 3], boundwidth, boundheight, width, height, xpos, ypos, dst); } else { if (attrib[0] & 0x0200) continue; u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12); s32 width = spritewidth[sizeparam]; s32 height = spriteheight[sizeparam]; u32 ypos = attrib[0] & 0xFF; ypos = (line - ypos) & 0xFF; if (ypos >= (u32)height) continue; s32 xpos = (s32)(attrib[1] << 23) >> 23; if (xpos <= -width) continue; // yflip if (attrib[1] & 0x2000) ypos = height-1 - ypos; DrawSprite_Normal(attrib, width, xpos, ypos, dst); } } } } void GPU2D::DrawSpritesWindow(u32 line, u8* dst) { u16* oam = (u16*)&GPU::OAM[Num ? 0x400 : 0]; const s32 spritewidth[16] = { 8, 16, 8, 0, 16, 32, 8, 0, 32, 32, 16, 0, 64, 64, 32, 0 }; const s32 spriteheight[16] = { 8, 8, 16, 0, 16, 8, 32, 0, 32, 16, 32, 0, 64, 32, 64, 0 }; for (int sprnum = 127; sprnum >= 0; sprnum--) { u16* attrib = &oam[sprnum*4]; if (((attrib[0] >> 10) & 0x3) != 2) continue; if (attrib[0] & 0x0100) { u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12); s32 width = spritewidth[sizeparam]; s32 height = spriteheight[sizeparam]; s32 boundwidth = width; s32 boundheight = height; if (attrib[0] & 0x0200) { boundwidth <<= 1; boundheight <<= 1; } u32 ypos = attrib[0] & 0xFF; ypos = (line - ypos) & 0xFF; if (ypos >= (u32)boundheight) continue; s32 xpos = (s32)(attrib[1] << 23) >> 23; if (xpos <= -boundwidth) continue; u32 rotparamgroup = (attrib[1] >> 9) & 0x1F; DrawSprite_Rotscale(attrib, &oam[(rotparamgroup*16) + 3], boundwidth, boundheight, width, height, xpos, ypos, (u32*)dst); } else { if (attrib[0] & 0x0200) continue; u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12); s32 width = spritewidth[sizeparam]; s32 height = spriteheight[sizeparam]; u32 ypos = attrib[0] & 0xFF; ypos = (line - ypos) & 0xFF; if (ypos >= (u32)height) continue; s32 xpos = (s32)(attrib[1] << 23) >> 23; if (xpos <= -width) continue; // yflip if (attrib[1] & 0x2000) ypos = height-1 - ypos; DrawSprite_Normal(attrib, width, xpos, ypos, (u32*)dst); } } } template void GPU2D::DrawSprite_Rotscale(u16* attrib, u16* rotparams, u32 boundwidth, u32 boundheight, u32 width, u32 height, s32 xpos, s32 ypos, u32* dst) { u32 prio = ((attrib[2] & 0x0C00) << 6) | 0x8000; u32 tilenum = attrib[2] & 0x03FF; u32 spritemode = window ? 0 : ((attrib[0] >> 10) & 0x3); u32 xmos = 0, xmossize = 0; u32 ytilefactor; s32 centerX = boundwidth >> 1; s32 centerY = boundheight >> 1; if (attrib[0] & 0x1000) { // mosaic ypos -= OBJMosaicY; if (ypos < 0) ypos = 0; xmossize = OBJMosaicSize[0]; if (xpos > 0) xmos = (xmossize+1) - (xpos % (xmossize+1)); } u32 xoff; if (xpos >= 0) { xoff = 0; if ((xpos+boundwidth) > 256) boundwidth = 256-xpos; } else { xoff = -xpos; xpos = 0; } s16 rotA = (s16)rotparams[0]; s16 rotB = (s16)rotparams[4]; s16 rotC = (s16)rotparams[8]; s16 rotD = (s16)rotparams[12]; s32 rotX = ((xoff-centerX) * rotA) + ((ypos-centerY) * rotB) + (width << 7); s32 rotY = ((xoff-centerX) * rotC) + ((ypos-centerY) * rotD) + (height << 7); width <<= 8; height <<= 8; u16 color = 0; // transparent in all cases if (spritemode == 3) { u32 alpha = attrib[2] >> 12; if (!alpha) return; alpha++; prio |= (0xC0000000 | (alpha << 24)); if (DispCnt & 0x40) { if (DispCnt & 0x20) { // TODO ("reserved") printf("bad reserved mode\n"); } else { tilenum <<= (7 + ((DispCnt >> 22) & 0x1)); ytilefactor = ((width >> 8) * 2); } } else { if (DispCnt & 0x20) { tilenum = ((tilenum & 0x01F) << 4) + ((tilenum & 0x3E0) << 7); ytilefactor = (256 * 2); } else { tilenum = ((tilenum & 0x00F) << 4) + ((tilenum & 0x3F0) << 7); ytilefactor = (128 * 2); } } u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum; if (xmos && !(attrib[0]&0x0200)) color = GPU::ReadVRAM_OBJ(pixelsaddr + ((rotY >> 8) * ytilefactor) + ((rotX >> 8) << 1)); for (; xoff < boundwidth;) { if ((u32)rotX < width && (u32)rotY < height) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr + ((rotY >> 8) * ytilefactor) + ((rotX >> 8) << 1)); xmos = xmossize; } else xmos--; if (color & 0x8000) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = color | prio; } } else { if (xmos == 0) xmos = xmossize; else xmos--; } rotX += rotA; rotY += rotC; xoff++; xpos++; } } else { if (DispCnt & 0x10) { tilenum <<= ((DispCnt >> 20) & 0x3); ytilefactor = (width >> 11) << ((attrib[0] & 0x2000) ? 1:0); } else { ytilefactor = 0x20; } if (spritemode == 1) prio |= 0x80000000; else prio |= 0x10000000; if (attrib[0] & 0x2000) { // 256-color tilenum <<= 5; ytilefactor <<= 5; u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum; u32 extpal = (DispCnt & 0x80000000); u16* pal; if (!window) { if (extpal) pal = GetOBJExtPal(attrib[2] >> 12); else pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200]; } if (xmos && !(attrib[0]&0x0200)) color = GPU::ReadVRAM_OBJ(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>5) + ((rotX>>11)*64) + ((rotX&0x700)>>8)); for (; xoff < boundwidth;) { if ((u32)rotX < width && (u32)rotY < height) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>5) + ((rotX>>11)*64) + ((rotX&0x700)>>8)); xmos = xmossize; } else xmos--; if (color) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = pal[color] | prio; } } else { if (xmos == 0) xmos = xmossize; else xmos--; } rotX += rotA; rotY += rotC; xoff++; xpos++; } } else { // 16-color tilenum <<= 5; ytilefactor <<= 5; u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum; u16* pal; if (!window) { pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200]; pal += (attrib[2] & 0xF000) >> 8; } if (xmos && !(attrib[0]&0x0200)) { color = GPU::ReadVRAM_OBJ(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>6) + ((rotX>>11)*32) + ((rotX&0x700)>>9)); if (rotX & 0x100) color >>= 4; else color &= 0x0F; } for (; xoff < boundwidth;) { if ((u32)rotX < width && (u32)rotY < height) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>6) + ((rotX>>11)*32) + ((rotX&0x700)>>9)); if (rotX & 0x100) color >>= 4; else color &= 0x0F; xmos = xmossize; } else xmos--; if (color) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = pal[color] | prio; } } else { if (xmos == 0) xmos = xmossize; else xmos--; } rotX += rotA; rotY += rotC; xoff++; xpos++; } } } } template void GPU2D::DrawSprite_Normal(u16* attrib, u32 width, s32 xpos, s32 ypos, u32* dst) { u32 prio = ((attrib[2] & 0x0C00) << 6) | 0x8000; u32 tilenum = attrib[2] & 0x03FF; u32 spritemode = window ? 0 : ((attrib[0] >> 10) & 0x3); u32 xmos = 0, xmossize = 0; u32 wmask = width - 8; // really ((width - 1) & ~0x7) if (attrib[0] & 0x1000) { // mosaic ypos -= OBJMosaicY; if (ypos < 0) ypos = 0; xmossize = OBJMosaicSize[0]; if (xpos > 0) xmos = (xmossize+1) - (xpos % (xmossize+1)); } u32 xoff; u32 xend = width; if (xpos >= 0) { xoff = 0; if ((xpos+xend) > 256) xend = 256-xpos; } else { xoff = -xpos; xpos = 0; } u16 color = 0; // transparent in all cases if (spritemode == 3) { // bitmap sprite u32 alpha = attrib[2] >> 12; if (!alpha) return; alpha++; prio |= (0xC0000000 | (alpha << 24)); if (DispCnt & 0x40) { if (DispCnt & 0x20) { // TODO ("reserved") printf("bad reserved mode\n"); } else { tilenum <<= (7 + ((DispCnt >> 22) & 0x1)); tilenum += (ypos * width * 2); } } else { if (DispCnt & 0x20) { tilenum = ((tilenum & 0x01F) << 4) + ((tilenum & 0x3E0) << 7); tilenum += (ypos * 256 * 2); } else { tilenum = ((tilenum & 0x00F) << 4) + ((tilenum & 0x3F0) << 7); tilenum += (ypos * 128 * 2); } } u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum; if (attrib[1] & 0x1000) { pixelsaddr += ((width-1 - xoff) << 1); if (xmos) color = GPU::ReadVRAM_OBJ(pixelsaddr); for (; xoff < xend;) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr); xmos = xmossize; } else xmos--; pixelsaddr -= 2; if (color & 0x8000) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = color | prio; } xoff++; xpos++; } } else { pixelsaddr += (xoff << 1); if (xmos) color = GPU::ReadVRAM_OBJ(pixelsaddr); for (; xoff < xend;) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr); xmos = xmossize; } else xmos--; pixelsaddr += 2; if (color & 0x8000) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = color | prio; } xoff++; xpos++; } } } else { if (DispCnt & 0x10) { tilenum <<= ((DispCnt >> 20) & 0x3); tilenum += ((ypos >> 3) * (width >> 3)) << ((attrib[0] & 0x2000) ? 1:0); } else { tilenum += ((ypos >> 3) * 0x20); } if (spritemode == 1) prio |= 0x80000000; else prio |= 0x10000000; if (attrib[0] & 0x2000) { // 256-color tilenum <<= 5; u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum; pixelsaddr += ((ypos & 0x7) << 3); u32 extpal = (DispCnt & 0x80000000); u16* pal; if (!window) { if (extpal) pal = GetOBJExtPal(attrib[2] >> 12); else pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200]; } if (attrib[1] & 0x1000) // xflip. TODO: do better? oh well for now this works { pixelsaddr += (((width-1 - xoff) & wmask) << 3); pixelsaddr += ((width-1 - xoff) & 0x7); if (xmos) color = GPU::ReadVRAM_OBJ(pixelsaddr); for (; xoff < xend;) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr); xmos = xmossize; } else xmos--; pixelsaddr--; if (color) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = pal[color] | prio; } xoff++; xpos++; if (!(xoff & 0x7)) pixelsaddr -= 56; } } else { pixelsaddr += ((xoff & wmask) << 3); pixelsaddr += (xoff & 0x7); if (xmos) color = GPU::ReadVRAM_OBJ(pixelsaddr); for (; xoff < xend;) { if (xmos == 0) { color = GPU::ReadVRAM_OBJ(pixelsaddr); xmos = xmossize; } else xmos--; pixelsaddr++; if (color) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = pal[color] | prio; } xoff++; xpos++; if (!(xoff & 0x7)) pixelsaddr += 56; } } } else { // 16-color tilenum <<= 5; u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum; pixelsaddr += ((ypos & 0x7) << 2); u16* pal; if (!window) { pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200]; pal += (attrib[2] & 0xF000) >> 8; } if (attrib[1] & 0x1000) // xflip. TODO: do better? oh well for now this works { pixelsaddr += (((width-1 - xoff) & wmask) << 2); pixelsaddr += (((width-1 - xoff) & 0x7) >> 1); if (xmos) { if (xoff & 0x1) color = GPU::ReadVRAM_OBJ(pixelsaddr) & 0x0F; else color = GPU::ReadVRAM_OBJ(pixelsaddr) >> 4; } for (; xoff < xend;) { if (xmos == 0) { if (xoff & 0x1) color = GPU::ReadVRAM_OBJ(pixelsaddr) & 0x0F; else color = GPU::ReadVRAM_OBJ(pixelsaddr) >> 4; xmos = xmossize; } else xmos--; if (xoff & 0x1) pixelsaddr--; if (color) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = pal[color] | prio; } xoff++; xpos++; if (!(xoff & 0x7)) pixelsaddr -= 28; } } else { pixelsaddr += ((xoff & wmask) << 2); pixelsaddr += ((xoff & 0x7) >> 1); if (xmos) { if (xoff & 0x1) color = GPU::ReadVRAM_OBJ(pixelsaddr) >> 4; else color = GPU::ReadVRAM_OBJ(pixelsaddr) & 0x0F; } for (; xoff < xend;) { if (xmos == 0) { if (xoff & 0x1) color = GPU::ReadVRAM_OBJ(pixelsaddr) >> 4; else color = GPU::ReadVRAM_OBJ(pixelsaddr) & 0x0F; xmos = xmossize; } else xmos--; if (xoff & 0x1) pixelsaddr++; if (color) { if (window) ((u8*)dst)[xpos] = 1; else dst[xpos] = pal[color] | prio; } xoff++; xpos++; if (!(xoff & 0x7)) pixelsaddr += 28; } } } } }