/* Copyright 2016-2023 melonDS team This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include #include #include "Args.h" #include "NDS.h" #include "DSi.h" #include "ARM.h" #include "GPU.h" #include "NDSCart.h" #include "SPI.h" #include "DSi_SPI_TSC.h" #include "Platform.h" #include "ARMJIT.h" #include "ARMJIT_Memory.h" #include "DSi_NDMA.h" #include "DSi_I2C.h" #include "DSi_SD.h" #include "DSi_AES.h" #include "DSi_NAND.h" #include "DSi_DSP.h" #include "DSi_Camera.h" #include "tiny-AES-c/aes.hpp" namespace melonDS { using namespace Platform; // matching NDMA modes for DSi const u32 NDMAModes[] = { // ARM9 0x10, // immediate 0x06, // VBlank 0x07, // HBlank 0x08, // scanline start 0x09, // mainmem FIFO 0x04, // DS cart slot 0xFF, // GBA cart slot 0x0A, // GX FIFO 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // ARM7 0x30, // immediate 0x26, // VBlank 0x24, // DS cart slot 0xFF, // wifi / GBA cart slot (TODO) }; DSi::DSi(DSiArgs&& args) noexcept : NDS(std::move(args), 1), NDMAs { DSi_NDMA(0, 0, *this), DSi_NDMA(0, 1, *this), DSi_NDMA(0, 2, *this), DSi_NDMA(0, 3, *this), DSi_NDMA(1, 0, *this), DSi_NDMA(1, 1, *this), DSi_NDMA(1, 2, *this), DSi_NDMA(1, 3, *this), }, ARM7iBIOS(args.ARM7iBIOS), ARM9iBIOS(args.ARM9iBIOS), DSP(*this), SDMMC(*this, std::move(args.NANDImage), std::move(args.DSiSDCard)), SDIO(*this), I2C(*this), CamModule(*this), AES(*this) { // Memory is owned by ARMJIT_Memory, don't free it NWRAM_A = JIT.Memory.GetNWRAM_A(); NWRAM_B = JIT.Memory.GetNWRAM_B(); NWRAM_C = JIT.Memory.GetNWRAM_C(); } DSi::~DSi() noexcept { // Memory is owned externally NWRAM_A = nullptr; NWRAM_B = nullptr; NWRAM_C = nullptr; } void DSi::Reset() { //ARM9.CP15Write(0x910, 0x0D00000A); //ARM9.CP15Write(0x911, 0x00000020); //ARM9.CP15Write(0x100, ARM9.CP15Read(0x100) | 0x00050000); NDS::Reset(); // The SOUNDBIAS register does nothing on DSi SPU.SetApplyBias(false); KeyInput &= ~(1 << (16+6)); MapSharedWRAM(3); NDMACnt[0] = 0; NDMACnt[1] = 0; for (int i = 0; i < 8; i++) NDMAs[i].Reset(); I2C.Reset(); CamModule.Reset(); DSP.Reset(); LoadNAND(); SDMMC.Reset(); SDIO.Reset(); AES.Reset(); if (FullBIOSBoot) { SCFG_BIOS = 0x0000; } else { SCFG_BIOS = 0x0101; } SCFG_Clock9 = 0x0187; // CHECKME SCFG_Clock7 = 0x0187; SCFG_EXT[0] = 0x8307F100; SCFG_EXT[1] = 0x93FFFB06; SCFG_MC = 0x0010 | (~((u32)(NDSCartSlot.GetCart() != nullptr))&1);//0x0011; SCFG_RST = 0; DSP.SetRstLine(false); GPIO_Data = 0xff; // these actually initialize to high after reset GPIO_Dir = 0x80; // enable sound out, all others input GPIO_IEdgeSel = 0; GPIO_IE = 0; GPIO_WiFi = 0; // LCD init flag GPU.DispStat[0] |= (1<<6); GPU.DispStat[1] |= (1<<6); } void DSi::Stop(Platform::StopReason reason) { NDS::Stop(reason); CamModule.Stop(); } void DSi::SetNDSCart(std::unique_ptr&& cart) { NDS::SetNDSCart(std::move(cart)); SetCartInserted(NDSCartSlot.GetCart() != nullptr); } std::unique_ptr DSi::EjectCart() { auto oldcart = NDS::EjectCart(); SetCartInserted(false); return oldcart; } void DSi::CamInputFrame(int cam, const u32* data, int width, int height, bool rgb) { switch (cam) { case 0: return I2C.GetOuterCamera()->InputFrame(data, width, height, rgb); case 1: return I2C.GetInnerCamera()->InputFrame(data, width, height, rgb); } } void DSi::DoSavestateExtra(Savestate* file) { file->Section("DSIG"); file->Var16(&SCFG_BIOS); file->Var16(&SCFG_Clock9); file->Var16(&SCFG_Clock7); file->VarArray(&SCFG_EXT[0], sizeof(u32)*2); file->Var32(&SCFG_MC); file->Var16(&SCFG_RST); //file->VarArray(ARM9iBIOS, 0x10000); //file->VarArray(ARM7iBIOS, 0x10000); if (file->Saving) { file->VarArray(&MBK[0][0], sizeof(u32)*8); file->VarArray(&MBK[1][5], sizeof(u32)*3); file->Var32(&MBK[0][8]); } else { Set_SCFG_Clock9(SCFG_Clock9); Set_SCFG_MC(SCFG_MC); DSP.SetRstLine(SCFG_RST & 0x0001); MBK[0][8] = 0; MBK[1][8] = 0; u32 mbk[12]; file->VarArray(&mbk, sizeof(u32)*12); MapNWRAM_A(0, mbk[0] & 0xFF); MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF); MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF); MapNWRAM_A(3, mbk[0] >> 24); MapNWRAM_B(0, mbk[1] & 0xFF); MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF); MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF); MapNWRAM_B(3, mbk[1] >> 24); MapNWRAM_B(4, mbk[2] & 0xFF); MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF); MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF); MapNWRAM_B(7, mbk[2] >> 24); MapNWRAM_C(0, mbk[3] & 0xFF); MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF); MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF); MapNWRAM_C(3, mbk[3] >> 24); MapNWRAM_C(4, mbk[4] & 0xFF); MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF); MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF); MapNWRAM_C(7, mbk[4] >> 24); MapNWRAMRange(0, 0, mbk[5]); MapNWRAMRange(0, 1, mbk[6]); MapNWRAMRange(0, 2, mbk[7]); MapNWRAMRange(1, 0, mbk[8]); MapNWRAMRange(1, 1, mbk[9]); MapNWRAMRange(1, 2, mbk[10]); mbk[11] &= 0x00FFFF0F; MBK[0][8] = mbk[11]; MBK[1][8] = mbk[11]; } for (int i = 0; i < 8; i++) NDMAs[i].DoSavestate(file); AES.DoSavestate(file); CamModule.DoSavestate(file); DSP.DoSavestate(file); I2C.DoSavestate(file); SDMMC.DoSavestate(file); SDIO.DoSavestate(file); } void DSi::SetCartInserted(bool inserted) { if (inserted) SCFG_MC &= ~1; else SCFG_MC |= 1; } void DSi::DecryptModcryptArea(u32 offset, u32 size, const u8* iv) { AES_ctx ctx; u8 key[16]; u8 tmp[16]; if ((offset == 0) || (size == 0)) return; const NDSHeader& header = NDSCartSlot.GetCart()->GetHeader(); if ((header.DSiCryptoFlags & (1<<4)) || (header.AppFlags & (1<<7))) { // dev key const u8* cartrom = NDSCartSlot.GetCart()->GetROM(); memcpy(key, &cartrom[0], 16); } else { u8 keyX[16], keyY[16]; *(u32*)&keyX[0] = 0x746E694E; *(u32*)&keyX[4] = 0x6F646E65; keyX[8] = header.GameCode[0]; keyX[9] = header.GameCode[1]; keyX[10] = header.GameCode[2]; keyX[11] = header.GameCode[3]; keyX[12] = header.GameCode[3]; keyX[13] = header.GameCode[2]; keyX[14] = header.GameCode[1]; keyX[15] = header.GameCode[0]; memcpy(keyY, header.DSiARM9iHash, 16); DSi_AES::DeriveNormalKey(keyX, keyY, tmp); } Bswap128(key, tmp); Bswap128(tmp, iv); AES_init_ctx_iv(&ctx, key, tmp); // find a matching binary area u32 binaryaddr, binarysize; u32 roundedsize = (size + 0xF) & ~0xF; // CHECKME: GBAtek says the modcrypt area should be the same size, or bigger, // than the binary area being considered // but I have seen modcrypt areas smaller than the ARM9i binary #define BINARY_GOOD(name) \ ((offset >= header.name##ROMOffset) && \ (offset+roundedsize) <= (header.name##ROMOffset + ((header.name##Size + 0xF) & ~0xF))) if (BINARY_GOOD(ARM9)) { binaryaddr = header.ARM9RAMAddress; binarysize = header.ARM9Size; } else if (BINARY_GOOD(ARM7)) { binaryaddr = header.ARM7RAMAddress; binarysize = header.ARM7Size; } else if (BINARY_GOOD(DSiARM9i)) { binaryaddr = header.DSiARM9iRAMAddress; binarysize = header.DSiARM9iSize; } else if (BINARY_GOOD(DSiARM7i)) { binaryaddr = header.DSiARM7iRAMAddress; binarysize = header.DSiARM7iSize; } else return; #undef BINARY_GOOD for (u32 i = 0; i < size; i+=16) { u32 data[4]; data[0] = ARM9Read32(binaryaddr+i); data[1] = ARM9Read32(binaryaddr+i+4); data[2] = ARM9Read32(binaryaddr+i+8); data[3] = ARM9Read32(binaryaddr+i+12); Bswap128(tmp, data); AES_CTR_xcrypt_buffer(&ctx, tmp, sizeof(tmp)); Bswap128(data, tmp); ARM9Write32(binaryaddr+i, data[0]); ARM9Write32(binaryaddr+i+4, data[1]); ARM9Write32(binaryaddr+i+8, data[2]); ARM9Write32(binaryaddr+i+12, data[3]); } } void DSi::SetupDirectBoot() { bool dsmode = false; NDSHeader& header = NDSCartSlot.GetCart()->GetHeader(); const u8* cartrom = NDSCartSlot.GetCart()->GetROM(); u32 cartid = NDSCartSlot.GetCart()->ID(); DSi_TSC* tsc = (DSi_TSC*)SPI.GetTSC(); // TODO: add controls for forcing DS or DSi mode? if (!(header.UnitCode & 0x02)) dsmode = true; if (dsmode) { SCFG_BIOS = 0x0303; // no NWRAM Mapping for (int i = 0; i < 4; i++) MapNWRAM_A(i, 0); for (int i = 0; i < 8; i++) MapNWRAM_B(i, 0); for (int i = 0; i < 8; i++) MapNWRAM_C(i, 0); // No NWRAM Window for (int i = 0; i < 3; i++) { MapNWRAMRange(0, i, 0); MapNWRAMRange(1, i, 0); } NDS::MapSharedWRAM(3); tsc->SetMode(0x00); Set_SCFG_Clock9(0x0000); } else { SCFG_BIOS = 0x0101; // WRAM mapping MBK[0][8] = 0; MBK[1][8] = 0; u32 mbk[12]; memcpy(mbk, &cartrom[0x180], 12*4); MapNWRAM_A(0, mbk[0] & 0xFF); MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF); MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF); MapNWRAM_A(3, mbk[0] >> 24); MapNWRAM_B(0, mbk[1] & 0xFF); MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF); MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF); MapNWRAM_B(3, mbk[1] >> 24); MapNWRAM_B(4, mbk[2] & 0xFF); MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF); MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF); MapNWRAM_B(7, mbk[2] >> 24); MapNWRAM_C(0, mbk[3] & 0xFF); MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF); MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF); MapNWRAM_C(3, mbk[3] >> 24); MapNWRAM_C(4, mbk[4] & 0xFF); MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF); MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF); MapNWRAM_C(7, mbk[4] >> 24); MapNWRAMRange(0, 0, mbk[5]); MapNWRAMRange(0, 1, mbk[6]); MapNWRAMRange(0, 2, mbk[7]); MapNWRAMRange(1, 0, mbk[8]); MapNWRAMRange(1, 1, mbk[9]); MapNWRAMRange(1, 2, mbk[10]); MBK[0][8] = mbk[11] & 0x00FFFF0F; MBK[1][8] = mbk[11] & 0x00FFFF0F; NDS::MapSharedWRAM(mbk[11] >> 24); if (!(header.AppFlags & (1<<0))) tsc->SetMode(0x00); } // setup main RAM data // TODO: verify what changes when loading a DS-mode ROM if (dsmode) { for (u32 i = 0; i < 0x170; i+=4) { u32 tmp = *(u32*)&cartrom[i]; ARM9Write32(0x027FFE00+i, tmp); } ARM9Write32(0x027FF800, cartid); ARM9Write32(0x027FF804, cartid); ARM9Write16(0x027FF808, header.HeaderCRC16); ARM9Write16(0x027FF80A, header.SecureAreaCRC16); ARM9Write16(0x027FF850, 0x5835); ARM9Write32(0x027FFC00, cartid); ARM9Write32(0x027FFC04, cartid); ARM9Write16(0x027FFC08, header.HeaderCRC16); ARM9Write16(0x027FFC0A, header.SecureAreaCRC16); ARM9Write16(0x027FFC10, 0x5835); ARM9Write16(0x027FFC30, 0xFFFF); ARM9Write16(0x027FFC40, 0x0001); } else { // CHECKME: some of these are 'only for NDS ROM', presumably // only for when loading a cart? (as opposed to DSiWare) for (u32 i = 0; i < 0x160; i+=4) { u32 tmp = *(u32*)&cartrom[i]; ARM9Write32(0x02FFFA80+i, tmp); ARM9Write32(0x02FFFE00+i, tmp); } for (u32 i = 0; i < 0x1000; i+=4) { u32 tmp = *(u32*)&cartrom[i]; ARM9Write32(0x02FFC000+i, tmp); ARM9Write32(0x02FFE000+i, tmp); } if (DSi_NAND::NANDImage* image = SDMMC.GetNAND(); image && *image) { // If a NAND image is installed, and it's valid... if (DSi_NAND::NANDMount nand = DSi_NAND::NANDMount(*image)) { DSi_NAND::DSiFirmwareSystemSettings userdata {}; nand.ReadUserData(userdata); for (u32 i = 0; i < 0x128; i+=4) ARM9Write32(0x02000400+i, *(u32*)&userdata.Bytes[0x88+i]); DSi_NAND::DSiSerialData hwinfoS {}; nand.ReadSerialData(hwinfoS); DSi_NAND::DSiHardwareInfoN hwinfoN; nand.ReadHardwareInfoN(hwinfoN); for (u32 i = 0; i < 0x14; i+=4) ARM9Write32(0x02000600+i, *(u32*)&hwinfoN[0x88+i]); for (u32 i = 0; i < 0x18; i+=4) ARM9Write32(0x02FFFD68+i, *(u32*)&hwinfoS.Bytes[0x88+i]); } } Firmware::WifiBoard nwifiver = SPI.GetFirmware().GetHeader().WifiBoard; ARM9Write8(0x020005E0, static_cast(nwifiver)); // TODO: these should be taken from the wifi firmware in NAND // but, hey, this works too. if (nwifiver == Firmware::WifiBoard::W015) { ARM9Write16(0x020005E2, 0xB57E); ARM9Write32(0x020005E4, 0x00500400); ARM9Write32(0x020005E8, 0x00500000); ARM9Write32(0x020005EC, 0x0002E000); } else { ARM9Write16(0x020005E2, 0x5BCA); ARM9Write32(0x020005E4, 0x00520000); ARM9Write32(0x020005E8, 0x00520000); ARM9Write32(0x020005EC, 0x00020000); } // TODO: the shit at 02FFD7B0..02FFDC00 // and some other extra shit? ARM9Write32(0x02FFFC00, cartid); ARM9Write16(0x02FFFC40, 0x0001); // boot indicator ARM9Write8(0x02FFFDFA, I2C.GetBPTWL()->GetBootFlag() | 0x80); ARM9Write8(0x02FFFDFB, 0x01); } // TODO: for DS-mode ROMs, switch RAM size here u32 arm9start = 0; // load the ARM9 secure area if (header.ARM9ROMOffset >= 0x4000 && header.ARM9ROMOffset < 0x8000) { u8 securearea[0x800]; NDSCartSlot.DecryptSecureArea(securearea); for (u32 i = 0; i < 0x800; i+=4) { ARM9Write32(header.ARM9RAMAddress+i, *(u32*)&securearea[i]); arm9start += 4; } } for (u32 i = arm9start; i < header.ARM9Size; i+=4) { u32 tmp = *(u32*)&cartrom[header.ARM9ROMOffset+i]; ARM9Write32(header.ARM9RAMAddress+i, tmp); } for (u32 i = 0; i < header.ARM7Size; i+=4) { u32 tmp = *(u32*)&cartrom[header.ARM7ROMOffset+i]; ARM7Write32(header.ARM7RAMAddress+i, tmp); } if ((!dsmode) && (header.DSiCryptoFlags & (1<<0))) { // load DSi-specific regions for (u32 i = 0; i < header.DSiARM9iSize; i+=4) { u32 tmp = *(u32*)&cartrom[header.DSiARM9iROMOffset+i]; ARM9Write32(header.DSiARM9iRAMAddress+i, tmp); } for (u32 i = 0; i < header.DSiARM7iSize; i+=4) { u32 tmp = *(u32*)&cartrom[header.DSiARM7iROMOffset+i]; ARM7Write32(header.DSiARM7iRAMAddress+i, tmp); } // decrypt any modcrypt areas if (header.DSiCryptoFlags & (1<<1)) { DecryptModcryptArea(header.DSiModcrypt1Offset, header.DSiModcrypt1Size, header.DSiARM9Hash); DecryptModcryptArea(header.DSiModcrypt2Offset, header.DSiModcrypt2Size, header.DSiARM7Hash); } } ARM7BIOSProt = 0x20; SPI.GetFirmwareMem()->SetupDirectBoot(); ARM9.CP15Write(0x100, 0x00056078); ARM9.CP15Write(0x200, 0x0000004A); ARM9.CP15Write(0x201, 0x0000004A); ARM9.CP15Write(0x300, 0x0000000A); ARM9.CP15Write(0x502, 0x15111011); ARM9.CP15Write(0x503, 0x05101011); ARM9.CP15Write(0x600, 0x04000033); ARM9.CP15Write(0x601, 0x04000033); ARM9.CP15Write(0x610, 0x02000031); ARM9.CP15Write(0x611, 0x02000031); ARM9.CP15Write(0x620, 0x00000000); ARM9.CP15Write(0x621, 0x00000000); ARM9.CP15Write(0x630, 0x08000033); ARM9.CP15Write(0x631, 0x08000033); ARM9.CP15Write(0x640, 0x0E00001B); ARM9.CP15Write(0x641, 0x0E00001B); ARM9.CP15Write(0x650, 0x00000000); ARM9.CP15Write(0x651, 0x00000000); ARM9.CP15Write(0x660, 0xFFFF001D); ARM9.CP15Write(0x661, 0xFFFF001D); ARM9.CP15Write(0x670, 0x02FFC01B); ARM9.CP15Write(0x671, 0x02FFC01B); ARM9.CP15Write(0x910, 0x0E00000A); ARM9.CP15Write(0x911, 0x00000020); } void DSi::SoftReset() { // TODO: check exactly what is reset // presumably, main RAM isn't reset, since the DSi can be told // to boot a specific title this way // BPTWL state wouldn't be reset either since BPTWL[0x70] is // the warmboot flag // also, BPTWL[0x70] could be abused to quickly boot specific titles JIT.Reset(); JIT.CheckAndInvalidateITCM(); ARM9.Reset(); ARM7.Reset(); ARM9.CP15Reset(); NDS::MapSharedWRAM(3); // TODO: does the DSP get reset? NWRAM doesn't, so I'm assuming no // *HOWEVER*, the bootrom (which does get rerun) does remap NWRAM, and thus // the DSP most likely gets reset DSP.Reset(); LoadNAND(); SDMMC.Reset(); SDIO.Reset(); AES.Reset(); if (FullBIOSBoot) { SCFG_BIOS = 0x0000; } else { SCFG_BIOS = 0x0101; } SCFG_Clock9 = 0x0187; // CHECKME SCFG_Clock7 = 0x0187; SCFG_EXT[0] = 0x8307F100; SCFG_EXT[1] = 0x93FFFB06; SCFG_MC = 0x0010;//0x0011; // TODO: is this actually reset? SCFG_RST = 0; DSP.SetRstLine(false); // LCD init flag GPU.DispStat[0] |= (1<<6); GPU.DispStat[1] |= (1<<6); } bool DSi::LoadNAND() { DSi_NAND::NANDImage* image = SDMMC.GetNAND(); if (!(image && *image)) { Log(LogLevel::Error, "No NAND image loaded\n"); return false; } Log(LogLevel::Info, "Loading DSi NAND\n"); DSi_NAND::NANDMount nandmount(*SDMMC.GetNAND()); if (!nandmount) { Log(LogLevel::Error, "Failed to load DSi NAND\n"); return false; } FileHandle* nand = image->GetFile(); // Make sure NWRAM is accessible. // The Bits are set to the startup values in Reset() and we might // still have them on default (0) or some bits cleared by the previous // run. SCFG_EXT[0] |= (1 << 25); SCFG_EXT[1] |= (1 << 25); memset(NWRAM_A, 0, NWRAMSize); memset(NWRAM_B, 0, NWRAMSize); memset(NWRAM_C, 0, NWRAMSize); memset(MBK, 0, sizeof(MBK)); memset(NWRAMMap_A, 0, sizeof(NWRAMMap_A)); memset(NWRAMMap_B, 0, sizeof(NWRAMMap_B)); memset(NWRAMMap_C, 0, sizeof(NWRAMMap_C)); memset(NWRAMStart, 0, sizeof(NWRAMStart)); memset(NWRAMEnd, 0, sizeof(NWRAMEnd)); memset(NWRAMMask, 0, sizeof(NWRAMMask)); u32 bootparams[8]; if (FullBIOSBoot) { // TODO: figure out default MBK mapping // MBK1..5: disable mappings for (int i = 0; i < 8; ++i) { if (i < 4) MapNWRAM_A(i, 0); MapNWRAM_B(i, 0); MapNWRAM_C(i, 0); } // MBK6..8: address mappings: nothing mapped for (int i = 0; i < 6; ++i) { MapNWRAMRange(i & 1, i >> 1, 0); } // MBK9: ARM9 allowed to write MBK[0][8] = 0; MBK[1][8] = 0; } else { FileSeek(nand, 0x220, FileSeekOrigin::Start); FileRead(bootparams, 4, 8, nand); Log(LogLevel::Debug, "ARM9: offset=%08X size=%08X RAM=%08X size_aligned=%08X\n", bootparams[0], bootparams[1], bootparams[2], bootparams[3]); Log(LogLevel::Debug, "ARM7: offset=%08X size=%08X RAM=%08X size_aligned=%08X\n", bootparams[4], bootparams[5], bootparams[6], bootparams[7]); // read and apply new-WRAM settings MBK[0][8] = 0; MBK[1][8] = 0; u32 mbk[12]; FileSeek(nand, 0x380, FileSeekOrigin::Start); FileRead(mbk, 4, 12, nand); MapNWRAM_A(0, mbk[0] & 0xFF); MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF); MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF); MapNWRAM_A(3, mbk[0] >> 24); MapNWRAM_B(0, mbk[1] & 0xFF); MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF); MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF); MapNWRAM_B(3, mbk[1] >> 24); MapNWRAM_B(4, mbk[2] & 0xFF); MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF); MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF); MapNWRAM_B(7, mbk[2] >> 24); MapNWRAM_C(0, mbk[3] & 0xFF); MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF); MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF); MapNWRAM_C(3, mbk[3] >> 24); MapNWRAM_C(4, mbk[4] & 0xFF); MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF); MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF); MapNWRAM_C(7, mbk[4] >> 24); MapNWRAMRange(0, 0, mbk[5]); MapNWRAMRange(0, 1, mbk[6]); MapNWRAMRange(0, 2, mbk[7]); MapNWRAMRange(1, 0, mbk[8]); MapNWRAMRange(1, 1, mbk[9]); MapNWRAMRange(1, 2, mbk[10]); // TODO: find out why it is 0xFF000000 mbk[11] &= 0x00FFFF0F; MBK[0][8] = mbk[11]; MBK[1][8] = mbk[11]; // load boot2 binaries AES_ctx ctx; const u8 boot2key[16] = {0xAD, 0x34, 0xEC, 0xF9, 0x62, 0x6E, 0xC2, 0x3A, 0xF6, 0xB4, 0x6C, 0x00, 0x80, 0x80, 0xEE, 0x98}; u8 boot2iv[16]; u8 tmp[16]; u32 dstaddr; *(u32*)&tmp[0] = bootparams[3]; *(u32*)&tmp[4] = -bootparams[3]; *(u32*)&tmp[8] = ~bootparams[3]; *(u32*)&tmp[12] = 0; Bswap128(boot2iv, tmp); AES_init_ctx_iv(&ctx, boot2key, boot2iv); FileSeek(nand, bootparams[0], FileSeekOrigin::Start); dstaddr = bootparams[2]; for (u32 i = 0; i < bootparams[3]; i += 16) { u32 data[4]; FileRead(data, 16, 1, nand); Bswap128(tmp, data); AES_CTR_xcrypt_buffer(&ctx, tmp, 16); Bswap128(data, tmp); ARM9Write32(dstaddr, data[0]); dstaddr += 4; ARM9Write32(dstaddr, data[1]); dstaddr += 4; ARM9Write32(dstaddr, data[2]); dstaddr += 4; ARM9Write32(dstaddr, data[3]); dstaddr += 4; } *(u32*)&tmp[0] = bootparams[7]; *(u32*)&tmp[4] = -bootparams[7]; *(u32*)&tmp[8] = ~bootparams[7]; *(u32*)&tmp[12] = 0; Bswap128(boot2iv, tmp); AES_init_ctx_iv(&ctx, boot2key, boot2iv); FileSeek(nand, bootparams[4], FileSeekOrigin::Start); dstaddr = bootparams[6]; for (u32 i = 0; i < bootparams[7]; i += 16) { u32 data[4]; FileRead(data, 16, 1, nand); Bswap128(tmp, data); AES_CTR_xcrypt_buffer(&ctx, tmp, 16); Bswap128(data, tmp); ARM7Write32(dstaddr, data[0]); dstaddr += 4; ARM7Write32(dstaddr, data[1]); dstaddr += 4; ARM7Write32(dstaddr, data[2]); dstaddr += 4; ARM7Write32(dstaddr, data[3]); dstaddr += 4; } } const DSi_NAND::DSiKey& emmccid = image->GetEMMCID(); Log(LogLevel::Debug, "eMMC CID: %08llX%08llX\n", *(const u64*)&emmccid[0], *(const u64*)&emmccid[8]); Log(LogLevel::Debug, "Console ID: %" PRIx64 "\n", image->GetConsoleID()); if (FullBIOSBoot) { // point CPUs to boot ROM reset vectors ARM9.JumpTo(0xFFFF0000); ARM7.JumpTo(0x00000000); } else { u32 eaddr = 0x03FFE6E4; ARM7Write32(eaddr+0x00, *(const u32*)&emmccid[0]); ARM7Write32(eaddr+0x04, *(const u32*)&emmccid[4]); ARM7Write32(eaddr+0x08, *(const u32*)&emmccid[8]); ARM7Write32(eaddr+0x0C, *(const u32*)&emmccid[12]); ARM7Write16(eaddr+0x2C, 0x0001); ARM7Write16(eaddr+0x2E, 0x0001); ARM7Write16(eaddr+0x3C, 0x0100); ARM7Write16(eaddr+0x3E, 0x40E0); ARM7Write16(eaddr+0x42, 0x0001); memcpy(&ARM9.ITCM[0x4400], &ARM9iBIOS[0x87F4], 0x400); memcpy(&ARM9.ITCM[0x4800], &ARM9iBIOS[0x9920], 0x80); memcpy(&ARM9.ITCM[0x4894], &ARM9iBIOS[0x99A0], 0x1048); memcpy(&ARM9.ITCM[0x58DC], &ARM9iBIOS[0xA9E8], 0x1048); u8 ARM7Init[0x3C00]; memset(ARM7Init, 0, 0x3C00); memcpy(&ARM7Init[0x0000], &ARM7iBIOS[0x8188], 0x200); memcpy(&ARM7Init[0x0200], &ARM7iBIOS[0xB5D8], 0x40); memcpy(&ARM7Init[0x0254], &ARM7iBIOS[0xC6D0], 0x1048); memcpy(&ARM7Init[0x129C], &ARM7iBIOS[0xD718], 0x1048); for (u32 i = 0; i < 0x3C00; i+=4) ARM7Write32(0x03FFC400+i, *(u32*)&ARM7Init[i]); // repoint the CPUs to the boot2 binaries ARM9.JumpTo(bootparams[2]); ARM7.JumpTo(bootparams[6]); } // user data is now expected to be patched by the frontend return true; } void DSi::RunNDMAs(u32 cpu) { // TODO: round-robin mode (requires DMA channels to have a subblock delay set) if (cpu == 0) { if (ARM9Timestamp >= ARM9Target) return; if (!(CPUStop & CPUStop_GXStall)) NDMAs[0].Run(); if (!(CPUStop & CPUStop_GXStall)) NDMAs[1].Run(); if (!(CPUStop & CPUStop_GXStall)) NDMAs[2].Run(); if (!(CPUStop & CPUStop_GXStall)) NDMAs[3].Run(); } else { if (ARM7Timestamp >= ARM7Target) return; NDMAs[4].Run(); NDMAs[5].Run(); NDMAs[6].Run(); NDMAs[7].Run(); } } void DSi::StallNDMAs() { // TODO } bool DSi::DMAsInMode(u32 cpu, u32 mode) const { if (NDS::DMAsInMode(cpu, mode)) return true; return NDMAsInMode(cpu, NDMAModes[mode]); } bool DSi::DMAsRunning(u32 cpu) const { if (NDS::DMAsRunning(cpu)) return true; return NDMAsRunning(cpu); } bool DSi::NDMAsInMode(u32 cpu, u32 mode) const { cpu <<= 2; if (NDMAs[cpu+0].IsInMode(mode)) return true; if (NDMAs[cpu+1].IsInMode(mode)) return true; if (NDMAs[cpu+2].IsInMode(mode)) return true; if (NDMAs[cpu+3].IsInMode(mode)) return true; return false; } bool DSi::NDMAsRunning(u32 cpu) const { cpu <<= 2; if (NDMAs[cpu+0].IsRunning()) return true; if (NDMAs[cpu+1].IsRunning()) return true; if (NDMAs[cpu+2].IsRunning()) return true; if (NDMAs[cpu+3].IsRunning()) return true; return false; } void DSi::CheckNDMAs(u32 cpu, u32 mode) { cpu <<= 2; NDMAs[cpu+0].StartIfNeeded(mode); NDMAs[cpu+1].StartIfNeeded(mode); NDMAs[cpu+2].StartIfNeeded(mode); NDMAs[cpu+3].StartIfNeeded(mode); } void DSi::StopNDMAs(u32 cpu, u32 mode) { cpu <<= 2; NDMAs[cpu+0].StopIfNeeded(mode); NDMAs[cpu+1].StopIfNeeded(mode); NDMAs[cpu+2].StopIfNeeded(mode); NDMAs[cpu+3].StopIfNeeded(mode); } void DSi::StopDMAs(u32 cpu, u32 mode) { NDS::StopDMAs(cpu, mode); StopNDMAs(cpu, mode); } void DSi::CheckDMAs(u32 cpu, u32 mode) { NDS::CheckDMAs(cpu, mode); CheckNDMAs(cpu, NDMAModes[mode]); } // new WRAM mapping // TODO: find out what happens upon overlapping slots!! void DSi::MapNWRAM_A(u32 num, u8 val) { // NWRAM Bank A does not allow all bits to be set // possible non working combinations are caught by later code, but these are not set-able at all val &= ~0x72; if (MBK[0][8] & (1 << num)) { Log(LogLevel::Warn, "trying to map NWRAM_A %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]); return; } int mbkn = 0, mbks = 8*num; u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF; if (oldval == val) return; JIT.Memory.RemapNWRAM(0); MBK[0][mbkn] &= ~(0xFF << mbks); MBK[0][mbkn] |= (val << mbks); MBK[1][mbkn] = MBK[0][mbkn]; // When we only update the mapping on the written MBK, we will // have priority of the last written MBK over the others // However the hardware has a fixed order. Therefore // we need to iterate through them all in a fixed order and update // the mapping, so the result is independent on the MBK write order for (int part = 0; part < 4; part++) { NWRAMMap_A[0][part] = nullptr; NWRAMMap_A[1][part] = nullptr; } for (int part = 3; part >= 0; part--) { u8* ptr = &NWRAM_A[part << 16]; u8 mVal = (MBK[0][0 + (part >> 2)] >> ((part & 3) * 8)) & 0xFD; if (mVal & 0x80) { NWRAMMap_A[mVal & 0x03][(mVal >> 2) & 0x3] = ptr; } } } void DSi::MapNWRAM_B(u32 num, u8 val) { // NWRAM Bank B does not allow all bits to be set // possible non working combinations are caught by later code, but these are not set-able at all val &= ~0x60; if (MBK[0][8] & (1 << (8+num))) { Log(LogLevel::Warn, "trying to map NWRAM_B %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]); return; } int mbkn = 1+(num>>2), mbks = 8*(num&3); u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF; if (oldval == val) return; JIT.Memory.RemapNWRAM(1); MBK[0][mbkn] &= ~(0xFF << mbks); MBK[0][mbkn] |= (val << mbks); MBK[1][mbkn] = MBK[0][mbkn]; // When we only update the mapping on the written MBK, we will // have priority of the last written MBK over the others // However the hardware has a fixed order. Therefore // we need to iterate through them all in a fixed order and update // the mapping, so the result is independent on the MBK write order for (int part = 0; part < 8; part++) { NWRAMMap_B[0][part] = nullptr; NWRAMMap_B[1][part] = nullptr; NWRAMMap_B[2][part] = nullptr; } for (int part = 7; part >= 0; part--) { u8* ptr = &NWRAM_B[part << 15]; u8 mVal = (MBK[0][1 + (part >> 2)] >> ((part & 3) * 8)) & 0xFF; if (mVal & 0x80) { if (mVal & 0x02) mVal &= 0xFE; NWRAMMap_B[mVal & 0x03][(mVal >> 2) & 0x7] = ptr; } } } void DSi::MapNWRAM_C(u32 num, u8 val) { // NWRAM Bank C does not allow all bits to be set // possible non working combinations are caught by later code, but these are not set-able at all val &= ~0x60; if (MBK[0][8] & (1 << (16+num))) { Log(LogLevel::Warn, "trying to map NWRAM_C %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]); return; } int mbkn = 3+(num>>2), mbks = 8*(num&3); u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF; if (oldval == val) return; JIT.Memory.RemapNWRAM(2); MBK[0][mbkn] &= ~(0xFF << mbks); MBK[0][mbkn] |= (val << mbks); MBK[1][mbkn] = MBK[0][mbkn]; // When we only update the mapping on the written MBK, we will // have priority of the last written MBK over the others // However the hardware has a fixed order. Therefore // we need to iterate through them all in a fixed order and update // the mapping, so the result is independent on the MBK write order for (int part = 0; part < 8; part++) { NWRAMMap_C[0][part] = nullptr; NWRAMMap_C[1][part] = nullptr; NWRAMMap_C[2][part] = nullptr; } for (int part = 7; part >= 0; part--) { u8* ptr = &NWRAM_C[part << 15]; u8 mVal = MBK[0][3 + (part >> 2)] >> ((part & 3) * 8) & 0xFF; if (mVal & 0x80) { if (mVal & 0x02) mVal &= 0xFE; NWRAMMap_C[mVal & 0x03][(mVal >> 2) & 0x7] = ptr; } } } void DSi::MapNWRAMRange(u32 cpu, u32 num, u32 val) { // The windowing registers are not writeable in all bits // We need to do this before the change test, so we do not // get false "was changed" fall throughs switch (num) { case 0: val &= ~0xE00FC00F; break; case 1: case 2: val &= ~0xE007C007; break; } u32 oldval = MBK[cpu][5+num]; if (oldval == val) return; JIT.Memory.RemapNWRAM(num); MBK[cpu][5+num] = val; // Was TODO: What happens when the ranges are 'out of range'???? // Answer: The actual range is limited to 0x03000000 to 0x03ffffff // The NWRAM can not map into the HW Register ranges and is never // mapped there. However the end indizes are allowed to have a value // exceeding that range, in which the accessed area is just cut // at the end of the region // since melonDS does this cut by the case switch in the read/write // functions, we do not need to care here. if (num == 0) { u32 start = 0x03000000 + (((val >> 4) & 0xFF) << 16); u32 end = 0x03000000 + (((val >> 20) & 0x1FF) << 16); u32 size = (val >> 12) & 0x3; Log(LogLevel::Debug, "NWRAM-A: ARM%d range %08X-%08X, size %d\n", cpu?7:9, start, end, size); NWRAMStart[cpu][num] = start; NWRAMEnd[cpu][num] = end; switch (size) { case 0: case 1: NWRAMMask[cpu][num] = 0x0; break; case 2: NWRAMMask[cpu][num] = 0x1; break; // CHECKME case 3: NWRAMMask[cpu][num] = 0x3; break; } } else { u32 start = 0x03000000 + (((val >> 3) & 0x1FF) << 15); u32 end = 0x03000000 + (((val >> 19) & 0x3FF) << 15); u32 size = (val >> 12) & 0x3; Log(LogLevel::Debug, "NWRAM-%c: ARM%d range %08X-%08X, size %d\n", 'A'+num, cpu?7:9, start, end, size); NWRAMStart[cpu][num] = start; NWRAMEnd[cpu][num] = end; switch (size) { case 0: NWRAMMask[cpu][num] = 0x0; break; case 1: NWRAMMask[cpu][num] = 0x1; break; case 2: NWRAMMask[cpu][num] = 0x3; break; case 3: NWRAMMask[cpu][num] = 0x7; break; } } } void DSi::ApplyNewRAMSize(u32 size) { switch (size) { case 0: case 1: MainRAMMask = 0x3FFFFF; Log(LogLevel::Debug, "RAM: 4MB\n"); break; case 2: case 3: // TODO: debug console w/ 32MB? MainRAMMask = 0xFFFFFF; Log(LogLevel::Debug, "RAM: 16MB\n"); break; } } void DSi::Set_SCFG_Clock9(u16 val) { ARM9Timestamp >>= ARM9ClockShift; ARM9Target >>= ARM9ClockShift; Log(LogLevel::Debug, "CLOCK9=%04X\n", val); SCFG_Clock9 = val & 0x0187; if (SCFG_Clock9 & (1<<0)) ARM9ClockShift = 2; else ARM9ClockShift = 1; ARM9Timestamp <<= ARM9ClockShift; ARM9Target <<= ARM9ClockShift; ARM9.UpdateRegionTimings(0x00000, 0x100000); } void DSi::Set_SCFG_MC(u32 val) { u32 oldslotstatus = SCFG_MC & 0xC; val &= 0xFFFF800C; if ((val & 0xC) == 0xC) val &= ~0xC; // hax if (val & 0x8000) Log(LogLevel::Warn, "SCFG_MC: weird NDS slot swap\n"); SCFG_MC = (SCFG_MC & ~0xFFFF800C) | val; if ((oldslotstatus == 0x0) && ((SCFG_MC & 0xC) == 0x4)) { NDSCartSlot.ResetCart(); } } u8 DSi::ARM9Read8(u32 addr) { assert(ConsoleType == 1); if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1)))) { if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0))) return 0xFF; return *(u8*)&ARM9iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF000000) { case 0x03000000: if (SCFG_EXT[0] & (1 << 25)) { if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; return ptr ? *(u8*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } } return NDS::ARM9Read8(addr); case 0x04000000: return ARM9IORead8(addr); case 0x08000000: case 0x09000000: case 0x0A000000: return (ExMemCnt[0] & (1<<7)) ? 0 : 0xFF; case 0x0C000000: return *(u8*)&MainRAM[addr & MainRAMMask]; } return NDS::ARM9Read8(addr); } u16 DSi::ARM9Read16(u32 addr) { assert(ConsoleType == 1); addr &= ~0x1; if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1)))) { if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0))) return 0xFFFF; return *(u16*)&ARM9iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF000000) { case 0x03000000: if (SCFG_EXT[0] & (1 << 25)) { if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; return ptr ? *(u16*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } } return NDS::ARM9Read16(addr); case 0x04000000: return ARM9IORead16(addr); case 0x08000000: case 0x09000000: case 0x0A000000: return (ExMemCnt[0] & (1<<7)) ? 0 : 0xFFFF; case 0x0C000000: return *(u16*)&MainRAM[addr & MainRAMMask]; } return NDS::ARM9Read16(addr); } u32 DSi::ARM9Read32(u32 addr) { assert(ConsoleType == 1); addr &= ~0x3; if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1)))) { if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0))) return 0xFFFFFFFF; return *(u32*)&ARM9iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF000000) { case 0x02000000: // HACK to bypass region locking // TODO: make optional if (addr == 0x02FE71B0) return 0xFFFFFFFF; break; case 0x03000000: if (SCFG_EXT[0] & (1 << 25)) { if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; return ptr ? *(u32*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } } return NDS::ARM9Read32(addr); case 0x04000000: return ARM9IORead32(addr); case 0x08000000: case 0x09000000: case 0x0A000000: return (ExMemCnt[0] & (1<<7)) ? 0 : 0xFFFFFFFF; case 0x0C000000: return *(u32*)&MainRAM[addr & MainRAMMask]; } return NDS::ARM9Read32(addr); } void DSi::ARM9Write8(u32 addr, u8 val) { assert(ConsoleType == 1); switch (addr & 0xFF000000) { case 0x03000000: if (SCFG_EXT[0] & (1 << 25)) { if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[0][0] << 2)) | 0x80; for (int page = 0; page < 4; page++) { unsigned int bankInfo = (MBK[0][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_A[page * 0x10000]; *(u8*)&ptr[addr & 0xFFFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); } return; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][1] << 2)) | 0x80; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[0][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_B[page * 0x8000]; *(u8*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); } return; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][2] << 2)) | 0x80; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[0][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_C[page * 0x8000]; *(u8*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); } return; } } return NDS::ARM9Write8(addr, val); case 0x04000000: ARM9IOWrite8(addr, val); return; case 0x06000000: if (!(SCFG_EXT[0] & (1<<13))) return; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(addr); switch (addr & 0x00E00000) { case 0x00000000: GPU.WriteVRAM_ABG(addr, val); return; case 0x00200000: GPU.WriteVRAM_BBG(addr, val); return; case 0x00400000: GPU.WriteVRAM_AOBJ(addr, val); return; case 0x00600000: GPU.WriteVRAM_BOBJ(addr, val); return; default: GPU.WriteVRAM_LCDC(addr, val); return; } case 0x08000000: case 0x09000000: case 0x0A000000: return; case 0x0C000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr); *(u8*)&MainRAM[addr & MainRAMMask] = val; return; } return NDS::ARM9Write8(addr, val); } void DSi::ARM9Write16(u32 addr, u16 val) { assert(ConsoleType == 1); addr &= ~0x1; switch (addr & 0xFF000000) { case 0x03000000: if (SCFG_EXT[0] & (1 << 25)) { if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[0][0] << 2)) | 0x80; for (int page = 0; page < 4; page++) { unsigned int bankInfo = (MBK[0][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_A[page * 0x10000]; *(u16*)&ptr[addr & 0xFFFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); } return; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][1] << 2)) | 0x80; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[0][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_B[page * 0x8000]; *(u16*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); } return; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][2] << 2)) | 0x80; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[0][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_C[page * 0x8000]; *(u16*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); } return; } } return NDS::ARM9Write16(addr, val); case 0x04000000: ARM9IOWrite16(addr, val); return; case 0x08000000: case 0x09000000: case 0x0A000000: return; case 0x0C000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr); *(u16*)&MainRAM[addr & MainRAMMask] = val; return; } return NDS::ARM9Write16(addr, val); } void DSi::ARM9Write32(u32 addr, u32 val) { assert(ConsoleType == 1); addr &= ~0x3; switch (addr & 0xFF000000) { case 0x03000000: if (SCFG_EXT[0] & (1 << 25)) { if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[0][0] << 2)) | 0x80; for (int page = 0; page < 4; page++) { unsigned int bankInfo = (MBK[0][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_A[page * 0x10000]; *(u32*)&ptr[addr & 0xFFFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); } return; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][1] << 2)) | 0x80; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[0][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_B[page * 0x8000]; *(u32*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); } return; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[0][2] << 2)) | 0x80; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[0][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_C[page * 0x8000]; *(u32*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); } return; } } return NDS::ARM9Write32(addr, val); case 0x04000000: ARM9IOWrite32(addr, val); return; case 0x08000000: case 0x09000000: case 0x0A000000: return; case 0x0C000000: JIT.CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(addr); *(u32*)&MainRAM[addr & MainRAMMask] = val; return; } return NDS::ARM9Write32(addr, val); } bool DSi::ARM9GetMemRegion(u32 addr, bool write, MemRegion* region) { assert(ConsoleType == 1); switch (addr & 0xFF000000) { case 0x02000000: case 0x0C000000: region->Mem = MainRAM; region->Mask = MainRAMMask; return true; } if ((addr & 0xFFFF0000) == 0xFFFF0000 && !write) { if (SCFG_BIOS & (1<<1)) { if (addr >= 0xFFFF1000) { region->Mem = NULL; return false; } region->Mem = &ARM9BIOS[0]; region->Mask = 0xFFF; } else { region->Mem = &ARM9iBIOS[0]; region->Mask = 0xFFFF; } return true; } region->Mem = NULL; return false; } u8 DSi::ARM7Read8(u32 addr) { if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9)))) { if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8))) return 0xFF; if (ARM7.R[15] >= 0x00010000) return 0xFF; if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt) return 0xFF; return *(u8*)&ARM7iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF800000) { case 0x03000000: case 0x03800000: if (SCFG_EXT[1] & (1 << 25)) { if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; return ptr ? *(u8*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } } return NDS::ARM7Read8(addr); case 0x04000000: return ARM7IORead8(addr); case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: case 0x0A000000: case 0x0A800000: return (ExMemCnt[0] & (1<<7)) ? 0xFF : 0; case 0x0C000000: case 0x0C800000: return *(u8*)&MainRAM[addr & MainRAMMask]; } return NDS::ARM7Read8(addr); } u16 DSi::ARM7Read16(u32 addr) { assert(ConsoleType == 1); addr &= ~0x1; if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9)))) { if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8))) return 0xFFFF; if (ARM7.R[15] >= 0x00010000) return 0xFFFF; if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt) return 0xFFFF; return *(u16*)&ARM7iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF800000) { case 0x03000000: case 0x03800000: if (SCFG_EXT[1] & (1 << 25)) { if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; return ptr ? *(u16*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } } return NDS::ARM7Read16(addr); case 0x04000000: return ARM7IORead16(addr); case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: case 0x0A000000: case 0x0A800000: return (ExMemCnt[0] & (1<<7)) ? 0xFFFF : 0; case 0x0C000000: case 0x0C800000: return *(u16*)&MainRAM[addr & MainRAMMask]; } return NDS::ARM7Read16(addr); } u32 DSi::ARM7Read32(u32 addr) { addr &= ~0x3; if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9)))) { if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8))) return 0xFFFFFFFF; if (ARM7.R[15] >= 0x00010000) return 0xFFFFFFFF; if (addr < ARM7BIOSProt && ARM7.R[15] >= ARM7BIOSProt) return 0xFFFFFFFF; return *(u32*)&ARM7iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF800000) { case 0x03000000: case 0x03800000: if (SCFG_EXT[1] & (1 << 25)) { if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; return ptr ? *(u32*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } } return NDS::ARM7Read32(addr); case 0x04000000: return ARM7IORead32(addr); case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: case 0x0A000000: case 0x0A800000: return (NDS::ExMemCnt[0] & (1<<7)) ? 0xFFFFFFFF : 0; case 0x0C000000: case 0x0C800000: return *(u32*)&NDS::MainRAM[addr & NDS::MainRAMMask]; } return NDS::ARM7Read32(addr); } void DSi::ARM7Write8(u32 addr, u8 val) { assert(ConsoleType == 1); switch (addr & 0xFF800000) { case 0x03000000: case 0x03800000: if (SCFG_EXT[1] & (1 << 25)) { if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[1][0] << 2)) | 0x81; for (int page = 0; page < 4; page++) { unsigned int bankInfo = (MBK[1][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_A[page * 0x10000]; *(u8*)&ptr[addr & 0xFFFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); } return; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][1] << 2)) | 0x81; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[1][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_B[page * 0x8000]; *(u8*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); } return; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][2] << 2)) | 0x81; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[1][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_C[page * 0x8000]; *(u8*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); } return; } } return NDS::ARM7Write8(addr, val); case 0x04000000: ARM7IOWrite8(addr, val); return; case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: case 0x0A000000: case 0x0A800000: return; case 0x0C000000: case 0x0C800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr); *(u8*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val; return; } return NDS::ARM7Write8(addr, val); } void DSi::ARM7Write16(u32 addr, u16 val) { assert(ConsoleType == 1); addr &= ~0x1; switch (addr & 0xFF800000) { case 0x03000000: case 0x03800000: if (SCFG_EXT[1] & (1 << 25)) { if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[1][0] << 2)) | 0x81; for (int page = 0; page < 4; page++) { unsigned int bankInfo = (MBK[1][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_A[page * 0x10000]; *(u16*)&ptr[addr & 0xFFFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); } return; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][1] << 2)) | 0x81; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[1][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_B[page * 0x8000]; *(u16*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); } return; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][2] << 2)) | 0x81; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[1][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_C[page * 0x8000]; *(u16*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); } return; } } return NDS::ARM7Write16(addr, val); case 0x04000000: ARM7IOWrite16(addr, val); return; case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: case 0x0A000000: case 0x0A800000: return; case 0x0C000000: case 0x0C800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr); *(u16*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val; return; } return NDS::ARM7Write16(addr, val); } void DSi::ARM7Write32(u32 addr, u32 val) { assert(ConsoleType == 1); addr &= ~0x3; switch (addr & 0xFF800000) { case 0x03000000: case 0x03800000: if (SCFG_EXT[1] & (1 << 25)) { if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 14) & (NWRAMMask[1][0] << 2)) | 0x81; for (int page = 0; page < 4; page++) { unsigned int bankInfo = (MBK[1][0 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_A[page * 0x10000]; *(u32*)&ptr[addr & 0xFFFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); } return; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][1] << 2)) | 0x81; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[1][1 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_B[page * 0x8000]; *(u32*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); } return; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { // Write to a bank is special, as it writes to all // parts that are mapped and not just the highest priority // See http://melonds.kuribo64.net/board/thread.php?pid=3974#3974 // so we need to iterate through all parts and write to all mapped here unsigned int destPartSetting = ((addr >> 13) & (NWRAMMask[1][2] << 2)) | 0x81; for (int page = 0; page < 8; page++) { unsigned int bankInfo = (MBK[1][3 + (page / 4)] >> ((page % 4) * 8)) & 0xff; if (bankInfo != destPartSetting) continue; u8* ptr = &NWRAM_C[page * 0x8000]; *(u32*)&ptr[addr & 0x7FFF] = val; JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); } return; } } return NDS::ARM7Write32(addr, val); case 0x04000000: ARM7IOWrite32(addr, val); return; case 0x08000000: case 0x08800000: case 0x09000000: case 0x09800000: case 0x0A000000: case 0x0A800000: return; case 0x0C000000: case 0x0C800000: JIT.CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(addr); *(u32*)&NDS::MainRAM[addr & NDS::MainRAMMask] = val; return; } return NDS::ARM7Write32(addr, val); } bool DSi::ARM7GetMemRegion(u32 addr, bool write, MemRegion* region) { assert(ConsoleType == 1); switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: case 0x0C000000: case 0x0C800000: region->Mem = NDS::MainRAM; region->Mask = NDS::MainRAMMask; return true; } // BIOS. ARM7 PC has to be within range. /*if (addr < 0x00010000 && !write) { if (NDS::ARM7->R[15] < 0x00010000 && (addr >= NDS::ARM7BIOSProt || NDS::ARM7->R[15] < NDS::ARM7BIOSProt)) { region->Mem = NDS::ARM7BIOS; region->Mask = 0xFFFF; return true; } }*/ region->Mem = NULL; return false; } #define CASE_READ8_16BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return (val) >> 8; #define CASE_READ8_32BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return ((val) >> 8) & 0xFF; \ case (addr+2): return ((val) >> 16) & 0xFF; \ case (addr+3): return (val) >> 24; #define CASE_READ16_32BIT(addr, val) \ case (addr): return (val) & 0xFFFF; \ case (addr+2): return (val) >> 16; u8 DSi::ARM9IORead8(u32 addr) { switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004006: return SCFG_RST & 0xFF; CASE_READ8_32BIT(0x04004040, MBK[0][0]) CASE_READ8_32BIT(0x04004044, MBK[0][1]) CASE_READ8_32BIT(0x04004048, MBK[0][2]) CASE_READ8_32BIT(0x0400404C, MBK[0][3]) CASE_READ8_32BIT(0x04004050, MBK[0][4]) CASE_READ8_32BIT(0x04004054, MBK[0][5]) CASE_READ8_32BIT(0x04004058, MBK[0][6]) CASE_READ8_32BIT(0x0400405C, MBK[0][7]) CASE_READ8_32BIT(0x04004060, MBK[0][8]) } if ((addr & 0xFFFFFF00) == 0x04004200) { if (!(SCFG_EXT[0] & (1<<17))) return 0; return CamModule.Read8(addr); } if ((addr & 0xFFFFFF00) == 0x04004300) { if (!(SCFG_EXT[0] & (1<<18))) return 0; return DSP.Read8(addr); } return NDS::ARM9IORead8(addr); } u16 DSi::ARM9IORead16(u32 addr) { assert(ConsoleType == 1); switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004004: return SCFG_Clock9; case 0x04004006: return SCFG_RST; case 0x04004010: return SCFG_MC & 0xFFFF; CASE_READ16_32BIT(0x04004040, MBK[0][0]) CASE_READ16_32BIT(0x04004044, MBK[0][1]) CASE_READ16_32BIT(0x04004048, MBK[0][2]) CASE_READ16_32BIT(0x0400404C, MBK[0][3]) CASE_READ16_32BIT(0x04004050, MBK[0][4]) CASE_READ16_32BIT(0x04004054, MBK[0][5]) CASE_READ16_32BIT(0x04004058, MBK[0][6]) CASE_READ16_32BIT(0x0400405C, MBK[0][7]) CASE_READ16_32BIT(0x04004060, MBK[0][8]) } if ((addr & 0xFFFFFF00) == 0x04004200) { if (!(SCFG_EXT[0] & (1<<17))) return 0; return CamModule.Read16(addr); } if ((addr & 0xFFFFFF00) == 0x04004300) { if (!(SCFG_EXT[0] & (1<<18))) return 0; return DSP.Read16(addr); } return NDS::ARM9IORead16(addr); } u32 DSi::ARM9IORead32(u32 addr) { assert(ConsoleType == 1); switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004004: return SCFG_Clock9 | ((u32)SCFG_RST << 16); case 0x04004008: return SCFG_EXT[0]; case 0x04004010: return SCFG_MC & 0xFFFF; case 0x04004040: return MBK[0][0]; case 0x04004044: return MBK[0][1]; case 0x04004048: return MBK[0][2]; case 0x0400404C: return MBK[0][3]; case 0x04004050: return MBK[0][4]; case 0x04004054: return MBK[0][5]; case 0x04004058: return MBK[0][6]; case 0x0400405C: return MBK[0][7]; case 0x04004060: return MBK[0][8]; case 0x04004100: return NDMACnt[0]; case 0x04004104: return NDMAs[0].SrcAddr; case 0x04004108: return NDMAs[0].DstAddr; case 0x0400410C: return NDMAs[0].TotalLength; case 0x04004110: return NDMAs[0].BlockLength; case 0x04004114: return NDMAs[0].SubblockTimer; case 0x04004118: return NDMAs[0].FillData; case 0x0400411C: return NDMAs[0].Cnt; case 0x04004120: return NDMAs[1].SrcAddr; case 0x04004124: return NDMAs[1].DstAddr; case 0x04004128: return NDMAs[1].TotalLength; case 0x0400412C: return NDMAs[1].BlockLength; case 0x04004130: return NDMAs[1].SubblockTimer; case 0x04004134: return NDMAs[1].FillData; case 0x04004138: return NDMAs[1].Cnt; case 0x0400413C: return NDMAs[2].SrcAddr; case 0x04004140: return NDMAs[2].DstAddr; case 0x04004144: return NDMAs[2].TotalLength; case 0x04004148: return NDMAs[2].BlockLength; case 0x0400414C: return NDMAs[2].SubblockTimer; case 0x04004150: return NDMAs[2].FillData; case 0x04004154: return NDMAs[2].Cnt; case 0x04004158: return NDMAs[3].SrcAddr; case 0x0400415C: return NDMAs[3].DstAddr; case 0x04004160: return NDMAs[3].TotalLength; case 0x04004164: return NDMAs[3].BlockLength; case 0x04004168: return NDMAs[3].SubblockTimer; case 0x0400416C: return NDMAs[3].FillData; case 0x04004170: return NDMAs[3].Cnt; } if ((addr & 0xFFFFFF00) == 0x04004200) { if (!(SCFG_EXT[0] & (1<<17))) return 0; return CamModule.Read32(addr); } if ((addr & 0xFFFFFF00) == 0x04004300) { if (!(SCFG_EXT[0] & (1<<18))) return 0; return DSP.Read32(addr); } return NDS::ARM9IORead32(addr); } void DSi::ARM9IOWrite8(u32 addr, u8 val) { assert(ConsoleType == 1); switch (addr) { case 0x04000301: // TODO: OPTIONAL PERFORMANCE HACK // the DSi ARM9 BIOS has a bug where the IRQ wait function attempts to use (ARM7-only) HALTCNT // effectively causing it to wait in a busy loop. // for better DSi performance, we can implement an actual IRQ wait here. // in practice this would only matter when running DS software in DSi mode (ie already a hack). // DSi software does not use the BIOS IRQ wait function. //if (val == 0x80 && NDS::ARM9->R[15] == 0xFFFF0268) NDS::ARM9->Halt(1); return; case 0x04004006: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_RST = (SCFG_RST & 0xFF00) | val; DSP.SetRstLine(val & 1); return; case 0x04004040: case 0x04004041: case 0x04004042: case 0x04004043: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_A(addr & 3, val); return; case 0x04004044: case 0x04004045: case 0x04004046: case 0x04004047: case 0x04004048: case 0x04004049: case 0x0400404A: case 0x0400404B: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_B((addr - 0x04) & 7, val); return; case 0x0400404C: case 0x0400404D: case 0x0400404E: case 0x0400404F: case 0x04004050: case 0x04004051: case 0x04004052: case 0x04004053: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_C((addr-0x0C) & 7, val); return; } if ((addr & 0xFFFFFF00) == 0x04004200) { if (!(SCFG_EXT[0] & (1<<17))) return; return CamModule.Write8(addr, val); } if ((addr & 0xFFFFFF00) == 0x04004300) { if (!(SCFG_EXT[0] & (1<<18))) return; return DSP.Write8(addr, val); } return NDS::ARM9IOWrite8(addr, val); } void DSi::ARM9IOWrite16(u32 addr, u16 val) { assert(ConsoleType == 1); switch (addr) { case 0x04004004: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; Set_SCFG_Clock9(val); return; case 0x04004006: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_RST = val; DSP.SetRstLine(val & 1); return; case 0x04004040: case 0x04004042: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_A((addr & 2), val & 0xFF); MapNWRAM_A((addr & 2) + 1, val >> 8); return; case 0x04004044: case 0x04004046: case 0x04004048: case 0x0400404A: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_B(((addr - 0x04) & 6), val & 0xFF); MapNWRAM_B(((addr - 0x04) & 6) + 1, val >> 8); return; case 0x0400404C: case 0x0400404E: case 0x04004050: case 0x04004052: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_C(((addr - 0x0C) & 6), val & 0xFF); MapNWRAM_C(((addr - 0x0C) & 6) + 1, val >> 8); return; } if ((addr & 0xFFFFFF00) == 0x04004200) { if (!(SCFG_EXT[0] & (1<<17))) return; return CamModule.Write16(addr, val); } if ((addr & 0xFFFFFF00) == 0x04004300) { if (!(SCFG_EXT[0] & (1<<18))) return; return DSP.Write16(addr, val); } return NDS::ARM9IOWrite16(addr, val); } void DSi::ARM9IOWrite32(u32 addr, u32 val) { assert(ConsoleType == 1); switch (addr) { case 0x04004004: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; Set_SCFG_Clock9(val & 0xFFFF); SCFG_RST = val >> 16; DSP.SetRstLine((val >> 16) & 1); break; case 0x04004008: { if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; u32 oldram = (SCFG_EXT[0] >> 14) & 0x3; u32 newram = (val >> 14) & 0x3; SCFG_EXT[0] &= ~0x8007F19F; SCFG_EXT[0] |= (val & 0x8007F19F); SCFG_EXT[1] &= ~0x0000F080; SCFG_EXT[1] |= (val & 0x0000F080); Log(LogLevel::Debug, "SCFG_EXT = %08X / %08X (val9 %08X)\n", SCFG_EXT[0], SCFG_EXT[1], val); /*switch ((SCFG_EXT[0] >> 14) & 0x3) { case 0: case 1: NDS::MainRAMMask = 0x3FFFFF; printf("RAM: 4MB\n"); //baziderp=true; break; case 2: case 3: // TODO: debug console w/ 32MB? NDS::MainRAMMask = 0xFFFFFF; printf("RAM: 16MB\n"); break; }*/ // HAX!! // a change to the RAM size setting is supposed to apply immediately (it does so on hardware) // however, doing so will cause DS-mode app startup to break, because the change happens while the ARM7 // is still busy clearing/relocating shit //if (newram != oldram) // NDS::ScheduleEvent(NDS::Event_DSi_RAMSizeChange, false, 512*512*512, ApplyNewRAMSize, newram); Log(LogLevel::Debug, "from %08X, ARM7 %08X, %08X\n", NDS::GetPC(0), NDS::GetPC(1), ARM7.R[1]); } return; case 0x04004040: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_A(0, val & 0xFF); MapNWRAM_A(1, (val >> 8) & 0xFF); MapNWRAM_A(2, (val >> 16) & 0xFF); MapNWRAM_A(3, val >> 24); return; case 0x04004044: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_B(0, val & 0xFF); MapNWRAM_B(1, (val >> 8) & 0xFF); MapNWRAM_B(2, (val >> 16) & 0xFF); MapNWRAM_B(3, val >> 24); return; case 0x04004048: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_B(4, val & 0xFF); MapNWRAM_B(5, (val >> 8) & 0xFF); MapNWRAM_B(6, (val >> 16) & 0xFF); MapNWRAM_B(7, val >> 24); return; case 0x0400404C: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_C(0, val & 0xFF); MapNWRAM_C(1, (val >> 8) & 0xFF); MapNWRAM_C(2, (val >> 16) & 0xFF); MapNWRAM_C(3, val >> 24); return; case 0x04004050: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAM_C(4, val & 0xFF); MapNWRAM_C(5, (val >> 8) & 0xFF); MapNWRAM_C(6, (val >> 16) & 0xFF); MapNWRAM_C(7, val >> 24); return; case 0x04004054: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAMRange(0, 0, val); return; case 0x04004058: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAMRange(0, 1, val); return; case 0x0400405C: if (!(SCFG_EXT[0] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAMRange(0, 2, val); return; case 0x04004100: NDMACnt[0] = val & 0x800F0000; return; case 0x04004104: NDMAs[0].SrcAddr = val & 0xFFFFFFFC; return; case 0x04004108: NDMAs[0].DstAddr = val & 0xFFFFFFFC; return; case 0x0400410C: NDMAs[0].TotalLength = val & 0x0FFFFFFF; return; case 0x04004110: NDMAs[0].BlockLength = val & 0x00FFFFFF; return; case 0x04004114: NDMAs[0].SubblockTimer = val & 0x0003FFFF; return; case 0x04004118: NDMAs[0].FillData = val; return; case 0x0400411C: NDMAs[0].WriteCnt(val); return; case 0x04004120: NDMAs[1].SrcAddr = val & 0xFFFFFFFC; return; case 0x04004124: NDMAs[1].DstAddr = val & 0xFFFFFFFC; return; case 0x04004128: NDMAs[1].TotalLength = val & 0x0FFFFFFF; return; case 0x0400412C: NDMAs[1].BlockLength = val & 0x00FFFFFF; return; case 0x04004130: NDMAs[1].SubblockTimer = val & 0x0003FFFF; return; case 0x04004134: NDMAs[1].FillData = val; return; case 0x04004138: NDMAs[1].WriteCnt(val); return; case 0x0400413C: NDMAs[2].SrcAddr = val & 0xFFFFFFFC; return; case 0x04004140: NDMAs[2].DstAddr = val & 0xFFFFFFFC; return; case 0x04004144: NDMAs[2].TotalLength = val & 0x0FFFFFFF; return; case 0x04004148: NDMAs[2].BlockLength = val & 0x00FFFFFF; return; case 0x0400414C: NDMAs[2].SubblockTimer = val & 0x0003FFFF; return; case 0x04004150: NDMAs[2].FillData = val; return; case 0x04004154: NDMAs[2].WriteCnt(val); return; case 0x04004158: NDMAs[3].SrcAddr = val & 0xFFFFFFFC; return; case 0x0400415C: NDMAs[3].DstAddr = val & 0xFFFFFFFC; return; case 0x04004160: NDMAs[3].TotalLength = val & 0x0FFFFFFF; return; case 0x04004164: NDMAs[3].BlockLength = val & 0x00FFFFFF; return; case 0x04004168: NDMAs[3].SubblockTimer = val & 0x0003FFFF; return; case 0x0400416C: NDMAs[3].FillData = val; return; case 0x04004170: NDMAs[3].WriteCnt(val); return; } if ((addr & 0xFFFFFF00) == 0x04004200) { if (!(SCFG_EXT[0] & (1<<17))) return; return CamModule.Write32(addr, val); } if ((addr & 0xFFFFFF00) == 0x04004300) { if (!(SCFG_EXT[0] & (1<<18))) return; return DSP.Write32(addr, val); } return NDS::ARM9IOWrite32(addr, val); } u8 DSi::ARM7IORead8(u32 addr) { assert(ConsoleType == 1); switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004001: return SCFG_BIOS >> 8; case 0x04004002: return 0; // SCFG_ROMWE, always 0 CASE_READ8_32BIT(0x04004040, MBK[1][0]) CASE_READ8_32BIT(0x04004044, MBK[1][1]) CASE_READ8_32BIT(0x04004048, MBK[1][2]) CASE_READ8_32BIT(0x0400404C, MBK[1][3]) CASE_READ8_32BIT(0x04004050, MBK[1][4]) CASE_READ8_32BIT(0x04004054, MBK[1][5]) CASE_READ8_32BIT(0x04004058, MBK[1][6]) CASE_READ8_32BIT(0x0400405C, MBK[1][7]) CASE_READ8_32BIT(0x04004060, MBK[1][8]) case 0x04004500: return I2C.ReadData(); case 0x04004501: return I2C.ReadCnt(); case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return SDMMC.GetNAND()->GetConsoleID() & 0xFF; case 0x04004D01: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 8) & 0xFF; case 0x04004D02: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 16) & 0xFF; case 0x04004D03: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 24) & 0xFF; case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 32) & 0xFF; case 0x04004D05: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 40) & 0xFF; case 0x04004D06: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 48) & 0xFF; case 0x04004D07: if (SCFG_BIOS & (1<<10)) return 0; return SDMMC.GetNAND()->GetConsoleID() >> 56; case 0x04004D08: return 0; case 0x4004700: return DSP.ReadSNDExCnt() & 0xFF; case 0x4004701: return DSP.ReadSNDExCnt() >> 8; case 0x04004C00: return GPIO_Data; case 0x04004C01: return GPIO_Dir; case 0x04004C02: return GPIO_IEdgeSel; case 0x04004C03: return GPIO_IE; case 0x04004C04: return GPIO_WiFi & 0xff; case 0x04004C05: return GPIO_WiFi >> 8; } return NDS::ARM7IORead8(addr); } u16 DSi::ARM7IORead16(u32 addr) { assert(ConsoleType == 1); switch (addr) { case 0x04000218: return NDS::IE2; case 0x0400021C: return NDS::IF2; case 0x04004000: return SCFG_BIOS; case 0x04004002: return 0; // SCFG_ROMWE, always 0 case 0x04004004: return SCFG_Clock7; case 0x04004006: return 0; // JTAG register case 0x04004010: return SCFG_MC & 0xFFFF; CASE_READ16_32BIT(0x04004040, MBK[1][0]) CASE_READ16_32BIT(0x04004044, MBK[1][1]) CASE_READ16_32BIT(0x04004048, MBK[1][2]) CASE_READ16_32BIT(0x0400404C, MBK[1][3]) CASE_READ16_32BIT(0x04004050, MBK[1][4]) CASE_READ16_32BIT(0x04004054, MBK[1][5]) CASE_READ16_32BIT(0x04004058, MBK[1][6]) CASE_READ16_32BIT(0x0400405C, MBK[1][7]) CASE_READ16_32BIT(0x04004060, MBK[1][8]) case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return SDMMC.GetNAND()->GetConsoleID() & 0xFFFF; case 0x04004D02: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 16) & 0xFFFF; case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return (SDMMC.GetNAND()->GetConsoleID() >> 32) & 0xFFFF; case 0x04004D06: if (SCFG_BIOS & (1<<10)) return 0; return SDMMC.GetNAND()->GetConsoleID() >> 48; case 0x04004D08: return 0; case 0x4004700: return DSP.ReadSNDExCnt(); case 0x04004C00: return GPIO_Data | ((u16)GPIO_Dir << 8); case 0x04004C02: return GPIO_IEdgeSel | ((u16)GPIO_IE << 8); case 0x04004C04: return GPIO_WiFi; } if (addr >= 0x04004800 && addr < 0x04004A00) { return SDMMC.Read(addr); } if (addr >= 0x04004A00 && addr < 0x04004C00) { return SDIO.Read(addr); } return NDS::ARM7IORead16(addr); } u32 DSi::ARM7IORead32(u32 addr) { assert(ConsoleType == 1); switch (addr) { case 0x04000218: return NDS::IE2; case 0x0400021C: return NDS::IF2; case 0x04004000: return SCFG_BIOS; case 0x04004008: return SCFG_EXT[1]; case 0x04004010: return SCFG_MC; case 0x04004040: return MBK[1][0]; case 0x04004044: return MBK[1][1]; case 0x04004048: return MBK[1][2]; case 0x0400404C: return MBK[1][3]; case 0x04004050: return MBK[1][4]; case 0x04004054: return MBK[1][5]; case 0x04004058: return MBK[1][6]; case 0x0400405C: return MBK[1][7]; case 0x04004060: return MBK[1][8]; case 0x04004100: return NDMACnt[1]; case 0x04004104: return NDMAs[4].SrcAddr; case 0x04004108: return NDMAs[4].DstAddr; case 0x0400410C: return NDMAs[4].TotalLength; case 0x04004110: return NDMAs[4].BlockLength; case 0x04004114: return NDMAs[4].SubblockTimer; case 0x04004118: return NDMAs[4].FillData; case 0x0400411C: return NDMAs[4].Cnt; case 0x04004120: return NDMAs[5].SrcAddr; case 0x04004124: return NDMAs[5].DstAddr; case 0x04004128: return NDMAs[5].TotalLength; case 0x0400412C: return NDMAs[5].BlockLength; case 0x04004130: return NDMAs[5].SubblockTimer; case 0x04004134: return NDMAs[5].FillData; case 0x04004138: return NDMAs[5].Cnt; case 0x0400413C: return NDMAs[6].SrcAddr; case 0x04004140: return NDMAs[6].DstAddr; case 0x04004144: return NDMAs[6].TotalLength; case 0x04004148: return NDMAs[6].BlockLength; case 0x0400414C: return NDMAs[6].SubblockTimer; case 0x04004150: return NDMAs[6].FillData; case 0x04004154: return NDMAs[6].Cnt; case 0x04004158: return NDMAs[7].SrcAddr; case 0x0400415C: return NDMAs[7].DstAddr; case 0x04004160: return NDMAs[7].TotalLength; case 0x04004164: return NDMAs[7].BlockLength; case 0x04004168: return NDMAs[7].SubblockTimer; case 0x0400416C: return NDMAs[7].FillData; case 0x04004170: return NDMAs[7].Cnt; case 0x04004400: return AES.ReadCnt(); case 0x0400440C: return AES.ReadOutputFIFO(); case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return SDMMC.GetNAND()->GetConsoleID() & 0xFFFFFFFF; case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return SDMMC.GetNAND()->GetConsoleID() >> 32; case 0x04004D08: return 0; case 0x4004700: Log(LogLevel::Debug, "32-Bit SNDExCnt read? %08X\n", ARM7.R[15]); return DSP.ReadSNDExCnt(); } if (addr >= 0x04004800 && addr < 0x04004A00) { if (addr == 0x0400490C) return SDMMC.ReadFIFO32(); return SDMMC.Read(addr) | (SDMMC.Read(addr+2) << 16); } if (addr >= 0x04004A00 && addr < 0x04004C00) { if (addr == 0x04004B0C) return SDIO.ReadFIFO32(); return SDIO.Read(addr) | (SDIO.Read(addr+2) << 16); } return NDS::ARM7IORead32(addr); } void DSi::ARM7IOWrite8(u32 addr, u8 val) { assert(ConsoleType == 1); switch (addr) { case 0x04004000: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_BIOS |= (val & 0x03); return; case 0x04004001: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_BIOS |= ((val & 0x07) << 8); return; case 0x04004002: // SCFG_ROMWE. ignored, as it always reads as 0 return; case 0x04004060: case 0x04004061: case 0x04004062: case 0x04004063: { if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; u32 tmp = MBK[0][8]; tmp &= ~(0xff << ((addr % 4) * 8)); tmp |= (val << ((addr % 4) * 8)); MBK[0][8] = tmp & 0x00FFFF0F; MBK[1][8] = MBK[0][8]; return; } case 0x04004500: I2C.WriteData(val); return; case 0x04004501: I2C.WriteCnt(val); return; case 0x4004700: DSP.WriteSNDExCnt((u16)val, 0xFF); return; case 0x4004701: DSP.WriteSNDExCnt(((u16)val << 8), 0xFF00); return; case 0x04004C00: GPIO_Data = val; return; case 0x04004C01: GPIO_Dir = val; return; case 0x04004C02: GPIO_IEdgeSel = val; return; case 0x04004C03: GPIO_IE = val; return; case 0x04004C04: GPIO_WiFi = val | (GPIO_WiFi & 0xff00); return; } if (addr >= 0x04004420 && addr < 0x04004430) { u32 shift = (addr&3)*8; addr -= 0x04004420; addr &= ~3; AES.WriteIV(addr, (u32)val << shift, 0xFF << shift); return; } if (addr >= 0x04004430 && addr < 0x04004440) { u32 shift = (addr&3)*8; addr -= 0x04004430; addr &= ~3; AES.WriteMAC(addr, (u32)val << shift, 0xFF << shift); return; } if (addr >= 0x04004440 && addr < 0x04004500) { u32 shift = (addr&3)*8; addr -= 0x04004440; addr &= ~3; int n = 0; while (addr >= 0x30) { addr -= 0x30; n++; } switch (addr >> 4) { case 0: AES.WriteKeyNormal(n, addr&0xF, (u32)val << shift, 0xFF << shift); return; case 1: AES.WriteKeyX(n, addr&0xF, (u32)val << shift, 0xFF << shift); return; case 2: AES.WriteKeyY(n, addr&0xF, (u32)val << shift, 0xFF << shift); return; } } return NDS::ARM7IOWrite8(addr, val); } void DSi::ARM7IOWrite16(u32 addr, u16 val) { assert(ConsoleType == 1); switch (addr) { case 0x04000218: NDS::IE2 = (val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x0400021C: NDS::IF2 &= ~(val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x04004000: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_BIOS |= (val & 0x0703); return; case 0x04004002: // SCFG_ROMWE. ignored, as it always reads as 0 return; case 0x04004004: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_Clock7 = val & 0x0187; return; case 0x04004010: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; Set_SCFG_MC((SCFG_MC & 0xFFFF0000) | val); return; case 0x04004060: case 0x04004062: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; { u32 tmp = MBK[0][8]; tmp &= ~(0xffff << ((addr % 4) * 8)); tmp |= (val << ((addr % 4) * 8)); MBK[0][8] = tmp & 0x00FFFF0F; MBK[1][8] = MBK[0][8]; } return; case 0x04004406: AES.WriteBlkCnt(val<<16); return; case 0x4004700: DSP.WriteSNDExCnt(val, 0xFFFF); return; case 0x04004C00: GPIO_Data = val & 0xff; GPIO_Dir = val >> 8; return; case 0x04004C02: GPIO_IEdgeSel = val & 0xff; GPIO_IE = val >> 8; return; case 0x04004C04: GPIO_WiFi = val; return; } if (addr >= 0x04004420 && addr < 0x04004430) { u32 shift = (addr&1)*16; addr -= 0x04004420; addr &= ~1; AES.WriteIV(addr, (u32)val << shift, 0xFFFF << shift); return; } if (addr >= 0x04004430 && addr < 0x04004440) { u32 shift = (addr&1)*16; addr -= 0x04004430; addr &= ~1; AES.WriteMAC(addr, (u32)val << shift, 0xFFFF << shift); return; } if (addr >= 0x04004440 && addr < 0x04004500) { u32 shift = (addr&1)*16; addr -= 0x04004440; addr &= ~1; int n = 0; while (addr >= 0x30) { addr -= 0x30; n++; } switch (addr >> 4) { case 0: AES.WriteKeyNormal(n, addr&0xF, (u32)val << shift, 0xFFFF << shift); return; case 1: AES.WriteKeyX(n, addr&0xF, (u32)val << shift, 0xFFFF << shift); return; case 2: AES.WriteKeyY(n, addr&0xF, (u32)val << shift, 0xFFFF << shift); return; } } if (addr >= 0x04004800 && addr < 0x04004A00) { SDMMC.Write(addr, val); return; } if (addr >= 0x04004A00 && addr < 0x04004C00) { SDIO.Write(addr, val); return; } return NDS::ARM7IOWrite16(addr, val); } void DSi::ARM7IOWrite32(u32 addr, u32 val) { assert(ConsoleType == 1); switch (addr) { case 0x04000218: NDS::IE2 = (val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x0400021C: NDS::IF2 &= ~(val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x04004000: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_BIOS |= (val & 0x0703); return; case 0x04004008: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; SCFG_EXT[0] &= ~0x03000000; SCFG_EXT[0] |= (val & 0x03000000); SCFG_EXT[1] &= ~0x93FF0F07; SCFG_EXT[1] |= (val & 0x93FF0F07); Log(LogLevel::Debug, "SCFG_EXT = %08X / %08X (val7 %08X)\n", SCFG_EXT[0], SCFG_EXT[1], val); return; case 0x04004010: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; Set_SCFG_MC(val); return; case 0x04004054: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAMRange(1, 0, val); return; case 0x04004058: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAMRange(1, 1, val); return; case 0x0400405C: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; MapNWRAMRange(1, 2, val); return; case 0x04004060: if (!(SCFG_EXT[1] & (1 << 31))) /* no access to SCFG Registers if disabled*/ return; val &= 0x00FFFF0F; MBK[0][8] = val; MBK[1][8] = val; return; case 0x04004100: NDMACnt[1] = val & 0x800F0000; return; case 0x04004104: NDMAs[4].SrcAddr = val & 0xFFFFFFFC; return; case 0x04004108: NDMAs[4].DstAddr = val & 0xFFFFFFFC; return; case 0x0400410C: NDMAs[4].TotalLength = val & 0x0FFFFFFF; return; case 0x04004110: NDMAs[4].BlockLength = val & 0x00FFFFFF; return; case 0x04004114: NDMAs[4].SubblockTimer = val & 0x0003FFFF; return; case 0x04004118: NDMAs[4].FillData = val; return; case 0x0400411C: NDMAs[4].WriteCnt(val); return; case 0x04004120: NDMAs[5].SrcAddr = val & 0xFFFFFFFC; return; case 0x04004124: NDMAs[5].DstAddr = val & 0xFFFFFFFC; return; case 0x04004128: NDMAs[5].TotalLength = val & 0x0FFFFFFF; return; case 0x0400412C: NDMAs[5].BlockLength = val & 0x00FFFFFF; return; case 0x04004130: NDMAs[5].SubblockTimer = val & 0x0003FFFF; return; case 0x04004134: NDMAs[5].FillData = val; return; case 0x04004138: NDMAs[5].WriteCnt(val); return; case 0x0400413C: NDMAs[6].SrcAddr = val & 0xFFFFFFFC; return; case 0x04004140: NDMAs[6].DstAddr = val & 0xFFFFFFFC; return; case 0x04004144: NDMAs[6].TotalLength = val & 0x0FFFFFFF; return; case 0x04004148: NDMAs[6].BlockLength = val & 0x00FFFFFF; return; case 0x0400414C: NDMAs[6].SubblockTimer = val & 0x0003FFFF; return; case 0x04004150: NDMAs[6].FillData = val; return; case 0x04004154: NDMAs[6].WriteCnt(val); return; case 0x04004158: NDMAs[7].SrcAddr = val & 0xFFFFFFFC; return; case 0x0400415C: NDMAs[7].DstAddr = val & 0xFFFFFFFC; return; case 0x04004160: NDMAs[7].TotalLength = val & 0x0FFFFFFF; return; case 0x04004164: NDMAs[7].BlockLength = val & 0x00FFFFFF; return; case 0x04004168: NDMAs[7].SubblockTimer = val & 0x0003FFFF; return; case 0x0400416C: NDMAs[7].FillData = val; return; case 0x04004170: NDMAs[7].WriteCnt(val); return; case 0x04004400: AES.WriteCnt(val); return; case 0x04004404: AES.WriteBlkCnt(val); return; case 0x04004408: AES.WriteInputFIFO(val); return; case 0x4004700: Log(LogLevel::Debug, "32-Bit SNDExCnt write? %08X %08X\n", val, ARM7.R[15]); DSP.WriteSNDExCnt(val, 0xFFFF); return; } if (addr >= 0x04004420 && addr < 0x04004430) { addr -= 0x04004420; AES.WriteIV(addr, val, 0xFFFFFFFF); return; } if (addr >= 0x04004430 && addr < 0x04004440) { addr -= 0x04004430; AES.WriteMAC(addr, val, 0xFFFFFFFF); return; } if (addr >= 0x04004440 && addr < 0x04004500) { addr -= 0x04004440; int n = 0; while (addr >= 0x30) { addr -= 0x30; n++; } switch (addr >> 4) { case 0: AES.WriteKeyNormal(n, addr&0xF, val, 0xFFFFFFFF); return; case 1: AES.WriteKeyX(n, addr&0xF, val, 0xFFFFFFFF); return; case 2: AES.WriteKeyY(n, addr&0xF, val, 0xFFFFFFFF); return; } } if (addr >= 0x04004800 && addr < 0x04004A00) { if (addr == 0x0400490C) { SDMMC.WriteFIFO32(val); return; } SDMMC.Write(addr, val & 0xFFFF); SDMMC.Write(addr+2, val >> 16); return; } if (addr >= 0x04004A00 && addr < 0x04004C00) { if (addr == 0x04004B0C) { SDIO.WriteFIFO32(val); return; } SDIO.Write(addr, val & 0xFFFF); SDIO.Write(addr+2, val >> 16); return; } if (addr >= 0x04004300 && addr <= 0x04004400) { DSP.Write32(addr, val); return; } return NDS::ARM7IOWrite32(addr, val); } }