/* Copyright 2016-2019 Arisotura This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "Config.h" #include "NDS.h" #include "DSi.h" #include "ARM.h" #include "GPU.h" #include "NDSCart.h" #include "Platform.h" #ifdef JIT_ENABLED #include "ARMJIT.h" #include "ARMJIT_Memory.h" #endif #include "DSi_NDMA.h" #include "DSi_I2C.h" #include "DSi_SD.h" #include "DSi_AES.h" #include "tiny-AES-c/aes.hpp" namespace DSi { u32 BootAddr[2]; u16 SCFG_BIOS; u16 SCFG_Clock9; u16 SCFG_Clock7; u32 SCFG_EXT[2]; u32 SCFG_MC; u8 ARM9iBIOS[0x10000]; u8 ARM7iBIOS[0x10000]; u32 MBK[2][9]; u8* NWRAM_A; u8* NWRAM_B; u8* NWRAM_C; u8* NWRAMMap_A[2][4]; u8* NWRAMMap_B[3][8]; u8* NWRAMMap_C[3][8]; u32 NWRAMStart[2][3]; u32 NWRAMEnd[2][3]; u32 NWRAMMask[2][3]; u32 NDMACnt[2]; DSi_NDMA* NDMAs[8]; DSi_SDHost* SDMMC; DSi_SDHost* SDIO; u64 ConsoleID; u8 eMMC_CID[16]; u8 ITCMInit[0x8000]; u8 ARM7Init[0x3C00]; bool Init() { #ifndef JIT_ENABLED NWRAM_A = new u8[NWRAMSize]; NWRAM_B = new u8[NWRAMSize]; NWRAM_C = new u8[NWRAMSize]; #endif if (!DSi_I2C::Init()) return false; if (!DSi_AES::Init()) return false; NDMAs[0] = new DSi_NDMA(0, 0); NDMAs[1] = new DSi_NDMA(0, 1); NDMAs[2] = new DSi_NDMA(0, 2); NDMAs[3] = new DSi_NDMA(0, 3); NDMAs[4] = new DSi_NDMA(1, 0); NDMAs[5] = new DSi_NDMA(1, 1); NDMAs[6] = new DSi_NDMA(1, 2); NDMAs[7] = new DSi_NDMA(1, 3); SDMMC = new DSi_SDHost(0); SDIO = new DSi_SDHost(1); return true; } void DeInit() { #ifndef JIT_ENABLED delete[] NWRAM_A; delete[] NWRAM_B; delete[] NWRAM_C; #endif DSi_I2C::DeInit(); DSi_AES::DeInit(); for (int i = 0; i < 8; i++) delete NDMAs[i]; delete SDMMC; delete SDIO; } void Reset() { //NDS::ARM9->CP15Write(0x910, 0x0D00000A); //NDS::ARM9->CP15Write(0x911, 0x00000020); //NDS::ARM9->CP15Write(0x100, NDS::ARM9->CP15Read(0x100) | 0x00050000); NDS::ARM9->JumpTo(BootAddr[0]); NDS::ARM7->JumpTo(BootAddr[1]); NDMACnt[0] = 0; NDMACnt[1] = 0; for (int i = 0; i < 8; i++) NDMAs[i]->Reset(); memcpy(NDS::ARM9->ITCM, ITCMInit, 0x8000); DSi_I2C::Reset(); DSi_AES::Reset(); SDMMC->Reset(); SDIO->Reset(); SCFG_BIOS = 0x0101; // TODO: should be zero when booting from BIOS SCFG_Clock9 = 0x0187; // CHECKME SCFG_Clock7 = 0x0187; SCFG_EXT[0] = 0x8307F100; SCFG_EXT[1] = 0x93FFFB06; SCFG_MC = 0x0010;//0x0011; // LCD init flag GPU::DispStat[0] |= (1<<6); GPU::DispStat[1] |= (1<<6); NDS::MapSharedWRAM(3); for (u32 i = 0; i < 0x3C00; i+=4) ARM7Write32(0x03FFC400+i, *(u32*)&ARM7Init[i]); u32 eaddr = 0x03FFE6E4; ARM7Write32(eaddr+0x00, *(u32*)&eMMC_CID[0]); ARM7Write32(eaddr+0x04, *(u32*)&eMMC_CID[4]); ARM7Write32(eaddr+0x08, *(u32*)&eMMC_CID[8]); ARM7Write32(eaddr+0x0C, *(u32*)&eMMC_CID[12]); ARM7Write16(eaddr+0x2C, 0x0001); ARM7Write16(eaddr+0x2E, 0x0001); ARM7Write16(eaddr+0x3C, 0x0100); ARM7Write16(eaddr+0x3E, 0x40E0); ARM7Write16(eaddr+0x42, 0x0001); } void SoftReset() { // TODO: check exactly what is reset // presumably, main RAM isn't reset, since the DSi can be told // to boot a specific title this way // BPTWL state wouldn't be reset either since BPTWL[0x70] is // the warmboot flag // also, BPTWL[0x70] could be abused to quickly boot specific titles NDS::ARM9->Reset(); NDS::ARM7->Reset(); NDS::ARM9->CP15Reset(); memcpy(NDS::ARM9->ITCM, ITCMInit, 0x8000); #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidateITCM(); #endif DSi_AES::Reset(); LoadNAND(); SDMMC->Reset(); SDIO->Reset(); NDS::ARM9->JumpTo(BootAddr[0]); NDS::ARM7->JumpTo(BootAddr[1]); SCFG_BIOS = 0x0101; // TODO: should be zero when booting from BIOS SCFG_Clock9 = 0x0187; // CHECKME SCFG_Clock7 = 0x0187; SCFG_EXT[0] = 0x8307F100; SCFG_EXT[1] = 0x93FFFB06; SCFG_MC = 0x0010;//0x0011; // LCD init flag GPU::DispStat[0] |= (1<<6); GPU::DispStat[1] |= (1<<6); NDS::MapSharedWRAM(3); for (u32 i = 0; i < 0x3C00; i+=4) ARM7Write32(0x03FFC400+i, *(u32*)&ARM7Init[i]); u32 eaddr = 0x03FFE6E4; ARM7Write32(eaddr+0x00, *(u32*)&eMMC_CID[0]); ARM7Write32(eaddr+0x04, *(u32*)&eMMC_CID[4]); ARM7Write32(eaddr+0x08, *(u32*)&eMMC_CID[8]); ARM7Write32(eaddr+0x0C, *(u32*)&eMMC_CID[12]); ARM7Write16(eaddr+0x2C, 0x0001); ARM7Write16(eaddr+0x2E, 0x0001); ARM7Write16(eaddr+0x3C, 0x0100); ARM7Write16(eaddr+0x3E, 0x40E0); ARM7Write16(eaddr+0x42, 0x0001); } bool LoadBIOS() { FILE* f; u32 i; memset(ARM9iBIOS, 0, 0x10000); memset(ARM7iBIOS, 0, 0x10000); f = Platform::OpenLocalFile(Config::DSiBIOS9Path, "rb"); if (!f) { printf("ARM9i BIOS not found\n"); for (i = 0; i < 16; i++) ((u32*)ARM9iBIOS)[i] = 0xE7FFDEFF; } else { fseek(f, 0, SEEK_SET); fread(ARM9iBIOS, 0x10000, 1, f); printf("ARM9i BIOS loaded\n"); fclose(f); } f = Platform::OpenLocalFile(Config::DSiBIOS7Path, "rb"); if (!f) { printf("ARM7i BIOS not found\n"); for (i = 0; i < 16; i++) ((u32*)ARM7iBIOS)[i] = 0xE7FFDEFF; } else { // TODO: check if the first 32 bytes are crapoed fseek(f, 0, SEEK_SET); fread(ARM7iBIOS, 0x10000, 1, f); printf("ARM7i BIOS loaded\n"); fclose(f); } // herp *(u32*)&ARM9iBIOS[0] = 0xEAFFFFFE; *(u32*)&ARM7iBIOS[0] = 0xEAFFFFFE; // TODO!!!! // hax the upper 32K out of the goddamn DSi return true; } bool LoadNAND() { printf("Loading DSi NAND\n"); memset(NWRAM_A, 0, NWRAMSize); memset(NWRAM_B, 0, NWRAMSize); memset(NWRAM_C, 0, NWRAMSize); memset(MBK, 0, sizeof(MBK)); memset(NWRAMMap_A, 0, sizeof(NWRAMMap_A)); memset(NWRAMMap_B, 0, sizeof(NWRAMMap_B)); memset(NWRAMMap_C, 0, sizeof(NWRAMMap_C)); memset(NWRAMStart, 0, sizeof(NWRAMStart)); memset(NWRAMEnd, 0, sizeof(NWRAMEnd)); memset(NWRAMMask, 0, sizeof(NWRAMMask)); FILE* f = Platform::OpenLocalFile(Config::DSiNANDPath, "rb"); if (f) { u32 bootparams[8]; fseek(f, 0x220, SEEK_SET); fread(bootparams, 4, 8, f); printf("ARM9: offset=%08X size=%08X RAM=%08X size_aligned=%08X\n", bootparams[0], bootparams[1], bootparams[2], bootparams[3]); printf("ARM7: offset=%08X size=%08X RAM=%08X size_aligned=%08X\n", bootparams[4], bootparams[5], bootparams[6], bootparams[7]); // read and apply new-WRAM settings MBK[0][8] = 0; MBK[1][8] = 0; u32 mbk[12]; fseek(f, 0x380, SEEK_SET); fread(mbk, 4, 12, f); MapNWRAM_A(0, mbk[0] & 0xFF); MapNWRAM_A(1, (mbk[0] >> 8) & 0xFF); MapNWRAM_A(2, (mbk[0] >> 16) & 0xFF); MapNWRAM_A(3, mbk[0] >> 24); MapNWRAM_B(0, mbk[1] & 0xFF); MapNWRAM_B(1, (mbk[1] >> 8) & 0xFF); MapNWRAM_B(2, (mbk[1] >> 16) & 0xFF); MapNWRAM_B(3, mbk[1] >> 24); MapNWRAM_B(4, mbk[2] & 0xFF); MapNWRAM_B(5, (mbk[2] >> 8) & 0xFF); MapNWRAM_B(6, (mbk[2] >> 16) & 0xFF); MapNWRAM_B(7, mbk[2] >> 24); MapNWRAM_C(0, mbk[3] & 0xFF); MapNWRAM_C(1, (mbk[3] >> 8) & 0xFF); MapNWRAM_C(2, (mbk[3] >> 16) & 0xFF); MapNWRAM_C(3, mbk[3] >> 24); MapNWRAM_C(4, mbk[4] & 0xFF); MapNWRAM_C(5, (mbk[4] >> 8) & 0xFF); MapNWRAM_C(6, (mbk[4] >> 16) & 0xFF); MapNWRAM_C(7, mbk[4] >> 24); MapNWRAMRange(0, 0, mbk[5]); MapNWRAMRange(0, 1, mbk[6]); MapNWRAMRange(0, 2, mbk[7]); MapNWRAMRange(1, 0, mbk[8]); MapNWRAMRange(1, 1, mbk[9]); MapNWRAMRange(1, 2, mbk[10]); // TODO: find out why it is 0xFF000000 mbk[11] &= 0x00FFFF0F; MBK[0][8] = mbk[11]; MBK[1][8] = mbk[11]; // load boot2 binaries AES_ctx ctx; const u8 boot2key[16] = {0xAD, 0x34, 0xEC, 0xF9, 0x62, 0x6E, 0xC2, 0x3A, 0xF6, 0xB4, 0x6C, 0x00, 0x80, 0x80, 0xEE, 0x98}; u8 boot2iv[16]; u8 tmp[16]; u32 dstaddr; *(u32*)&tmp[0] = bootparams[3]; *(u32*)&tmp[4] = -bootparams[3]; *(u32*)&tmp[8] = ~bootparams[3]; *(u32*)&tmp[12] = 0; for (int i = 0; i < 16; i++) boot2iv[i] = tmp[15-i]; AES_init_ctx_iv(&ctx, boot2key, boot2iv); fseek(f, bootparams[0], SEEK_SET); dstaddr = bootparams[2]; for (u32 i = 0; i < bootparams[3]; i += 16) { u8 data[16]; fread(data, 16, 1, f); for (int j = 0; j < 16; j++) tmp[j] = data[15-j]; AES_CTR_xcrypt_buffer(&ctx, tmp, 16); for (int j = 0; j < 16; j++) data[j] = tmp[15-j]; ARM9Write32(dstaddr, *(u32*)&data[0]); dstaddr += 4; ARM9Write32(dstaddr, *(u32*)&data[4]); dstaddr += 4; ARM9Write32(dstaddr, *(u32*)&data[8]); dstaddr += 4; ARM9Write32(dstaddr, *(u32*)&data[12]); dstaddr += 4; } *(u32*)&tmp[0] = bootparams[7]; *(u32*)&tmp[4] = -bootparams[7]; *(u32*)&tmp[8] = ~bootparams[7]; *(u32*)&tmp[12] = 0; for (int i = 0; i < 16; i++) boot2iv[i] = tmp[15-i]; AES_init_ctx_iv(&ctx, boot2key, boot2iv); fseek(f, bootparams[4], SEEK_SET); dstaddr = bootparams[6]; for (u32 i = 0; i < bootparams[7]; i += 16) { u8 data[16]; fread(data, 16, 1, f); for (int j = 0; j < 16; j++) tmp[j] = data[15-j]; AES_CTR_xcrypt_buffer(&ctx, tmp, 16); for (int j = 0; j < 16; j++) data[j] = tmp[15-j]; ARM7Write32(dstaddr, *(u32*)&data[0]); dstaddr += 4; ARM7Write32(dstaddr, *(u32*)&data[4]); dstaddr += 4; ARM7Write32(dstaddr, *(u32*)&data[8]); dstaddr += 4; ARM7Write32(dstaddr, *(u32*)&data[12]); dstaddr += 4; } // repoint the CPUs to the boot2 binaries BootAddr[0] = bootparams[2]; BootAddr[1] = bootparams[6]; #define printhex(str, size) { for (int z = 0; z < (size); z++) printf("%02X", (str)[z]); printf("\n"); } #define printhex_rev(str, size) { for (int z = (size)-1; z >= 0; z--) printf("%02X", (str)[z]); printf("\n"); } // read the nocash footer fseek(f, -0x40, SEEK_END); char nand_footer[16]; const char* nand_footer_ref = "DSi eMMC CID/CPU"; fread(nand_footer, 1, 16, f); if (memcmp(nand_footer, nand_footer_ref, 16)) { printf("ERROR: NAND missing nocash footer\n"); fclose(f); return false; } fread(eMMC_CID, 1, 16, f); fread(&ConsoleID, 1, 8, f); printf("eMMC CID: "); printhex(eMMC_CID, 16); printf("Console ID: %016llX\n", ConsoleID); fclose(f); } memset(ITCMInit, 0, 0x8000); memcpy(&ITCMInit[0x4400], &ARM9iBIOS[0x87F4], 0x400); memcpy(&ITCMInit[0x4800], &ARM9iBIOS[0x9920], 0x80); memcpy(&ITCMInit[0x4894], &ARM9iBIOS[0x99A0], 0x1048); memcpy(&ITCMInit[0x58DC], &ARM9iBIOS[0xA9E8], 0x1048); memset(ARM7Init, 0, 0x3C00); memcpy(&ARM7Init[0x0000], &ARM7iBIOS[0x8188], 0x200); memcpy(&ARM7Init[0x0200], &ARM7iBIOS[0xB5D8], 0x40); memcpy(&ARM7Init[0x0254], &ARM7iBIOS[0xC6D0], 0x1048); memcpy(&ARM7Init[0x129C], &ARM7iBIOS[0xD718], 0x1048); return true; } void RunNDMAs(u32 cpu) { // TODO: round-robin mode (requires DMA channels to have a subblock delay set) if (cpu == 0) { if (NDS::ARM9Timestamp >= NDS::ARM9Target) return; if (!(NDS::CPUStop & 0x80000000)) NDMAs[0]->Run(); if (!(NDS::CPUStop & 0x80000000)) NDMAs[1]->Run(); if (!(NDS::CPUStop & 0x80000000)) NDMAs[2]->Run(); if (!(NDS::CPUStop & 0x80000000)) NDMAs[3]->Run(); } else { if (NDS::ARM7Timestamp >= NDS::ARM7Target) return; NDMAs[4]->Run(); NDMAs[5]->Run(); NDMAs[6]->Run(); NDMAs[7]->Run(); } } void StallNDMAs() { // TODO } bool NDMAsInMode(u32 cpu, u32 mode) { cpu <<= 2; if (NDMAs[cpu+0]->IsInMode(mode)) return true; if (NDMAs[cpu+1]->IsInMode(mode)) return true; if (NDMAs[cpu+2]->IsInMode(mode)) return true; if (NDMAs[cpu+3]->IsInMode(mode)) return true; return false; } bool NDMAsRunning(u32 cpu) { cpu <<= 2; if (NDMAs[cpu+0]->IsRunning()) return true; if (NDMAs[cpu+1]->IsRunning()) return true; if (NDMAs[cpu+2]->IsRunning()) return true; if (NDMAs[cpu+3]->IsRunning()) return true; return false; } void CheckNDMAs(u32 cpu, u32 mode) { cpu <<= 2; NDMAs[cpu+0]->StartIfNeeded(mode); NDMAs[cpu+1]->StartIfNeeded(mode); NDMAs[cpu+2]->StartIfNeeded(mode); NDMAs[cpu+3]->StartIfNeeded(mode); } void StopNDMAs(u32 cpu, u32 mode) { cpu <<= 2; NDMAs[cpu+0]->StopIfNeeded(mode); NDMAs[cpu+1]->StopIfNeeded(mode); NDMAs[cpu+2]->StopIfNeeded(mode); NDMAs[cpu+3]->StopIfNeeded(mode); } // new WRAM mapping // TODO: find out what happens upon overlapping slots!! void MapNWRAM_A(u32 num, u8 val) { if (MBK[0][8] & (1 << num)) { printf("trying to map NWRAM_A %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]); return; } #ifdef JIT_ENABLED ARMJIT_Memory::RemapNWRAM(0); #endif int mbkn = 0, mbks = 8*num; u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF; if (oldval == val) return; MBK[0][mbkn] &= ~(0xFF << mbks); MBK[0][mbkn] |= (val << mbks); MBK[1][mbkn] = MBK[0][mbkn]; u8* ptr = &NWRAM_A[num << 16]; if (oldval & 0x80) { if (NWRAMMap_A[oldval & 0x01][(oldval >> 2) & 0x3] == ptr) NWRAMMap_A[oldval & 0x01][(oldval >> 2) & 0x3] = NULL; } if (val & 0x80) { NWRAMMap_A[val & 0x01][(val >> 2) & 0x3] = ptr; } } void MapNWRAM_B(u32 num, u8 val) { if (MBK[0][8] & (1 << (8+num))) { printf("trying to map NWRAM_B %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]); return; } #ifdef JIT_ENABLED ARMJIT_Memory::RemapNWRAM(1); #endif int mbkn = 1+(num>>2), mbks = 8*(num&3); u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF; if (oldval == val) return; MBK[0][mbkn] &= ~(0xFF << mbks); MBK[0][mbkn] |= (val << mbks); MBK[1][mbkn] = MBK[0][mbkn]; u8* ptr = &NWRAM_B[num << 15]; if (oldval & 0x80) { if (oldval & 0x02) oldval &= 0xFE; if (NWRAMMap_B[oldval & 0x03][(oldval >> 2) & 0x7] == ptr) NWRAMMap_B[oldval & 0x03][(oldval >> 2) & 0x7] = NULL; } if (val & 0x80) { if (val & 0x02) val &= 0xFE; NWRAMMap_B[val & 0x03][(val >> 2) & 0x7] = ptr; } } void MapNWRAM_C(u32 num, u8 val) { if (MBK[0][8] & (1 << (16+num))) { printf("trying to map NWRAM_C %d to %02X, but it is write-protected (%08X)\n", num, val, MBK[0][8]); return; } #ifdef JIT_ENABLED ARMJIT_Memory::RemapNWRAM(2); #endif int mbkn = 3+(num>>2), mbks = 8*(num&3); u8 oldval = (MBK[0][mbkn] >> mbks) & 0xFF; if (oldval == val) return; MBK[0][mbkn] &= ~(0xFF << mbks); MBK[0][mbkn] |= (val << mbks); MBK[1][mbkn] = MBK[0][mbkn]; u8* ptr = &NWRAM_C[num << 15]; if (oldval & 0x80) { if (oldval & 0x02) oldval &= 0xFE; if (NWRAMMap_C[oldval & 0x03][(oldval >> 2) & 0x7] == ptr) NWRAMMap_C[oldval & 0x03][(oldval >> 2) & 0x7] = NULL; } if (val & 0x80) { if (val & 0x02) val &= 0xFE; NWRAMMap_C[val & 0x03][(val >> 2) & 0x7] = ptr; } } void MapNWRAMRange(u32 cpu, u32 num, u32 val) { u32 oldval = MBK[cpu][5+num]; if (oldval == val) return; #ifdef JIT_ENABLED ARMJIT_Memory::RemapNWRAM(num); #endif MBK[cpu][5+num] = val; // TODO: what happens when the ranges are 'out of range'???? if (num == 0) { u32 start = 0x03000000 + (((val >> 4) & 0xFF) << 16); u32 end = 0x03000000 + (((val >> 20) & 0x1FF) << 16); u32 size = (val >> 12) & 0x3; printf("NWRAM-A: ARM%d range %08X-%08X, size %d\n", cpu?7:9, start, end, size); NWRAMStart[cpu][num] = start; NWRAMEnd[cpu][num] = end; switch (size) { case 0: case 1: NWRAMMask[cpu][num] = 0x0; break; case 2: NWRAMMask[cpu][num] = 0x1; break; // CHECKME case 3: NWRAMMask[cpu][num] = 0x3; break; } } else { u32 start = 0x03000000 + (((val >> 3) & 0x1FF) << 15); u32 end = 0x03000000 + (((val >> 19) & 0x3FF) << 15); u32 size = (val >> 12) & 0x3; printf("NWRAM-%c: ARM%d range %08X-%08X, size %d\n", 'A'+num, cpu?7:9, start, end, size); NWRAMStart[cpu][num] = start; NWRAMEnd[cpu][num] = end; switch (size) { case 0: NWRAMMask[cpu][num] = 0x0; break; case 1: NWRAMMask[cpu][num] = 0x1; break; case 2: NWRAMMask[cpu][num] = 0x3; break; case 3: NWRAMMask[cpu][num] = 0x7; break; } } } void Set_SCFG_Clock9(u16 val) { SCFG_Clock9 = val & 0x0187; return; NDS::ARM9Timestamp >>= NDS::ARM9ClockShift; printf("CLOCK9=%04X\n", val); SCFG_Clock9 = val & 0x0187; if (SCFG_Clock9 & (1<<0)) NDS::ARM9ClockShift = 2; else NDS::ARM9ClockShift = 1; NDS::ARM9Timestamp <<= NDS::ARM9ClockShift; NDS::ARM9->UpdateRegionTimings(0x00000000, 0xFFFFFFFF); } void Set_SCFG_MC(u32 val) { u32 oldslotstatus = SCFG_MC & 0xC; val &= 0xFFFF800C; if ((val & 0xC) == 0xC) val &= ~0xC; // hax if (val & 0x8000) printf("SCFG_MC: weird NDS slot swap\n"); SCFG_MC = (SCFG_MC & ~0xFFFF800C) | val; if ((oldslotstatus == 0x0) && ((SCFG_MC & 0xC) == 0x4)) { NDSCart::ResetCart(); } } u8 ARM9Read8(u32 addr) { if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1)))) { if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0))) return 0xFF; return *(u8*)&ARM9iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF000000) { case 0x03000000: if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; return ptr ? *(u8*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } return NDS::ARM9Read8(addr); case 0x04000000: return ARM9IORead8(addr); } return NDS::ARM9Read8(addr); } u16 ARM9Read16(u32 addr) { if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1)))) { if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0))) return 0xFFFF; return *(u16*)&ARM9iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF000000) { case 0x03000000: if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; return ptr ? *(u16*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } return NDS::ARM9Read16(addr); case 0x04000000: return ARM9IORead16(addr); } return NDS::ARM9Read16(addr); } u32 ARM9Read32(u32 addr) { if ((addr >= 0xFFFF0000) && (!(SCFG_BIOS & (1<<1)))) { if ((addr >= 0xFFFF8000) && (SCFG_BIOS & (1<<0))) return 0xFFFFFFFF; return *(u32*)&ARM9iBIOS[addr & 0xFFFF]; } switch (addr & 0xFF000000) { case 0x02000000: // HACK to bypass region locking // TODO: make optional if (addr == 0x02FE71B0) return 0xFFFFFFFF; break; case 0x03000000: if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; return ptr ? *(u32*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } return NDS::ARM9Read32(addr); case 0x04000000: return ARM9IORead32(addr); } return NDS::ARM9Read32(addr); } void ARM9Write8(u32 addr, u8 val) { switch (addr & 0xFF000000) { case 0x03000000: if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; if (ptr) { *(u8*)&ptr[addr & 0xFFFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); #endif } return; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; if (ptr) { *(u8*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); #endif } return; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; if (ptr) { *(u8*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); #endif } return; } return NDS::ARM9Write8(addr, val); case 0x04000000: ARM9IOWrite8(addr, val); return; } return NDS::ARM9Write8(addr, val); } void ARM9Write16(u32 addr, u16 val) { switch (addr & 0xFF000000) { case 0x03000000: if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; if (ptr) { *(u16*)&ptr[addr & 0xFFFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); #endif } return; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; if (ptr) { *(u16*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); #endif } return; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; if (ptr) { *(u16*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); #endif } return; } return NDS::ARM9Write16(addr, val); case 0x04000000: ARM9IOWrite16(addr, val); return; } return NDS::ARM9Write16(addr, val); } void ARM9Write32(u32 addr, u32 val) { switch (addr & 0xFF000000) { case 0x03000000: if (addr >= NWRAMStart[0][0] && addr < NWRAMEnd[0][0]) { u8* ptr = NWRAMMap_A[0][(addr >> 16) & NWRAMMask[0][0]]; if (ptr) { *(u32*)&ptr[addr & 0xFFFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); #endif } return; } if (addr >= NWRAMStart[0][1] && addr < NWRAMEnd[0][1]) { u8* ptr = NWRAMMap_B[0][(addr >> 15) & NWRAMMask[0][1]]; if (ptr) { *(u32*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); #endif } return; } if (addr >= NWRAMStart[0][2] && addr < NWRAMEnd[0][2]) { u8* ptr = NWRAMMap_C[0][(addr >> 15) & NWRAMMask[0][2]]; if (ptr) { *(u32*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); #endif } return; } return NDS::ARM9Write32(addr, val); case 0x04000000: ARM9IOWrite32(addr, val); return; } return NDS::ARM9Write32(addr, val); } bool ARM9GetMemRegion(u32 addr, bool write, NDS::MemRegion* region) { switch (addr & 0xFF000000) { case 0x02000000: region->Mem = NDS::MainRAM; region->Mask = NDS::MainRAMMask; return true; } if ((addr & 0xFFFF0000) == 0xFFFF0000 && !write) { if (SCFG_BIOS & (1<<1)) { if (addr >= 0xFFFF1000) { region->Mem = NULL; return false; } region->Mem = NDS::ARM9BIOS; region->Mask = 0xFFF; } else { region->Mem = ARM9iBIOS; region->Mask = 0xFFFF; } return true; } region->Mem = NULL; return false; } u8 ARM7Read8(u32 addr) { if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9)))) { if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8))) return 0xFF; if (NDS::ARM7->R[15] >= 0x00010000) return 0xFF; if (addr < NDS::ARM7BIOSProt && NDS::ARM7->R[15] >= NDS::ARM7BIOSProt) return 0xFF; return *(u8*)&ARM7iBIOS[addr]; } switch (addr & 0xFF800000) { case 0x03000000: if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; return ptr ? *(u8*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; return ptr ? *(u8*)&ptr[addr & 0x7FFF] : 0; } return NDS::ARM7Read8(addr); case 0x04000000: return ARM7IORead8(addr); } return NDS::ARM7Read8(addr); } u16 ARM7Read16(u32 addr) { if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9)))) { if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8))) return 0xFFFF; if (NDS::ARM7->R[15] >= 0x00010000) return 0xFFFF; if (addr < NDS::ARM7BIOSProt && NDS::ARM7->R[15] >= NDS::ARM7BIOSProt) return 0xFFFF; return *(u16*)&ARM7iBIOS[addr]; } switch (addr & 0xFF800000) { case 0x03000000: if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; return ptr ? *(u16*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; return ptr ? *(u16*)&ptr[addr & 0x7FFF] : 0; } return NDS::ARM7Read16(addr); case 0x04000000: return ARM7IORead16(addr); } return NDS::ARM7Read16(addr); } u32 ARM7Read32(u32 addr) { if ((addr < 0x00010000) && (!(SCFG_BIOS & (1<<9)))) { if ((addr >= 0x00008000) && (SCFG_BIOS & (1<<8))) return 0xFFFFFFFF; if (NDS::ARM7->R[15] >= 0x00010000) return 0xFFFFFFFF; if (addr < NDS::ARM7BIOSProt && NDS::ARM7->R[15] >= NDS::ARM7BIOSProt) return 0xFFFFFFFF; return *(u32*)&ARM7iBIOS[addr]; } switch (addr & 0xFF800000) { case 0x03000000: if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; return ptr ? *(u32*)&ptr[addr & 0xFFFF] : 0; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; return ptr ? *(u32*)&ptr[addr & 0x7FFF] : 0; } return NDS::ARM7Read32(addr); case 0x04000000: return ARM7IORead32(addr); } return NDS::ARM7Read32(addr); } void ARM7Write8(u32 addr, u8 val) { switch (addr & 0xFF800000) { case 0x03000000: if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; if (ptr) { *(u8*)&ptr[addr & 0xFFFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); #endif } return; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; if (ptr) { *(u8*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); #endif } return; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; if (ptr) { *(u8*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); #endif } return; } return NDS::ARM7Write8(addr, val); case 0x04000000: ARM7IOWrite8(addr, val); return; } return NDS::ARM7Write8(addr, val); } void ARM7Write16(u32 addr, u16 val) { switch (addr & 0xFF800000) { case 0x03000000: if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; if (ptr) { *(u16*)&ptr[addr & 0xFFFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); #endif } return; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; if (ptr) { *(u16*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); #endif } return; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; if (ptr) { *(u16*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); #endif } return; } return NDS::ARM7Write16(addr, val); case 0x04000000: ARM7IOWrite16(addr, val); return; } return NDS::ARM7Write16(addr, val); } void ARM7Write32(u32 addr, u32 val) { switch (addr & 0xFF800000) { case 0x03000000: if (addr >= NWRAMStart[1][0] && addr < NWRAMEnd[1][0]) { u8* ptr = NWRAMMap_A[1][(addr >> 16) & NWRAMMask[1][0]]; if (ptr) { *(u32*)&ptr[addr & 0xFFFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(addr); #endif } return; } if (addr >= NWRAMStart[1][1] && addr < NWRAMEnd[1][1]) { u8* ptr = NWRAMMap_B[1][(addr >> 15) & NWRAMMask[1][1]]; if (ptr) { *(u32*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(addr); #endif } return; } if (addr >= NWRAMStart[1][2] && addr < NWRAMEnd[1][2]) { u8* ptr = NWRAMMap_C[1][(addr >> 15) & NWRAMMask[1][2]]; if (ptr) { *(u32*)&ptr[addr & 0x7FFF] = val; #ifdef JIT_ENABLED ARMJIT::CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(addr); #endif } return; } return NDS::ARM7Write32(addr, val); case 0x04000000: ARM7IOWrite32(addr, val); return; } return NDS::ARM7Write32(addr, val); } bool ARM7GetMemRegion(u32 addr, bool write, NDS::MemRegion* region) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: region->Mem = NDS::MainRAM; region->Mask = NDS::MainRAMMask; return true; } // BIOS. ARM7 PC has to be within range. /*if (addr < 0x00010000 && !write) { if (NDS::ARM7->R[15] < 0x00010000 && (addr >= NDS::ARM7BIOSProt || NDS::ARM7->R[15] < NDS::ARM7BIOSProt)) { region->Mem = NDS::ARM7BIOS; region->Mask = 0xFFFF; return true; } }*/ region->Mem = NULL; return false; } #define CASE_READ8_16BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return (val) >> 8; #define CASE_READ8_32BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return ((val) >> 8) & 0xFF; \ case (addr+2): return ((val) >> 16) & 0xFF; \ case (addr+3): return (val) >> 24; #define CASE_READ16_32BIT(addr, val) \ case (addr): return (val) & 0xFFFF; \ case (addr+2): return (val) >> 16; u8 ARM9IORead8(u32 addr) { switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; CASE_READ8_32BIT(0x04004040, MBK[0][0]) CASE_READ8_32BIT(0x04004044, MBK[0][1]) CASE_READ8_32BIT(0x04004048, MBK[0][2]) CASE_READ8_32BIT(0x0400404C, MBK[0][3]) CASE_READ8_32BIT(0x04004050, MBK[0][4]) CASE_READ8_32BIT(0x04004054, MBK[0][5]) CASE_READ8_32BIT(0x04004058, MBK[0][6]) CASE_READ8_32BIT(0x0400405C, MBK[0][7]) CASE_READ8_32BIT(0x04004060, MBK[0][8]) } return NDS::ARM9IORead8(addr); } u16 ARM9IORead16(u32 addr) { switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004004: return SCFG_Clock9; case 0x04004010: return SCFG_MC & 0xFFFF; CASE_READ16_32BIT(0x04004040, MBK[0][0]) CASE_READ16_32BIT(0x04004044, MBK[0][1]) CASE_READ16_32BIT(0x04004048, MBK[0][2]) CASE_READ16_32BIT(0x0400404C, MBK[0][3]) CASE_READ16_32BIT(0x04004050, MBK[0][4]) CASE_READ16_32BIT(0x04004054, MBK[0][5]) CASE_READ16_32BIT(0x04004058, MBK[0][6]) CASE_READ16_32BIT(0x0400405C, MBK[0][7]) CASE_READ16_32BIT(0x04004060, MBK[0][8]) } return NDS::ARM9IORead16(addr); } u32 ARM9IORead32(u32 addr) { switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004008: return SCFG_EXT[0]; case 0x04004010: return SCFG_MC & 0xFFFF; case 0x04004040: return MBK[0][0]; case 0x04004044: return MBK[0][1]; case 0x04004048: return MBK[0][2]; case 0x0400404C: return MBK[0][3]; case 0x04004050: return MBK[0][4]; case 0x04004054: return MBK[0][5]; case 0x04004058: return MBK[0][6]; case 0x0400405C: return MBK[0][7]; case 0x04004060: return MBK[0][8]; case 0x04004100: return NDMACnt[0]; case 0x04004104: return NDMAs[0]->SrcAddr; case 0x04004108: return NDMAs[0]->DstAddr; case 0x0400410C: return NDMAs[0]->TotalLength; case 0x04004110: return NDMAs[0]->BlockLength; case 0x04004114: return NDMAs[0]->SubblockTimer; case 0x04004118: return NDMAs[0]->FillData; case 0x0400411C: return NDMAs[0]->Cnt; case 0x04004120: return NDMAs[1]->SrcAddr; case 0x04004124: return NDMAs[1]->DstAddr; case 0x04004128: return NDMAs[1]->TotalLength; case 0x0400412C: return NDMAs[1]->BlockLength; case 0x04004130: return NDMAs[1]->SubblockTimer; case 0x04004134: return NDMAs[1]->FillData; case 0x04004138: return NDMAs[1]->Cnt; case 0x0400413C: return NDMAs[2]->SrcAddr; case 0x04004140: return NDMAs[2]->DstAddr; case 0x04004144: return NDMAs[2]->TotalLength; case 0x04004148: return NDMAs[2]->BlockLength; case 0x0400414C: return NDMAs[2]->SubblockTimer; case 0x04004150: return NDMAs[2]->FillData; case 0x04004154: return NDMAs[2]->Cnt; case 0x04004158: return NDMAs[3]->SrcAddr; case 0x0400415C: return NDMAs[3]->DstAddr; case 0x04004160: return NDMAs[3]->TotalLength; case 0x04004164: return NDMAs[3]->BlockLength; case 0x04004168: return NDMAs[3]->SubblockTimer; case 0x0400416C: return NDMAs[3]->FillData; case 0x04004170: return NDMAs[3]->Cnt; } return NDS::ARM9IORead32(addr); } void ARM9IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x04000301: // TODO: OPTIONAL PERFORMANCE HACK // the DSi ARM9 BIOS has a bug where the IRQ wait function attempts to use (ARM7-only) HALTCNT // effectively causing it to wait in a busy loop. // for better DSi performance, we can implement an actual IRQ wait here. // in practice this would only matter when running DS software in DSi mode (ie already a hack). // DSi software does not use the BIOS IRQ wait function. //if (val == 0x80 && NDS::ARM9->R[15] == 0xFFFF0268) NDS::ARM9->Halt(1); return; case 0x04004040: MapNWRAM_A(0, val); return; case 0x04004041: MapNWRAM_A(1, val); return; case 0x04004042: MapNWRAM_A(2, val); return; case 0x04004043: MapNWRAM_A(3, val); return; case 0x04004044: MapNWRAM_B(0, val); return; case 0x04004045: MapNWRAM_B(1, val); return; case 0x04004046: MapNWRAM_B(2, val); return; case 0x04004047: MapNWRAM_B(3, val); return; case 0x04004048: MapNWRAM_B(4, val); return; case 0x04004049: MapNWRAM_B(5, val); return; case 0x0400404A: MapNWRAM_B(6, val); return; case 0x0400404B: MapNWRAM_B(7, val); return; case 0x0400404C: MapNWRAM_C(0, val); return; case 0x0400404D: MapNWRAM_C(1, val); return; case 0x0400404E: MapNWRAM_C(2, val); return; case 0x0400404F: MapNWRAM_C(3, val); return; case 0x04004050: MapNWRAM_C(4, val); return; case 0x04004051: MapNWRAM_C(5, val); return; case 0x04004052: MapNWRAM_C(6, val); return; case 0x04004053: MapNWRAM_C(7, val); return; } return NDS::ARM9IOWrite8(addr, val); } void ARM9IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04004004: Set_SCFG_Clock9(val); return; case 0x04004040: MapNWRAM_A(0, val & 0xFF); MapNWRAM_A(1, val >> 8); return; case 0x04004042: MapNWRAM_A(2, val & 0xFF); MapNWRAM_A(3, val >> 8); return; case 0x04004044: MapNWRAM_B(0, val & 0xFF); MapNWRAM_B(1, val >> 8); return; case 0x04004046: MapNWRAM_B(2, val & 0xFF); MapNWRAM_B(3, val >> 8); return; case 0x04004048: MapNWRAM_B(4, val & 0xFF); MapNWRAM_B(5, val >> 8); return; case 0x0400404A: MapNWRAM_B(6, val & 0xFF); MapNWRAM_B(7, val >> 8); return; case 0x0400404C: MapNWRAM_C(0, val & 0xFF); MapNWRAM_C(1, val >> 8); return; case 0x0400404E: MapNWRAM_C(2, val & 0xFF); MapNWRAM_C(3, val >> 8); return; case 0x04004050: MapNWRAM_C(4, val & 0xFF); MapNWRAM_C(5, val >> 8); return; case 0x04004052: MapNWRAM_C(6, val & 0xFF); MapNWRAM_C(7, val >> 8); return; } return NDS::ARM9IOWrite16(addr, val); } void ARM9IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x04004008: SCFG_EXT[0] &= ~0x8007F19F; SCFG_EXT[0] |= (val & 0x8007F19F); SCFG_EXT[1] &= ~0x0000F080; SCFG_EXT[1] |= (val & 0x0000F080); printf("SCFG_EXT = %08X / %08X (val9 %08X)\n", SCFG_EXT[0], SCFG_EXT[1], val); /*switch ((SCFG_EXT[0] >> 14) & 0x3) { case 0: case 1: NDS::MainRAMMask = 0x3FFFFF; printf("RAM: 4MB\n"); break; case 2: case 3: // TODO: debug console w/ 32MB? NDS::MainRAMMask = 0xFFFFFF; printf("RAM: 16MB\n"); break; }*/ printf("from %08X, ARM7 %08X, %08X\n", NDS::GetPC(0), NDS::GetPC(1), NDS::ARM7->R[1]); return; case 0x04004040: MapNWRAM_A(0, val & 0xFF); MapNWRAM_A(1, (val >> 8) & 0xFF); MapNWRAM_A(2, (val >> 16) & 0xFF); MapNWRAM_A(3, val >> 24); return; case 0x04004044: MapNWRAM_B(0, val & 0xFF); MapNWRAM_B(1, (val >> 8) & 0xFF); MapNWRAM_B(2, (val >> 16) & 0xFF); MapNWRAM_B(3, val >> 24); return; case 0x04004048: MapNWRAM_B(4, val & 0xFF); MapNWRAM_B(5, (val >> 8) & 0xFF); MapNWRAM_B(6, (val >> 16) & 0xFF); MapNWRAM_B(7, val >> 24); return; case 0x0400404C: MapNWRAM_C(0, val & 0xFF); MapNWRAM_C(1, (val >> 8) & 0xFF); MapNWRAM_C(2, (val >> 16) & 0xFF); MapNWRAM_C(3, val >> 24); return; case 0x04004050: MapNWRAM_C(4, val & 0xFF); MapNWRAM_C(5, (val >> 8) & 0xFF); MapNWRAM_C(6, (val >> 16) & 0xFF); MapNWRAM_C(7, val >> 24); return; case 0x04004054: MapNWRAMRange(0, 0, val); return; case 0x04004058: MapNWRAMRange(0, 1, val); return; case 0x0400405C: MapNWRAMRange(0, 2, val); return; case 0x04004100: NDMACnt[0] = val & 0x800F0000; return; case 0x04004104: NDMAs[0]->SrcAddr = val & 0xFFFFFFFC; return; case 0x04004108: NDMAs[0]->DstAddr = val & 0xFFFFFFFC; return; case 0x0400410C: NDMAs[0]->TotalLength = val & 0x0FFFFFFF; return; case 0x04004110: NDMAs[0]->BlockLength = val & 0x00FFFFFF; return; case 0x04004114: NDMAs[0]->SubblockTimer = val & 0x0003FFFF; return; case 0x04004118: NDMAs[0]->FillData = val; return; case 0x0400411C: NDMAs[0]->WriteCnt(val); return; case 0x04004120: NDMAs[1]->SrcAddr = val & 0xFFFFFFFC; return; case 0x04004124: NDMAs[1]->DstAddr = val & 0xFFFFFFFC; return; case 0x04004128: NDMAs[1]->TotalLength = val & 0x0FFFFFFF; return; case 0x0400412C: NDMAs[1]->BlockLength = val & 0x00FFFFFF; return; case 0x04004130: NDMAs[1]->SubblockTimer = val & 0x0003FFFF; return; case 0x04004134: NDMAs[1]->FillData = val; return; case 0x04004138: NDMAs[1]->WriteCnt(val); return; case 0x0400413C: NDMAs[2]->SrcAddr = val & 0xFFFFFFFC; return; case 0x04004140: NDMAs[2]->DstAddr = val & 0xFFFFFFFC; return; case 0x04004144: NDMAs[2]->TotalLength = val & 0x0FFFFFFF; return; case 0x04004148: NDMAs[2]->BlockLength = val & 0x00FFFFFF; return; case 0x0400414C: NDMAs[2]->SubblockTimer = val & 0x0003FFFF; return; case 0x04004150: NDMAs[2]->FillData = val; return; case 0x04004154: NDMAs[2]->WriteCnt(val); return; case 0x04004158: NDMAs[3]->SrcAddr = val & 0xFFFFFFFC; return; case 0x0400415C: NDMAs[3]->DstAddr = val & 0xFFFFFFFC; return; case 0x04004160: NDMAs[3]->TotalLength = val & 0x0FFFFFFF; return; case 0x04004164: NDMAs[3]->BlockLength = val & 0x00FFFFFF; return; case 0x04004168: NDMAs[3]->SubblockTimer = val & 0x0003FFFF; return; case 0x0400416C: NDMAs[3]->FillData = val; return; case 0x04004170: NDMAs[3]->WriteCnt(val); return; } return NDS::ARM9IOWrite32(addr, val); } u8 ARM7IORead8(u32 addr) { switch (addr) { case 0x04004000: return SCFG_BIOS & 0xFF; case 0x04004001: return SCFG_BIOS >> 8; CASE_READ8_32BIT(0x04004040, MBK[1][0]) CASE_READ8_32BIT(0x04004044, MBK[1][1]) CASE_READ8_32BIT(0x04004048, MBK[1][2]) CASE_READ8_32BIT(0x0400404C, MBK[1][3]) CASE_READ8_32BIT(0x04004050, MBK[1][4]) CASE_READ8_32BIT(0x04004054, MBK[1][5]) CASE_READ8_32BIT(0x04004058, MBK[1][6]) CASE_READ8_32BIT(0x0400405C, MBK[1][7]) CASE_READ8_32BIT(0x04004060, MBK[1][8]) case 0x04004500: return DSi_I2C::ReadData(); case 0x04004501: return DSi_I2C::Cnt; case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return ConsoleID & 0xFF; case 0x04004fD01: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 8) & 0xFF; case 0x04004D02: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 16) & 0xFF; case 0x04004D03: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 24) & 0xFF; case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 32) & 0xFF; case 0x04004D05: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 40) & 0xFF; case 0x04004D06: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 48) & 0xFF; case 0x04004D07: if (SCFG_BIOS & (1<<10)) return 0; return ConsoleID >> 56; case 0x04004D08: return 0; } return NDS::ARM7IORead8(addr); } u16 ARM7IORead16(u32 addr) { switch (addr) { case 0x04000218: return NDS::IE2; case 0x0400021C: return NDS::IF2; case 0x04004000: return SCFG_BIOS; case 0x04004004: return SCFG_Clock7; case 0x04004006: return 0; // JTAG register case 0x04004010: return SCFG_MC & 0xFFFF; CASE_READ16_32BIT(0x04004040, MBK[1][0]) CASE_READ16_32BIT(0x04004044, MBK[1][1]) CASE_READ16_32BIT(0x04004048, MBK[1][2]) CASE_READ16_32BIT(0x0400404C, MBK[1][3]) CASE_READ16_32BIT(0x04004050, MBK[1][4]) CASE_READ16_32BIT(0x04004054, MBK[1][5]) CASE_READ16_32BIT(0x04004058, MBK[1][6]) CASE_READ16_32BIT(0x0400405C, MBK[1][7]) CASE_READ16_32BIT(0x04004060, MBK[1][8]) case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return ConsoleID & 0xFFFF; case 0x04004D02: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 16) & 0xFFFF; case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return (ConsoleID >> 32) & 0xFFFF; case 0x04004D06: if (SCFG_BIOS & (1<<10)) return 0; return ConsoleID >> 48; case 0x04004D08: return 0; } if (addr >= 0x04004800 && addr < 0x04004A00) { return SDMMC->Read(addr); } if (addr >= 0x04004A00 && addr < 0x04004C00) { return SDIO->Read(addr); } return NDS::ARM7IORead16(addr); } u32 ARM7IORead32(u32 addr) { switch (addr) { case 0x04000218: return NDS::IE2; case 0x0400021C: return NDS::IF2; case 0x04004000: return SCFG_BIOS; case 0x04004008: return SCFG_EXT[1]; case 0x04004010: return SCFG_MC; case 0x04004040: return MBK[1][0]; case 0x04004044: return MBK[1][1]; case 0x04004048: return MBK[1][2]; case 0x0400404C: return MBK[1][3]; case 0x04004050: return MBK[1][4]; case 0x04004054: return MBK[1][5]; case 0x04004058: return MBK[1][6]; case 0x0400405C: return MBK[1][7]; case 0x04004060: return MBK[1][8]; case 0x04004100: return NDMACnt[1]; case 0x04004104: return NDMAs[4]->SrcAddr; case 0x04004108: return NDMAs[4]->DstAddr; case 0x0400410C: return NDMAs[4]->TotalLength; case 0x04004110: return NDMAs[4]->BlockLength; case 0x04004114: return NDMAs[4]->SubblockTimer; case 0x04004118: return NDMAs[4]->FillData; case 0x0400411C: return NDMAs[4]->Cnt; case 0x04004120: return NDMAs[5]->SrcAddr; case 0x04004124: return NDMAs[5]->DstAddr; case 0x04004128: return NDMAs[5]->TotalLength; case 0x0400412C: return NDMAs[5]->BlockLength; case 0x04004130: return NDMAs[5]->SubblockTimer; case 0x04004134: return NDMAs[5]->FillData; case 0x04004138: return NDMAs[5]->Cnt; case 0x0400413C: return NDMAs[6]->SrcAddr; case 0x04004140: return NDMAs[6]->DstAddr; case 0x04004144: return NDMAs[6]->TotalLength; case 0x04004148: return NDMAs[6]->BlockLength; case 0x0400414C: return NDMAs[6]->SubblockTimer; case 0x04004150: return NDMAs[6]->FillData; case 0x04004154: return NDMAs[6]->Cnt; case 0x04004158: return NDMAs[7]->SrcAddr; case 0x0400415C: return NDMAs[7]->DstAddr; case 0x04004160: return NDMAs[7]->TotalLength; case 0x04004164: return NDMAs[7]->BlockLength; case 0x04004168: return NDMAs[7]->SubblockTimer; case 0x0400416C: return NDMAs[7]->FillData; case 0x04004170: return NDMAs[7]->Cnt; case 0x04004400: return DSi_AES::ReadCnt(); case 0x0400440C: return DSi_AES::ReadOutputFIFO(); case 0x04004D00: if (SCFG_BIOS & (1<<10)) return 0; return ConsoleID & 0xFFFFFFFF; case 0x04004D04: if (SCFG_BIOS & (1<<10)) return 0; return ConsoleID >> 32; case 0x04004D08: return 0; } if (addr >= 0x04004800 && addr < 0x04004A00) { if (addr == 0x0400490C) return SDMMC->ReadFIFO32(); return SDMMC->Read(addr) | (SDMMC->Read(addr+2) << 16); } if (addr >= 0x04004A00 && addr < 0x04004C00) { if (addr == 0x04004B0C) return SDIO->ReadFIFO32(); return SDIO->Read(addr) | (SDIO->Read(addr+2) << 16); } return NDS::ARM7IORead32(addr); } void ARM7IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x04004000: SCFG_BIOS |= (val & 0x03); return; case 0x04004001: SCFG_BIOS |= ((val & 0x07) << 8); return; case 0x04004500: DSi_I2C::WriteData(val); return; case 0x04004501: DSi_I2C::WriteCnt(val); return; } return NDS::ARM7IOWrite8(addr, val); } void ARM7IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000218: NDS::IE2 = (val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x0400021C: NDS::IF2 &= ~(val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x04004000: SCFG_BIOS |= (val & 0x0703); return; case 0x04004004: SCFG_Clock7 = val & 0x0187; return; case 0x04004010: Set_SCFG_MC((SCFG_MC & 0xFFFF0000) | val); return; } if (addr >= 0x04004800 && addr < 0x04004A00) { SDMMC->Write(addr, val); return; } if (addr >= 0x04004A00 && addr < 0x04004C00) { SDIO->Write(addr, val); return; } return NDS::ARM7IOWrite16(addr, val); } void ARM7IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x04000218: NDS::IE2 = (val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x0400021C: NDS::IF2 &= ~(val & 0x7FF7); NDS::UpdateIRQ(1); return; case 0x04004000: SCFG_BIOS |= (val & 0x0703); return; case 0x04004008: SCFG_EXT[0] &= ~0x03000000; SCFG_EXT[0] |= (val & 0x03000000); SCFG_EXT[1] &= ~0x93FF0F07; SCFG_EXT[1] |= (val & 0x93FF0F07); printf("SCFG_EXT = %08X / %08X (val7 %08X)\n", SCFG_EXT[0], SCFG_EXT[1], val); return; case 0x04004010: Set_SCFG_MC(val); return; case 0x04004054: MapNWRAMRange(1, 0, val); return; case 0x04004058: MapNWRAMRange(1, 1, val); return; case 0x0400405C: MapNWRAMRange(1, 2, val); return; case 0x04004060: val &= 0x00FFFF0F; MBK[0][8] = val; MBK[1][8] = val; return; case 0x04004100: NDMACnt[1] = val & 0x800F0000; return; case 0x04004104: NDMAs[4]->SrcAddr = val & 0xFFFFFFFC; return; case 0x04004108: NDMAs[4]->DstAddr = val & 0xFFFFFFFC; return; case 0x0400410C: NDMAs[4]->TotalLength = val & 0x0FFFFFFF; return; case 0x04004110: NDMAs[4]->BlockLength = val & 0x00FFFFFF; return; case 0x04004114: NDMAs[4]->SubblockTimer = val & 0x0003FFFF; return; case 0x04004118: NDMAs[4]->FillData = val; return; case 0x0400411C: NDMAs[4]->WriteCnt(val); return; case 0x04004120: NDMAs[5]->SrcAddr = val & 0xFFFFFFFC; return; case 0x04004124: NDMAs[5]->DstAddr = val & 0xFFFFFFFC; return; case 0x04004128: NDMAs[5]->TotalLength = val & 0x0FFFFFFF; return; case 0x0400412C: NDMAs[5]->BlockLength = val & 0x00FFFFFF; return; case 0x04004130: NDMAs[5]->SubblockTimer = val & 0x0003FFFF; return; case 0x04004134: NDMAs[5]->FillData = val; return; case 0x04004138: NDMAs[5]->WriteCnt(val); return; case 0x0400413C: NDMAs[6]->SrcAddr = val & 0xFFFFFFFC; return; case 0x04004140: NDMAs[6]->DstAddr = val & 0xFFFFFFFC; return; case 0x04004144: NDMAs[6]->TotalLength = val & 0x0FFFFFFF; return; case 0x04004148: NDMAs[6]->BlockLength = val & 0x00FFFFFF; return; case 0x0400414C: NDMAs[6]->SubblockTimer = val & 0x0003FFFF; return; case 0x04004150: NDMAs[6]->FillData = val; return; case 0x04004154: NDMAs[6]->WriteCnt(val); return; case 0x04004158: NDMAs[7]->SrcAddr = val & 0xFFFFFFFC; return; case 0x0400415C: NDMAs[7]->DstAddr = val & 0xFFFFFFFC; return; case 0x04004160: NDMAs[7]->TotalLength = val & 0x0FFFFFFF; return; case 0x04004164: NDMAs[7]->BlockLength = val & 0x00FFFFFF; return; case 0x04004168: NDMAs[7]->SubblockTimer = val & 0x0003FFFF; return; case 0x0400416C: NDMAs[7]->FillData = val; return; case 0x04004170: NDMAs[7]->WriteCnt(val); return; case 0x04004400: DSi_AES::WriteCnt(val); return; case 0x04004404: DSi_AES::WriteBlkCnt(val); return; case 0x04004408: DSi_AES::WriteInputFIFO(val); return; } if (addr >= 0x04004420 && addr < 0x04004430) { addr -= 0x04004420; DSi_AES::WriteIV(addr, val, 0xFFFFFFFF); return; } if (addr >= 0x04004430 && addr < 0x04004440) { addr -= 0x04004430; DSi_AES::WriteMAC(addr, val, 0xFFFFFFFF); return; } if (addr >= 0x04004440 && addr < 0x04004500) { addr -= 0x04004440; int n = 0; while (addr >= 0x30) { addr -= 0x30; n++; } switch (addr >> 4) { case 0: DSi_AES::WriteKeyNormal(n, addr&0xF, val, 0xFFFFFFFF); return; case 1: DSi_AES::WriteKeyX(n, addr&0xF, val, 0xFFFFFFFF); return; case 2: DSi_AES::WriteKeyY(n, addr&0xF, val, 0xFFFFFFFF); return; } } if (addr >= 0x04004800 && addr < 0x04004A00) { if (addr == 0x0400490C) { SDMMC->WriteFIFO32(val); return; } SDMMC->Write(addr, val & 0xFFFF); SDMMC->Write(addr+2, val >> 16); return; } if (addr >= 0x04004A00 && addr < 0x04004C00) { if (addr == 0x04004B0C) { SDIO->WriteFIFO32(val); return; } SDIO->Write(addr, val & 0xFFFF); SDIO->Write(addr+2, val >> 16); return; } return NDS::ARM7IOWrite32(addr, val); } }