/* Copyright 2016-2020 Arisotura This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "GPU.h" namespace GPU { #define LINE_CYCLES (355*6) #define HBLANK_CYCLES (48+(256*6)) #define FRAME_CYCLES (LINE_CYCLES * 263) u16 VCount; u32 NextVCount; u16 TotalScanlines; bool RunFIFO; u16 DispStat[2], VMatch[2]; u8 Palette[2*1024]; u8 OAM[2*1024]; u8 VRAM_A[128*1024]; u8 VRAM_B[128*1024]; u8 VRAM_C[128*1024]; u8 VRAM_D[128*1024]; u8 VRAM_E[ 64*1024]; u8 VRAM_F[ 16*1024]; u8 VRAM_G[ 16*1024]; u8 VRAM_H[ 32*1024]; u8 VRAM_I[ 16*1024]; u8* const VRAM[9] = {VRAM_A, VRAM_B, VRAM_C, VRAM_D, VRAM_E, VRAM_F, VRAM_G, VRAM_H, VRAM_I}; u32 const VRAMMask[9] = {0x1FFFF, 0x1FFFF, 0x1FFFF, 0x1FFFF, 0xFFFF, 0x3FFF, 0x3FFF, 0x7FFF, 0x3FFF}; u8 VRAMCNT[9]; u8 VRAMSTAT; u32 VRAMMap_LCDC; u32 VRAMMap_ABG[0x20]; u32 VRAMMap_AOBJ[0x10]; u32 VRAMMap_BBG[0x8]; u32 VRAMMap_BOBJ[0x8]; u32 VRAMMap_ABGExtPal[4]; u32 VRAMMap_AOBJExtPal; u32 VRAMMap_BBGExtPal[4]; u32 VRAMMap_BOBJExtPal; u32 VRAMMap_Texture[4]; u32 VRAMMap_TexPal[8]; u32 VRAMMap_ARM7[2]; u8* VRAMPtr_ABG[0x20]; u8* VRAMPtr_AOBJ[0x10]; u8* VRAMPtr_BBG[0x8]; u8* VRAMPtr_BOBJ[0x8]; int FrontBuffer; u32* Framebuffer[2][2]; int Renderer; bool Accelerated; GPU2D* GPU2D_A; GPU2D* GPU2D_B; /* VRAM invalidation tracking - we want to know when a VRAM region used for graphics changed - for some regions unmapping is mandatory to modify them (Texture, TexPal and ExtPal) and we don't want to completely invalidate them every time they're unmapped and remapped For this reason we don't track the dirtyness per mapping region, but instead per VRAM bank with VRAMDirty. Writes to LCDC go directly into VRAMDirty, while writes via other mapping regions like BG or OBJ are first tracked in VRAMWritten_* and need to be flushed using SyncDirtyFlags. This is more or less a description of VRAMTrackingSet::DeriveState Each time before the memory is read two things could have happened to each 16kb piece (16kb is the smallest unit in which mappings can be made thus also the size VRAMMap_* use): - this piece was remapped compared to last time we checked, which means this location in memory is invalid. - this piece wasn't remapped, which means we need to check whether it was changed. This can be archived by checking VRAMDirty. VRAMDirty need to be reset for the respective VRAM bank. */ VRAMTrackingSet<512*1024, 16*1024> VRAMDirty_ABG; VRAMTrackingSet<256*1024, 16*1024> VRAMDirty_AOBJ; VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_BBG; VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_BOBJ; VRAMTrackingSet<32*1024, 8*1024> VRAMDirty_ABGExtPal; VRAMTrackingSet<32*1024, 8*1024> VRAMDirty_BBGExtPal; VRAMTrackingSet<8*1024, 8*1024> VRAMDirty_AOBJExtPal; VRAMTrackingSet<8*1024, 8*1024> VRAMDirty_BOBJExtPal; VRAMTrackingSet<512*1024, 128*1024> VRAMDirty_Texture; VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_TexPal; NonStupidBitField<512*1024/VRAMDirtyGranularity> VRAMWritten_ABG; NonStupidBitField<256*1024/VRAMDirtyGranularity> VRAMWritten_AOBJ; NonStupidBitField<128*1024/VRAMDirtyGranularity> VRAMWritten_BBG; NonStupidBitField<128*1024/VRAMDirtyGranularity> VRAMWritten_BOBJ; NonStupidBitField<256*1024/VRAMDirtyGranularity> VRAMWritten_ARM7; NonStupidBitField<128*1024/VRAMDirtyGranularity> VRAMDirty[9]; u8 VRAMFlat_ABG[512*1024]; u8 VRAMFlat_BBG[128*1024]; u8 VRAMFlat_AOBJ[256*1024]; u8 VRAMFlat_BOBJ[128*1024]; u8 VRAMFlat_ABGExtPal[32*1024]; u8 VRAMFlat_BBGExtPal[32*1024]; u8 VRAMFlat_AOBJExtPal[8*1024]; u8 VRAMFlat_BOBJExtPal[8*1024]; u8 VRAMFlat_Texture[512*1024]; u8 VRAMFlat_TexPal[128*1024]; bool Init() { GPU2D_A = new GPU2D(0); GPU2D_B = new GPU2D(1); if (!GPU3D::Init()) return false; FrontBuffer = 0; Framebuffer[0][0] = NULL; Framebuffer[0][1] = NULL; Framebuffer[1][0] = NULL; Framebuffer[1][1] = NULL; Renderer = 0; Accelerated = false; return true; } void DeInit() { delete GPU2D_A; delete GPU2D_B; GPU3D::DeInit(); if (Framebuffer[0][0]) delete[] Framebuffer[0][0]; if (Framebuffer[0][1]) delete[] Framebuffer[0][1]; if (Framebuffer[1][0]) delete[] Framebuffer[1][0]; if (Framebuffer[1][1]) delete[] Framebuffer[1][1]; } void ResetVRAMCache() { for (int i = 0; i < 9; i++) VRAMDirty[i] = NonStupidBitField<128*1024/VRAMDirtyGranularity>(); VRAMDirty_ABG.Reset(); VRAMDirty_BBG.Reset(); VRAMDirty_AOBJ.Reset(); VRAMDirty_BOBJ.Reset(); VRAMDirty_ABGExtPal.Reset(); VRAMDirty_BBGExtPal.Reset(); VRAMDirty_AOBJExtPal.Reset(); VRAMDirty_BOBJExtPal.Reset(); memset(VRAMFlat_ABG, 0, sizeof(VRAMFlat_ABG)); memset(VRAMFlat_BBG, 0, sizeof(VRAMFlat_BBG)); memset(VRAMFlat_AOBJ, 0, sizeof(VRAMFlat_AOBJ)); memset(VRAMFlat_BOBJ, 0, sizeof(VRAMFlat_BOBJ)); memset(VRAMFlat_ABGExtPal, 0, sizeof(VRAMFlat_ABGExtPal)); memset(VRAMFlat_BBGExtPal, 0, sizeof(VRAMFlat_BBGExtPal)); memset(VRAMFlat_AOBJExtPal, 0, sizeof(VRAMFlat_AOBJExtPal)); memset(VRAMFlat_BOBJExtPal, 0, sizeof(VRAMFlat_BOBJExtPal)); } void Reset() { VCount = 0; NextVCount = -1; TotalScanlines = 0; DispStat[0] = 0; DispStat[1] = 0; VMatch[0] = 0; VMatch[1] = 0; memset(Palette, 0, 2*1024); memset(OAM, 0, 2*1024); memset(VRAM_A, 0, 128*1024); memset(VRAM_B, 0, 128*1024); memset(VRAM_C, 0, 128*1024); memset(VRAM_D, 0, 128*1024); memset(VRAM_E, 0, 64*1024); memset(VRAM_F, 0, 16*1024); memset(VRAM_G, 0, 16*1024); memset(VRAM_H, 0, 32*1024); memset(VRAM_I, 0, 16*1024); memset(VRAMCNT, 0, 9); VRAMSTAT = 0; VRAMMap_LCDC = 0; memset(VRAMMap_ABG, 0, sizeof(VRAMMap_ABG)); memset(VRAMMap_AOBJ, 0, sizeof(VRAMMap_AOBJ)); memset(VRAMMap_BBG, 0, sizeof(VRAMMap_BBG)); memset(VRAMMap_BOBJ, 0, sizeof(VRAMMap_BOBJ)); memset(VRAMMap_ABGExtPal, 0, sizeof(VRAMMap_ABGExtPal)); VRAMMap_AOBJExtPal = 0; memset(VRAMMap_BBGExtPal, 0, sizeof(VRAMMap_BBGExtPal)); VRAMMap_BOBJExtPal = 0; memset(VRAMMap_Texture, 0, sizeof(VRAMMap_Texture)); memset(VRAMMap_TexPal, 0, sizeof(VRAMMap_TexPal)); VRAMMap_ARM7[0] = 0; VRAMMap_ARM7[1] = 0; memset(VRAMPtr_ABG, 0, sizeof(VRAMPtr_ABG)); memset(VRAMPtr_AOBJ, 0, sizeof(VRAMPtr_AOBJ)); memset(VRAMPtr_BBG, 0, sizeof(VRAMPtr_BBG)); memset(VRAMPtr_BOBJ, 0, sizeof(VRAMPtr_BOBJ)); int fbsize; if (Accelerated) fbsize = (256*3 + 1) * 192; else fbsize = 256 * 192; for (int i = 0; i < fbsize; i++) { Framebuffer[0][0][i] = 0xFFFFFFFF; Framebuffer[1][0][i] = 0xFFFFFFFF; } for (int i = 0; i < fbsize; i++) { Framebuffer[0][1][i] = 0xFFFFFFFF; Framebuffer[1][1][i] = 0xFFFFFFFF; } GPU2D_A->Reset(); GPU2D_B->Reset(); GPU3D::Reset(); int backbuf = FrontBuffer ? 0 : 1; GPU2D_A->SetFramebuffer(Framebuffer[backbuf][1]); GPU2D_B->SetFramebuffer(Framebuffer[backbuf][0]); ResetRenderer(); ResetVRAMCache(); } void Stop() { int fbsize; if (Accelerated) fbsize = (256*3 + 1) * 192; else fbsize = 256 * 192; memset(Framebuffer[0][0], 0, fbsize*4); memset(Framebuffer[0][1], 0, fbsize*4); memset(Framebuffer[1][0], 0, fbsize*4); memset(Framebuffer[1][1], 0, fbsize*4); } void DoSavestate(Savestate* file) { file->Section("GPUG"); file->Var16(&VCount); file->Var32(&NextVCount); file->Var16(&TotalScanlines); file->Var16(&DispStat[0]); file->Var16(&DispStat[1]); file->Var16(&VMatch[0]); file->Var16(&VMatch[1]); file->VarArray(Palette, 2*1024); file->VarArray(OAM, 2*1024); file->VarArray(VRAM_A, 128*1024); file->VarArray(VRAM_B, 128*1024); file->VarArray(VRAM_C, 128*1024); file->VarArray(VRAM_D, 128*1024); file->VarArray(VRAM_E, 64*1024); file->VarArray(VRAM_F, 16*1024); file->VarArray(VRAM_G, 16*1024); file->VarArray(VRAM_H, 32*1024); file->VarArray(VRAM_I, 16*1024); file->VarArray(VRAMCNT, 9); file->Var8(&VRAMSTAT); file->Var32(&VRAMMap_LCDC); file->VarArray(VRAMMap_ABG, sizeof(VRAMMap_ABG)); file->VarArray(VRAMMap_AOBJ, sizeof(VRAMMap_AOBJ)); file->VarArray(VRAMMap_BBG, sizeof(VRAMMap_BBG)); file->VarArray(VRAMMap_BOBJ, sizeof(VRAMMap_BOBJ)); file->VarArray(VRAMMap_ABGExtPal, sizeof(VRAMMap_ABGExtPal)); file->Var32(&VRAMMap_AOBJExtPal); file->VarArray(VRAMMap_BBGExtPal, sizeof(VRAMMap_BBGExtPal)); file->Var32(&VRAMMap_BOBJExtPal); file->VarArray(VRAMMap_Texture, sizeof(VRAMMap_Texture)); file->VarArray(VRAMMap_TexPal, sizeof(VRAMMap_TexPal)); file->Var32(&VRAMMap_ARM7[0]); file->Var32(&VRAMMap_ARM7[1]); if (!file->Saving) { for (int i = 0; i < 0x20; i++) VRAMPtr_ABG[i] = GetUniqueBankPtr(VRAMMap_ABG[i], i << 14); for (int i = 0; i < 0x10; i++) VRAMPtr_AOBJ[i] = GetUniqueBankPtr(VRAMMap_AOBJ[i], i << 14); for (int i = 0; i < 0x8; i++) VRAMPtr_BBG[i] = GetUniqueBankPtr(VRAMMap_BBG[i], i << 14); for (int i = 0; i < 0x8; i++) VRAMPtr_BOBJ[i] = GetUniqueBankPtr(VRAMMap_BOBJ[i], i << 14); } GPU2D_A->DoSavestate(file); GPU2D_B->DoSavestate(file); GPU3D::DoSavestate(file); ResetVRAMCache(); } void AssignFramebuffers() { int backbuf = FrontBuffer ? 0 : 1; if (NDS::PowerControl9 & (1<<15)) { GPU2D_A->SetFramebuffer(Framebuffer[backbuf][0]); GPU2D_B->SetFramebuffer(Framebuffer[backbuf][1]); } else { GPU2D_A->SetFramebuffer(Framebuffer[backbuf][1]); GPU2D_B->SetFramebuffer(Framebuffer[backbuf][0]); } } void InitRenderer(int renderer) { #ifdef OGLRENDERER_ENABLED if (renderer == 1) { if (!GLCompositor::Init()) { renderer = 0; } else if (!GPU3D::GLRenderer::Init()) { GLCompositor::DeInit(); renderer = 0; } } else #endif { GPU3D::SoftRenderer::Init(); } Renderer = renderer; Accelerated = renderer != 0; } void DeInitRenderer() { if (Renderer == 0) { GPU3D::SoftRenderer::DeInit(); } #ifdef OGLRENDERER_ENABLED else { GPU3D::GLRenderer::DeInit(); GLCompositor::DeInit(); } #endif } void ResetRenderer() { if (Renderer == 0) { GPU3D::SoftRenderer::Reset(); } #ifdef OGLRENDERER_ENABLED else { GLCompositor::Reset(); GPU3D::GLRenderer::Reset(); } #endif } void SetRenderSettings(int renderer, RenderSettings& settings) { if (renderer != Renderer) { DeInitRenderer(); InitRenderer(renderer); } bool accel = Accelerated; int fbsize; if (accel) fbsize = (256*3 + 1) * 192; else fbsize = 256 * 192; if (Framebuffer[0][0]) { delete[] Framebuffer[0][0]; Framebuffer[0][0] = nullptr; } if (Framebuffer[1][0]) { delete[] Framebuffer[1][0]; Framebuffer[1][0] = nullptr; } if (Framebuffer[0][1]) { delete[] Framebuffer[0][1]; Framebuffer[0][1] = nullptr; } if (Framebuffer[1][1]) { delete[] Framebuffer[1][1]; Framebuffer[1][1] = nullptr; } Framebuffer[0][0] = new u32[fbsize]; Framebuffer[1][0] = new u32[fbsize]; Framebuffer[0][1] = new u32[fbsize]; Framebuffer[1][1] = new u32[fbsize]; memset(Framebuffer[0][0], 0, fbsize*4); memset(Framebuffer[1][0], 0, fbsize*4); memset(Framebuffer[0][1], 0, fbsize*4); memset(Framebuffer[1][1], 0, fbsize*4); AssignFramebuffers(); GPU2D_A->SetRenderSettings(accel); GPU2D_B->SetRenderSettings(accel); if (Renderer == 0) { GPU3D::SoftRenderer::SetRenderSettings(settings); } #ifdef OGLRENDERER_ENABLED else { GLCompositor::SetRenderSettings(settings); GPU3D::GLRenderer::SetRenderSettings(settings); } #endif } // VRAM mapping notes // // mirroring: // unmapped range reads zero // LCD is mirrored every 0x100000 bytes, the gap between each mirror reads zero // ABG: // bank A,B,C,D,E mirror every 0x80000 bytes // bank F,G mirror at base+0x8000, mirror every 0x80000 bytes // AOBJ: // bank A,B,E mirror every 0x40000 bytes // bank F,G mirror at base+0x8000, mirror every 0x40000 bytes // BBG: // bank C mirrors every 0x20000 bytes // bank H mirrors every 0x10000 bytes // bank I mirrors at base+0x4000, mirrors every 0x10000 bytes // BOBJ: // bank D mirrors every 0x20000 bytes // bank I mirrors every 0x4000 bytes // // untested: // ARM7 (TODO) // extended palette (mirroring doesn't apply) // texture/texpal (does mirroring apply?) // -> trying to use extpal/texture/texpal with no VRAM mapped. // would likely read all black, but has to be tested. // // overlap: // when reading: values are read from each bank and ORed together // when writing: value is written to each bank u8* GetUniqueBankPtr(u32 mask, u32 offset) { if (!mask || (mask & (mask - 1)) != 0) return NULL; int num = __builtin_ctz(mask); return &VRAM[num][offset & VRAMMask[num]]; } #define MAP_RANGE(map, base, n) for (int i = 0; i < n; i++) VRAMMap_##map[(base)+i] |= bankmask; #define UNMAP_RANGE(map, base, n) for (int i = 0; i < n; i++) VRAMMap_##map[(base)+i] &= ~bankmask; #define MAP_RANGE_PTR(map, base, n) \ for (int i = 0; i < n; i++) { VRAMMap_##map[(base)+i] |= bankmask; VRAMPtr_##map[(base)+i] = GetUniqueBankPtr(VRAMMap_##map[(base)+i], ((base)+i)<<14); } #define UNMAP_RANGE_PTR(map, base, n) \ for (int i = 0; i < n; i++) { VRAMMap_##map[(base)+i] &= ~bankmask; VRAMPtr_##map[(base)+i] = GetUniqueBankPtr(VRAMMap_##map[(base)+i], ((base)+i)<<14); } void MapVRAM_AB(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x3; u8 ofs = (cnt >> 3) & 0x3; u32 bankmask = 1 << bank; if (oldcnt & (1<<7)) { switch (oldcnt & 0x3) { case 0: // LCDC VRAMMap_LCDC &= ~bankmask; break; case 1: // ABG UNMAP_RANGE_PTR(ABG, oldofs<<3, 8); break; case 2: // AOBJ oldofs &= 0x1; UNMAP_RANGE_PTR(AOBJ, oldofs<<3, 8); break; case 3: // texture VRAMMap_Texture[oldofs] &= ~bankmask; break; } } if (cnt & (1<<7)) { switch (cnt & 0x3) { case 0: // LCDC VRAMMap_LCDC |= bankmask; break; case 1: // ABG MAP_RANGE_PTR(ABG, ofs<<3, 8); break; case 2: // AOBJ ofs &= 0x1; MAP_RANGE_PTR(AOBJ, ofs<<3, 8); break; case 3: // texture VRAMMap_Texture[ofs] |= bankmask; break; } } } void MapVRAM_CD(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; VRAMSTAT &= ~(1 << (bank-2)); if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u32 bankmask = 1 << bank; if (oldcnt & (1<<7)) { switch (oldcnt & 0x7) { case 0: // LCDC VRAMMap_LCDC &= ~bankmask; break; case 1: // ABG UNMAP_RANGE_PTR(ABG, oldofs<<3, 8); break; case 2: // ARM7 VRAM oldofs &= 0x1; VRAMMap_ARM7[oldofs] &= ~bankmask; break; case 3: // texture VRAMMap_Texture[oldofs] &= ~bankmask; break; case 4: // BBG/BOBJ if (bank == 2) { UNMAP_RANGE_PTR(BBG, 0, 8); } else { UNMAP_RANGE_PTR(BOBJ, 0, 8); } break; } } if (cnt & (1<<7)) { switch (cnt & 0x7) { case 0: // LCDC VRAMMap_LCDC |= bankmask; break; case 1: // ABG MAP_RANGE_PTR(ABG, ofs<<3, 8); break; case 2: // ARM7 VRAM ofs &= 0x1; VRAMMap_ARM7[ofs] |= bankmask; VRAMSTAT |= (1 << (bank-2)); break; case 3: // texture VRAMMap_Texture[ofs] |= bankmask; break; case 4: // BBG/BOBJ if (bank == 2) { MAP_RANGE_PTR(BBG, 0, 8); } else { MAP_RANGE_PTR(BOBJ, 0, 8); } break; } } } void MapVRAM_E(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u32 bankmask = 1 << bank; if (oldcnt & (1<<7)) { switch (oldcnt & 0x7) { case 0: // LCDC VRAMMap_LCDC &= ~bankmask; break; case 1: // ABG UNMAP_RANGE_PTR(ABG, 0, 4); break; case 2: // AOBJ UNMAP_RANGE_PTR(AOBJ, 0, 4); break; case 3: // texture palette UNMAP_RANGE(TexPal, 0, 4); break; case 4: // ABG ext palette UNMAP_RANGE(ABGExtPal, 0, 4); break; } } if (cnt & (1<<7)) { switch (cnt & 0x7) { case 0: // LCDC VRAMMap_LCDC |= bankmask; break; case 1: // ABG MAP_RANGE_PTR(ABG, 0, 4); break; case 2: // AOBJ MAP_RANGE_PTR(AOBJ, 0, 4); break; case 3: // texture palette MAP_RANGE(TexPal, 0, 4); break; case 4: // ABG ext palette MAP_RANGE(ABGExtPal, 0, 4); break; } } } void MapVRAM_FG(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u32 bankmask = 1 << bank; if (oldcnt & (1<<7)) { switch (oldcnt & 0x7) { case 0: // LCDC VRAMMap_LCDC &= ~bankmask; break; case 1: // ABG { u32 base = (oldofs & 0x1) + ((oldofs & 0x2) << 1); VRAMMap_ABG[base] &= ~bankmask; VRAMMap_ABG[base + 2] &= ~bankmask; VRAMPtr_ABG[base] = GetUniqueBankPtr(VRAMMap_ABG[base], base << 14); VRAMPtr_ABG[base + 2] = GetUniqueBankPtr(VRAMMap_ABG[base + 2], (base + 2) << 14); } break; case 2: // AOBJ { u32 base = (oldofs & 0x1) + ((oldofs & 0x2) << 1); VRAMMap_AOBJ[base] &= ~bankmask; VRAMMap_AOBJ[base + 2] &= ~bankmask; VRAMPtr_AOBJ[base] = GetUniqueBankPtr(VRAMMap_AOBJ[base], base << 14); VRAMPtr_AOBJ[base + 2] = GetUniqueBankPtr(VRAMMap_AOBJ[base + 2], (base + 2) << 14); } break; case 3: // texture palette VRAMMap_TexPal[(oldofs & 0x1) + ((oldofs & 0x2) << 1)] &= ~bankmask; break; case 4: // ABG ext palette VRAMMap_ABGExtPal[((oldofs & 0x1) << 1)] &= ~bankmask; VRAMMap_ABGExtPal[((oldofs & 0x1) << 1) + 1] &= ~bankmask; break; case 5: // AOBJ ext palette VRAMMap_AOBJExtPal &= ~bankmask; break; } } if (cnt & (1<<7)) { switch (cnt & 0x7) { case 0: // LCDC VRAMMap_LCDC |= bankmask; break; case 1: // ABG { u32 base = (ofs & 0x1) + ((ofs & 0x2) << 1); VRAMMap_ABG[base] |= bankmask; VRAMMap_ABG[base + 2] |= bankmask; VRAMPtr_ABG[base] = GetUniqueBankPtr(VRAMMap_ABG[base], base << 14); VRAMPtr_ABG[base + 2] = GetUniqueBankPtr(VRAMMap_ABG[base + 2], (base + 2) << 14); } break; case 2: // AOBJ { u32 base = (ofs & 0x1) + ((ofs & 0x2) << 1); VRAMMap_AOBJ[base] |= bankmask; VRAMMap_AOBJ[base + 2] |= bankmask; VRAMPtr_AOBJ[base] = GetUniqueBankPtr(VRAMMap_AOBJ[base], base << 14); VRAMPtr_AOBJ[base + 2] = GetUniqueBankPtr(VRAMMap_AOBJ[base + 2], (base + 2) << 14); } break; case 3: // texture palette VRAMMap_TexPal[(ofs & 0x1) + ((ofs & 0x2) << 1)] |= bankmask; break; case 4: // ABG ext palette VRAMMap_ABGExtPal[((ofs & 0x1) << 1)] |= bankmask; VRAMMap_ABGExtPal[((ofs & 0x1) << 1) + 1] |= bankmask; break; case 5: // AOBJ ext palette VRAMMap_AOBJExtPal |= bankmask; break; } } } void MapVRAM_H(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u32 bankmask = 1 << bank; if (oldcnt & (1<<7)) { switch (oldcnt & 0x3) { case 0: // LCDC VRAMMap_LCDC &= ~bankmask; break; case 1: // BBG VRAMMap_BBG[0] &= ~bankmask; VRAMMap_BBG[1] &= ~bankmask; VRAMMap_BBG[4] &= ~bankmask; VRAMMap_BBG[5] &= ~bankmask; VRAMPtr_BBG[0] = GetUniqueBankPtr(VRAMMap_BBG[0], 0 << 14); VRAMPtr_BBG[1] = GetUniqueBankPtr(VRAMMap_BBG[1], 1 << 14); VRAMPtr_BBG[4] = GetUniqueBankPtr(VRAMMap_BBG[4], 4 << 14); VRAMPtr_BBG[5] = GetUniqueBankPtr(VRAMMap_BBG[5], 5 << 14); break; case 2: // BBG ext palette UNMAP_RANGE(BBGExtPal, 0, 4); break; } } if (cnt & (1<<7)) { switch (cnt & 0x3) { case 0: // LCDC VRAMMap_LCDC |= bankmask; break; case 1: // BBG VRAMMap_BBG[0] |= bankmask; VRAMMap_BBG[1] |= bankmask; VRAMMap_BBG[4] |= bankmask; VRAMMap_BBG[5] |= bankmask; VRAMPtr_BBG[0] = GetUniqueBankPtr(VRAMMap_BBG[0], 0 << 14); VRAMPtr_BBG[1] = GetUniqueBankPtr(VRAMMap_BBG[1], 1 << 14); VRAMPtr_BBG[4] = GetUniqueBankPtr(VRAMMap_BBG[4], 4 << 14); VRAMPtr_BBG[5] = GetUniqueBankPtr(VRAMMap_BBG[5], 5 << 14); break; case 2: // BBG ext palette MAP_RANGE(BBGExtPal, 0, 4); break; } } } void MapVRAM_I(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u32 bankmask = 1 << bank; if (oldcnt & (1<<7)) { switch (oldcnt & 0x3) { case 0: // LCDC VRAMMap_LCDC &= ~bankmask; break; case 1: // BBG VRAMMap_BBG[2] &= ~bankmask; VRAMMap_BBG[3] &= ~bankmask; VRAMMap_BBG[6] &= ~bankmask; VRAMMap_BBG[7] &= ~bankmask; VRAMPtr_BBG[2] = GetUniqueBankPtr(VRAMMap_BBG[2], 2 << 14); VRAMPtr_BBG[3] = GetUniqueBankPtr(VRAMMap_BBG[3], 3 << 14); VRAMPtr_BBG[6] = GetUniqueBankPtr(VRAMMap_BBG[6], 6 << 14); VRAMPtr_BBG[7] = GetUniqueBankPtr(VRAMMap_BBG[7], 7 << 14); break; case 2: // BOBJ UNMAP_RANGE_PTR(BOBJ, 0, 8); break; case 3: // BOBJ ext palette VRAMMap_BOBJExtPal &= ~bankmask; break; } } if (cnt & (1<<7)) { switch (cnt & 0x3) { case 0: // LCDC VRAMMap_LCDC |= bankmask; break; case 1: // BBG VRAMMap_BBG[2] |= bankmask; VRAMMap_BBG[3] |= bankmask; VRAMMap_BBG[6] |= bankmask; VRAMMap_BBG[7] |= bankmask; VRAMPtr_BBG[2] = GetUniqueBankPtr(VRAMMap_BBG[2], 2 << 14); VRAMPtr_BBG[3] = GetUniqueBankPtr(VRAMMap_BBG[3], 3 << 14); VRAMPtr_BBG[6] = GetUniqueBankPtr(VRAMMap_BBG[6], 6 << 14); VRAMPtr_BBG[7] = GetUniqueBankPtr(VRAMMap_BBG[7], 7 << 14); break; case 2: // BOBJ MAP_RANGE_PTR(BOBJ, 0, 8); break; case 3: // BOBJ ext palette VRAMMap_BOBJExtPal |= bankmask; break; } } } void SetPowerCnt(u32 val) { // POWCNT1 effects: // * bit0: asplodes hardware??? not tested. // * bit1: disables engine A palette and OAM (zero-filled) (TODO: affects mem timings???) // * bit2: disables rendering engine, resets its internal state (polygons and registers) // * bit3: disables geometry engine // * bit9: disables engine B palette, OAM and rendering (screen turns white) // * bit15: screen swap if (!(val & (1<<0))) printf("!!! CLEARING POWCNT BIT0. DANGER\n"); GPU2D_A->SetEnabled(val & (1<<1)); GPU2D_B->SetEnabled(val & (1<<9)); GPU3D::SetEnabled(val & (1<<3), val & (1<<2)); AssignFramebuffers(); } void DisplayFIFO(u32 x) { // sample the FIFO // as this starts 16 cycles (~3 pixels) before display start, // we aren't aligned to the 8-pixel grid if (x > 0) { if (x == 8) GPU2D_A->SampleFIFO(0, 5); else GPU2D_A->SampleFIFO(x-11, 8); } if (x < 256) { // transfer the next 8 pixels NDS::CheckDMAs(0, 0x04); NDS::ScheduleEvent(NDS::Event_DisplayFIFO, true, 6*8, DisplayFIFO, x+8); } else GPU2D_A->SampleFIFO(253, 3); // sample the remaining pixels } void StartFrame() { // only run the display FIFO if needed: // * if it is used for display or capture // * if we have display FIFO DMA RunFIFO = GPU2D_A->UsesFIFO() || NDS::DMAsInMode(0, 0x04); TotalScanlines = 0; StartScanline(0); } void StartHBlank(u32 line) { DispStat[0] |= (1<<1); DispStat[1] |= (1<<1); SyncDirtyFlags(); if (VCount < 192) { // draw // note: this should start 48 cycles after the scanline start if (line < 192) { GPU2D_A->DrawScanline(line); GPU2D_B->DrawScanline(line); } // sprites are pre-rendered one scanline in advance if (line < 191) { GPU2D_A->DrawSprites(line+1); GPU2D_B->DrawSprites(line+1); } NDS::CheckDMAs(0, 0x02); } else if (VCount == 215) { GPU3D::VCount215(); } else if (VCount == 262) { GPU2D_A->DrawSprites(0); GPU2D_B->DrawSprites(0); } if (DispStat[0] & (1<<4)) NDS::SetIRQ(0, NDS::IRQ_HBlank); if (DispStat[1] & (1<<4)) NDS::SetIRQ(1, NDS::IRQ_HBlank); if (VCount < 262) NDS::ScheduleEvent(NDS::Event_LCD, true, (LINE_CYCLES - HBLANK_CYCLES), StartScanline, line+1); else NDS::ScheduleEvent(NDS::Event_LCD, true, (LINE_CYCLES - HBLANK_CYCLES), FinishFrame, line+1); } void FinishFrame(u32 lines) { FrontBuffer = FrontBuffer ? 0 : 1; AssignFramebuffers(); TotalScanlines = lines; } void StartScanline(u32 line) { if (line == 0) VCount = 0; else if (NextVCount != -1) VCount = NextVCount; else VCount++; NextVCount = -1; DispStat[0] &= ~(1<<1); DispStat[1] &= ~(1<<1); if (VCount == VMatch[0]) { DispStat[0] |= (1<<2); if (DispStat[0] & (1<<5)) NDS::SetIRQ(0, NDS::IRQ_VCount); } else DispStat[0] &= ~(1<<2); if (VCount == VMatch[1]) { DispStat[1] |= (1<<2); if (DispStat[1] & (1<<5)) NDS::SetIRQ(1, NDS::IRQ_VCount); } else DispStat[1] &= ~(1<<2); GPU2D_A->CheckWindows(VCount); GPU2D_B->CheckWindows(VCount); if (VCount >= 2 && VCount < 194) NDS::CheckDMAs(0, 0x03); else if (VCount == 194) NDS::StopDMAs(0, 0x03); if (line < 192) { if (line == 0) { GPU2D_A->VBlankEnd(); GPU2D_B->VBlankEnd(); } if (RunFIFO) NDS::ScheduleEvent(NDS::Event_DisplayFIFO, false, 32, DisplayFIFO, 0); } if (VCount == 262) { // frame end DispStat[0] &= ~(1<<0); DispStat[1] &= ~(1<<0); } else { if (VCount == 192) { // VBlank DispStat[0] |= (1<<0); DispStat[1] |= (1<<0); NDS::StopDMAs(0, 0x04); NDS::CheckDMAs(0, 0x01); NDS::CheckDMAs(1, 0x11); if (DispStat[0] & (1<<3)) NDS::SetIRQ(0, NDS::IRQ_VBlank); if (DispStat[1] & (1<<3)) NDS::SetIRQ(1, NDS::IRQ_VBlank); GPU2D_A->VBlank(); GPU2D_B->VBlank(); GPU3D::VBlank(); #ifdef OGLRENDERER_ENABLED if (Accelerated) GLCompositor::RenderFrame(); #endif } else if (VCount == 144) { GPU3D::VCount144(); } } NDS::ScheduleEvent(NDS::Event_LCD, true, HBLANK_CYCLES, StartHBlank, line); } void SetDispStat(u32 cpu, u16 val) { val &= 0xFFB8; DispStat[cpu] &= 0x0047; DispStat[cpu] |= val; VMatch[cpu] = (val >> 8) | ((val & 0x80) << 1); } void SetVCount(u16 val) { // VCount write is delayed until the next scanline // TODO: how does the 3D engine react to VCount writes while it's rendering? // 3D engine seems to give up on the current frame in that situation, repeating the last two scanlines // TODO: also check the various DMA types that can be involved NextVCount = val; } template NonStupidBitField VRAMTrackingSet::DeriveState(u32* currentMappings) { NonStupidBitField result; u16 banksToBeZeroed = 0; for (u32 i = 0; i < Size / MappingGranularity; i++) { if (currentMappings[i] != Mapping[i]) { result |= NonStupidBitField(i*VRAMBitsPerMapping, VRAMBitsPerMapping); banksToBeZeroed |= currentMappings[i]; Mapping[i] = currentMappings[i]; } else { u32 mapping = Mapping[i]; banksToBeZeroed |= mapping; while (mapping != 0) { u32 num = __builtin_ctz(mapping); mapping &= ~(1 << num); // hack for **speed** // this could probably be done less ugly but then we would rely // on the compiler for vectorisation static_assert(VRAMDirtyGranularity == 512); if (MappingGranularity == 16*1024) { u32 dirty = ((u32*)VRAMDirty[num].Data)[i & (VRAMMask[num] >> 14)]; ((u32*)result.Data)[i] |= dirty; } else if (MappingGranularity == 8*1024) { u16 dirty = ((u16*)VRAMDirty[num].Data)[i & (VRAMMask[num] >> 13)]; ((u16*)result.Data)[i] |= dirty; } else if (MappingGranularity == 128*1024) { ((u64*)result.Data)[i * 4 + 0] |= ((u64*)VRAMDirty[num].Data)[0]; ((u64*)result.Data)[i * 4 + 1] |= ((u64*)VRAMDirty[num].Data)[1]; ((u64*)result.Data)[i * 4 + 2] |= ((u64*)VRAMDirty[num].Data)[2]; ((u64*)result.Data)[i * 4 + 3] |= ((u64*)VRAMDirty[num].Data)[3]; } else { // welp abort(); } } } } while (banksToBeZeroed != 0) { u32 num = __builtin_ctz(banksToBeZeroed); banksToBeZeroed &= ~(1 << num); memset(VRAMDirty[num].Data, 0, sizeof(VRAMDirty[num].Data)); } return result; } template NonStupidBitField<32*1024/VRAMDirtyGranularity> VRAMTrackingSet<32*1024, 8*1024>::DeriveState(u32*); template NonStupidBitField<8*1024/VRAMDirtyGranularity> VRAMTrackingSet<8*1024, 8*1024>::DeriveState(u32*); template NonStupidBitField<512*1024/VRAMDirtyGranularity> VRAMTrackingSet<512*1024, 128*1024>::DeriveState(u32*); template NonStupidBitField<128*1024/VRAMDirtyGranularity> VRAMTrackingSet<128*1024, 16*1024>::DeriveState(u32*); template NonStupidBitField<256*1024/VRAMDirtyGranularity> VRAMTrackingSet<256*1024, 16*1024>::DeriveState(u32*); template NonStupidBitField<512*1024/VRAMDirtyGranularity> VRAMTrackingSet<512*1024, 16*1024>::DeriveState(u32*); template void SyncDirtyFlags(u32* mappings, NonStupidBitField& writtenFlags) { const u32 VRAMWrittenBitsPer16KB = 16*1024/VRAMDirtyGranularity; for (typename NonStupidBitField::Iterator it = writtenFlags.Begin(); it != writtenFlags.End(); it++) { u32 mapping = mappings[*it / VRAMWrittenBitsPer16KB]; while (mapping != 0) { u32 num = __builtin_ctz(mapping); VRAMDirty[num][*it & (VRAMMask[num] / VRAMDirtyGranularity)] = true; mapping &= ~(1 << num); } } memset(writtenFlags.Data, 0, sizeof(writtenFlags.Data)); } void SyncDirtyFlags() { SyncDirtyFlags(VRAMMap_ABG, VRAMWritten_ABG); SyncDirtyFlags(VRAMMap_AOBJ, VRAMWritten_AOBJ); SyncDirtyFlags(VRAMMap_BBG, VRAMWritten_BBG); SyncDirtyFlags(VRAMMap_BOBJ, VRAMWritten_BOBJ); SyncDirtyFlags(VRAMMap_ARM7, VRAMWritten_ARM7); } template inline bool CopyLinearVRAM(u8* flat, u32* mappings, NonStupidBitField& dirty, u64 (*slowAccess)(u32 addr)) { const u32 VRAMBitsPerMapping = MappingGranularity / VRAMDirtyGranularity; bool change = false; typename NonStupidBitField::Iterator it = dirty.Begin(); while (it != dirty.End()) { u32 offset = *it * VRAMDirtyGranularity; u8* dst = flat + offset; u8* fastAccess = GetUniqueBankPtr(mappings[*it / VRAMBitsPerMapping], offset); if (fastAccess) { memcpy(dst, fastAccess, VRAMDirtyGranularity); } else { for (u32 i = 0; i < VRAMDirtyGranularity; i += 8) *(u64*)&dst[i] = slowAccess(offset + i); } change = true; it++; } return change; } bool MakeVRAMFlat_TextureCoherent(NonStupidBitField<512*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<128*1024>(VRAMFlat_Texture, VRAMMap_Texture, dirty, ReadVRAM_Texture); } bool MakeVRAMFlat_TexPalCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<16*1024>(VRAMFlat_TexPal, VRAMMap_TexPal, dirty, ReadVRAM_TexPal); } bool MakeVRAMFlat_ABGCoherent(NonStupidBitField<512*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<16*1024>(VRAMFlat_ABG, VRAMMap_ABG, dirty, ReadVRAM_ABG); } bool MakeVRAMFlat_BBGCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<16*1024>(VRAMFlat_BBG, VRAMMap_BBG, dirty, ReadVRAM_BBG); } bool MakeVRAMFlat_AOBJCoherent(NonStupidBitField<256*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<16*1024>(VRAMFlat_AOBJ, VRAMMap_AOBJ, dirty, ReadVRAM_AOBJ); } bool MakeVRAMFlat_BOBJCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<16*1024>(VRAMFlat_BOBJ, VRAMMap_BOBJ, dirty, ReadVRAM_BOBJ); } template T ReadVRAM_ABGExtPal(u32 addr) { u32 mask = VRAMMap_ABGExtPal[(addr >> 13) & 0x3]; T ret = 0; if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0x7FFF]; if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF]; if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF]; return ret; } template T ReadVRAM_BBGExtPal(u32 addr) { u32 mask = VRAMMap_BBGExtPal[(addr >> 13) & 0x3]; T ret = 0; if (mask & (1<<7)) ret |= *(T*)&VRAM_H[addr & 0x7FFF]; return ret; } template T ReadVRAM_AOBJExtPal(u32 addr) { u32 mask = VRAMMap_AOBJExtPal; T ret = 0; if (mask & (1<<4)) ret |= *(T*)&VRAM_F[addr & 0x1FFF]; if (mask & (1<<5)) ret |= *(T*)&VRAM_G[addr & 0x1FFF]; return ret; } template T ReadVRAM_BOBJExtPal(u32 addr) { u32 mask = VRAMMap_BOBJExtPal; T ret = 0; if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x1FFF]; return ret; } bool MakeVRAMFlat_ABGExtPalCoherent(NonStupidBitField<32*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<8*1024>(VRAMFlat_ABGExtPal, VRAMMap_ABGExtPal, dirty, ReadVRAM_ABGExtPal); } bool MakeVRAMFlat_BBGExtPalCoherent(NonStupidBitField<32*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<8*1024>(VRAMFlat_BBGExtPal, VRAMMap_BBGExtPal, dirty, ReadVRAM_BBGExtPal); } bool MakeVRAMFlat_AOBJExtPalCoherent(NonStupidBitField<8*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<8*1024>(VRAMFlat_AOBJExtPal, &VRAMMap_AOBJExtPal, dirty, ReadVRAM_AOBJExtPal); } bool MakeVRAMFlat_BOBJExtPalCoherent(NonStupidBitField<8*1024/VRAMDirtyGranularity>& dirty) { return CopyLinearVRAM<8*1024>(VRAMFlat_BOBJExtPal, &VRAMMap_BOBJExtPal, dirty, ReadVRAM_BOBJExtPal); } }